1
|
Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 2005; 23:291-8. [PMID: 15922081 DOI: 10.1016/j.tibtech.2005.04.008] [Citation(s) in RCA: 876] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 02/16/2005] [Accepted: 04/07/2005] [Indexed: 11/29/2022]
Abstract
Microbial fuel cells (MFCs) provide new opportunities for the sustainable production of energy from biodegradable, reduced compounds. MFCs function on different carbohydrates but also on complex substrates present in wastewaters. As yet there is limited information available about the energy metabolism and nature of the bacteria using the anode as electron acceptor; few electron transfer mechanisms have been established unequivocally. To optimize and develop energy production by MFCs fully this knowledge is essential. Depending on the operational parameters of the MFC, different metabolic pathways are used by the bacteria. This determines the selection and performance of specific organisms. Here we discuss how bacteria use an anode as an electron acceptor and to what extent they generate electrical output. The MFC technology is evaluated relative to current alternatives for energy generation.
Collapse
|
Review |
20 |
876 |
2
|
Liu H, Logan BE. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2004; 38:4040-6. [PMID: 15298217 DOI: 10.1021/es0499344] [Citation(s) in RCA: 787] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Microbial fuel cells (MFCs) are typically designed as a two-chamber system with the bacteria in the anode chamber separated from the cathode chamber by a polymeric proton exchange membrane (PEM). Most MFCs use aqueous cathodes where water is bubbled with air to provide dissolved oxygen to electrode. To increase energy output and reduce the cost of MFCs, we examined power generation in an air-cathode MFC containing carbon electrodes in the presence and absence of a polymeric proton exchange membrane (PEM). Bacteria present in domestic wastewater were used as the biocatalyst, and glucose and wastewater were tested as substrates. Power density was found to be much greater than typically reported for aqueous-cathode MFCs, reaching a maximum of 262 +/- 10 mW/m2 (6.6 +/- 0.3 mW/L; liquid volume) using glucose. Removing the PEM increased the maximum power density to 494 +/- 21 mW/m2 (12.5 +/- 0.5 mW/L). Coulombic efficiency was 40-55% with the PEM and 9-12% with the PEM removed, indicating substantial oxygen diffusion into the anode chamber in the absence of the PEM. Power output increased with glucose concentration according to saturation-type kinetics, with a half saturation constant of 79 mg/L with the PEM-MFC and 103 mg/L in the MFC without a PEM (1000 omega resistor). Similar results on the effect of the PEM on power density were found using wastewater, where 28 +/- 3 mW/m2 (0.7 +/- 0.1 mW/L) (28% Coulombic efficiency) was produced with the PEM, and 146 +/- 8 mW/m2 (3.7 +/- 0.2 mW/L) (20% Coulombic efficiency) was produced when the PEM was removed. The increase in power output when a PEM was removed was attributed to a higher cathode potential as shown by an increase in the open circuit potential. An analysis based on available anode surface area and maximum bacterial growth rates suggests that mediatorless MFCs may have an upper order-of-magnitude limit in power density of 10(3) mW/m2. A cost-effective approach to achieving power densities in this range will likely require systems that do not contain a polymeric PEM in the MFC and systems based on direct oxygen transfer to a carbon cathode.
Collapse
|
|
21 |
787 |
3
|
Chaudhuri SK, Lovley DR. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 2003; 21:1229-32. [PMID: 12960964 DOI: 10.1038/nbt867] [Citation(s) in RCA: 642] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2003] [Accepted: 07/10/2003] [Indexed: 11/08/2022]
Abstract
Abundant energy, stored primarily in the form of carbohydrates, can be found in waste biomass from agricultural, municipal and industrial sources as well as in dedicated energy crops, such as corn and other grains. Potential strategies for deriving useful forms of energy from carbohydrates include production of ethanol and conversion to hydrogen, but these approaches face technical and economic hurdles. An alternative strategy is direct conversion of sugars to electrical power. Existing transition metal-catalyzed fuel cells cannot be used to generate electric power from carbohydrates. Alternatively, biofuel cells in which whole cells or isolated redox enzymes catalyze the oxidation of the sugar have been developed, but their applicability has been limited by several factors, including (i) the need to add electron-shuttling compounds that mediate electron transfer from the cell to the anode, (ii) incomplete oxidation of the sugars and (iii) lack of long-term stability of the fuel cells. Here we report on a novel microorganism, Rhodoferax ferrireducens, that can oxidize glucose to CO(2) and quantitatively transfer electrons to graphite electrodes without the need for an electron-shuttling mediator. Growth is supported by energy derived from the electron transfer process itself and results in stable, long-term power production.
Collapse
|
|
22 |
642 |
4
|
Cheng S, Xing D, Call DF, Logan BE. Direct biological conversion of electrical current into methane by electromethanogenesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:3953-8. [PMID: 19544913 DOI: 10.1021/es803531g] [Citation(s) in RCA: 557] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
New sustainable methods are needed to produce renewable energy carriers that can be stored and used for transportation, heating, or chemical production. Here we demonstrate that methane can directly be produced using a biocathode containing methanogens in electrochemical systems (abiotic anode) or microbial electrolysis cells (MECs; biotic anode) by a process called electromethanogenesis. At a set potential of less than -0.7 V (vs Ag/AgCl), carbon dioxide was reduced to methane using a two-chamber electrochemical reactor containing an abiotic anode, a biocathode, and no precious metal catalysts. At -1.0 V, the current capture efficiency was 96%. Electrochemical measurements made using linear sweep voltammetry showed that the biocathode substantially increased current densities compared to a plain carbon cathode where only small amounts of hydrogen gas could be produced. Both increased current densities and very small hydrogen production rates by a plain cathode therefore support a mechanism of methane production directly from current and not from hydrogen gas. The biocathode was dominated by a single Archaeon, Methanobacterium palustre. When a current was generated by an exoelectrogenic biofilm on the anode growing on acetate in a single-chamber MEC, methane was produced at an overall energy efficiency of 80% (electrical energy and substrate heat of combustion). These results show that electromethanogenesis can be used to convert electrical current produced from renewable energy sources (such as wind, solar, or biomass) into a biofuel (methane) as well as serving as a method for the capture of carbon dioxide.
Collapse
|
|
16 |
557 |
5
|
Logan BE, Regan JM. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 2006; 14:512-8. [PMID: 17049240 DOI: 10.1016/j.tim.2006.10.003] [Citation(s) in RCA: 536] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 09/07/2006] [Accepted: 10/05/2006] [Indexed: 11/21/2022]
Abstract
Microbial fuel cells (MFCs) are not yet commercialized but they show great promise as a method of water treatment and as power sources for environmental sensors. The power produced by these systems is currently limited, primarily by high internal (ohmic) resistance. However, improvements in the system architecture will soon result in power generation that is dependent on the capabilities of the microorganisms. The bacterial communities that develop in these systems show great diversity, ranging from primarily delta-Proteobacteria that predominate in sediment MFCs to communities composed of alpha-, beta-, gamma- or delta-Proteobacteria, Firmicutes and uncharacterized clones in other types of MFCs. Much remains to be discovered about the physiology of these bacteria capable of exocellular electron transfer, collectively defined as a community of "exoelectrogens". Here, we review the microbial communities found in MFCs and the prospects for this emerging bioenergy technology.
Collapse
|
Review |
19 |
536 |
6
|
Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee DJ, Chang JS. Microalgae biorefinery: High value products perspectives. BIORESOURCE TECHNOLOGY 2017; 229:53-62. [PMID: 28107722 DOI: 10.1016/j.biortech.2017.01.006] [Citation(s) in RCA: 513] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 05/04/2023]
Abstract
Microalgae have received much interest as a biofuel feedstock in response to the uprising energy crisis, climate change and depletion of natural sources. Development of microalgal biofuels from microalgae does not satisfy the economic feasibility of overwhelming capital investments and operations. Hence, high-value co-products have been produced through the extraction of a fraction of algae to improve the economics of a microalgae biorefinery. Examples of these high-value products are pigments, proteins, lipids, carbohydrates, vitamins and anti-oxidants, with applications in cosmetics, nutritional and pharmaceuticals industries. To promote the sustainability of this process, an innovative microalgae biorefinery structure is implemented through the production of multiple products in the form of high value products and biofuel. This review presents the current challenges in the extraction of high value products from microalgae and its integration in the biorefinery. The economic potential assessment of microalgae biorefinery was evaluated to highlight the feasibility of the process.
Collapse
|
Review |
8 |
513 |
7
|
Gil GC, Chang IS, Kim BH, Kim M, Jang JK, Park HS, Kim HJ. Operational parameters affecting the performannce of a mediator-less microbial fuel cell. Biosens Bioelectron 2003; 18:327-34. [PMID: 12604249 DOI: 10.1016/s0956-5663(02)00110-0] [Citation(s) in RCA: 409] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A mediator-less microbial fuel cell was optimized in terms of various operating conditions. Current generation was dependent on several factors such as pH, resistance, electrolyte used, and dissolved oxygen concentration in the cathode compartment. The highest current was generated at pH 7. Under the operating conditions, the resistance was the rate-determining factor at over 500 omega. With resistance lower than 500 omega, proton transfer and dissolved oxygen (DO) supply limited the cathode reaction. A high strength buffer reduced the proton limitation to some extent. The DO concentration was around 6 mg l(-1) at the DO limited condition. The fact that oxygen limitation was observed at high DO concentration is believed to be due to the poor oxygen reducing activity of the electrode used, graphite. The current showed linear relationship with the fuel added at low concentration, and the electronic charge was well correlated with substrate concentration from up to 400 mg l(-1) of COD(cr). The microbial fuel cell might be used as a biochemical oxygen demand (BOD) sensor.
Collapse
|
Comparative Study |
22 |
409 |
8
|
Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domíguez-Espinosa R. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 2004; 22:477-85. [PMID: 15331229 DOI: 10.1016/j.tibtech.2004.07.001] [Citation(s) in RCA: 404] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The building of a sustainable society will require reduction of dependency on fossil fuels and lowering of the amount of pollution that is generated. Wastewater treatment is an area in which these two goals can be addressed simultaneously. As a result, there has been a paradigm shift recently, from disposing of waste to using it. There are several biological processing strategies that produce bioenergy or biochemicals while treating industrial and agricultural wastewater, including methanogenic anaerobic digestion, biological hydrogen production, microbial fuel cells and fermentation for production of valuable products. However, there are also scientific and technical barriers to the implementation of these strategies.
Collapse
|
|
21 |
404 |
9
|
Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovley DR. Harnessing microbially generated power on the seafloor. Nat Biotechnol 2002; 20:821-5. [PMID: 12091916 DOI: 10.1038/nbt716] [Citation(s) in RCA: 352] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In many marine environments, a voltage gradient exists across the water sediment interface resulting from sedimentary microbial activity. Here we show that a fuel cell consisting of an anode embedded in marine sediment and a cathode in overlying seawater can use this voltage gradient to generate electrical power in situ. Fuel cells of this design generated sustained power in a boat basin carved into a salt marsh near Tuckerton, New Jersey, and in the Yaquina Bay Estuary near Newport, Oregon. Retrieval and analysis of the Tuckerton fuel cell indicates that power generation results from at least two anode reactions: oxidation of sediment sulfide (a by-product of microbial oxidation of sedimentary organic carbon) and oxidation of sedimentary organic carbon catalyzed by microorganisms colonizing the anode. These results demonstrate in real marine environments a new form of power generation that uses an immense, renewable energy reservoir (sedimentary organic carbon) and has near-immediate application.
Collapse
|
|
23 |
352 |
10
|
Rabaey K, Lissens G, Siciliano SD, Verstraete W. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 2004; 25:1531-5. [PMID: 14571978 DOI: 10.1023/a:1025484009367] [Citation(s) in RCA: 315] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A microbial fuel cell containing a mixed bacterial culture utilizing glucose as carbon source was enriched to investigate power output in relation to glucose dosage. Electron recovery in terms of electricity up to 89% occurred for glucose feeding rates in the range 0.5-3 g l(-1) d(-1), at powers up to 3.6 W m(-2) of electrode surface, a five fold higher power output than reported thus far. This research indicates that microbial electricity generation offers perspectives for optimization.
Collapse
|
Journal Article |
21 |
315 |
11
|
Chae KJ, Choi MJ, Lee JW, Kim KY, Kim IS. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. BIORESOURCE TECHNOLOGY 2009; 100:3518-25. [PMID: 19345574 DOI: 10.1016/j.biortech.2009.02.065] [Citation(s) in RCA: 305] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 02/26/2009] [Accepted: 02/28/2009] [Indexed: 05/22/2023]
Abstract
Four microbial fuel cells (MFCs) were inoculated with anaerobic sludge and fed four different substrates for over one year. The Coulombic efficiency (CE) and power output varied with different substrates, while the bacterial viability was similar. Acetate fed-MFC showed the highest CE (72.3%), followed by butyrate (43.0%), propionate (36.0%) and glucose (15.0%). Glucose resulted in the lowest CE because of its fermentable nature implying its consumption by diverse non-electricity-generating bacteria. 16S rDNA sequencing results indicated phylogenetic diversity in the communities of all anode biofilms, and there was no single dominant bacterial species. A relative abundance of beta-Proteobacteria but an absence of gamma-Proteobacteria was observed in all MFCs except for propionate-fed system in which Firmicutes dominating. The glucose-fed-MFC showed the widest community diversity, resulting in the rapid generation of current without lag time when different substrates were suddenly fed. Geobacter-like species with the most representative Geobactersulfurreducens PCA(T) were integral members of the bacterial community in all MFCs except for the propionate-fed system.
Collapse
|
|
16 |
305 |
12
|
Cao X, Huang X, Liang P, Xiao K, Zhou Y, Zhang X, Logan BE. A new method for water desalination using microbial desalination cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:7148-7152. [PMID: 19806756 DOI: 10.1021/es901950j] [Citation(s) in RCA: 295] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Current water desalination techniques are energy intensive and some use membranes operated at high pressures. It is shown here that water desalination can be accomplished without electrical energy input or high water pressure by using a source of organic matter as the fuel to desalinate water. A microbial fuel cell was modified by placing two membranes between the anode and cathode, creating a middle chamber for water desalination between the membranes. An anion exchange membrane was placed adjacent to the anode, and a cation exchange membrane was positioned next to the cathode. When current was produced by bacteria on the anode, ionic species in the middle chamber were transferred into the two electrode chambers, desalinating the water in the middle chamber. Proof-of-concept experiments for this approach, using what we call a microbial desalination cell (MDC), was demonstrated using water at different initial salt concentrations (5, 20, and 35 g/L) with acetate used as the substrate for the bacteria. The MDC produced a maximum of 2 W/m2 (31 W/m3) while at the same time removing about 90% of the salt in a single desalination cycle. As the salt was removed from the middle chamber the ohmic resistance of the MDC (measured using electrochemical impedance spectroscopy) increased from 25 Omega to 970 Omega at the end of the cycle. This increased resistance was reflected by a continuous decrease in the voltage produced over the cycle. These results demonstrate for the first time the possibility for a new method for water desalination and power production that uses only a source of biodegradable organic matter and bacteria.
Collapse
|
|
16 |
295 |
13
|
Torres CI, Krajmalnik-Brown R, Parameswaran P, Marcus AK, Wanger G, Gorby YA, Rittmann BE. Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:9519-9524. [PMID: 20000550 DOI: 10.1021/es902165y] [Citation(s) in RCA: 292] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Anode-respiring bacteria (ARB) are able to transfer electrons contained in organic substrates to a solid electrode. The selection of ARB should depend on the anode potential, which determines the amount of energy available for bacterial growth and maintenance. In our study, we investigated how anode potential affected the microbial diversity of the biofilm community. We used a microbial electrolysis cell (MEC) containing four graphite electrodes, each at a different anode potential (E(anode) = -0.15, -0.09, +0.02, and +0.37 V vs SHE). We used wastewater-activated sludge as inoculum, acetate as substrate, and continuous-flow operation. The two electrodes at the lowest potentials showed a faster biofilm growth and produced the highest current densities, reaching up to 10.3 A/m(2) at the saturation of an amperometric curve; the electrode at the highest potential produced a maximum of 0.6 A/m(2). At low anode potentials, clone libraries showed a strong selection (92-99% of total clones) of an ARB that is 97% similar to G. sulfurreducens. At the highest anode potential, the ARB community was diverse. Cyclic voltammograms performed on each electrode suggest that the ARB grown at the lowest potentials carried out extracellular electron transport exclusively by conducting electrons through the extracellular biofilm matrix. This is supported by scanning electron micrographs showing putative bacterial nanowires and copious EPS at the lowest potentials. Non-ARB and ARB using electron shuttles in the diverse community for the highest anode potential may have insulated the ARB using a solid conductive matrix from the anode. Continuous-flow operation and the selective pressure due to low anode potentials selected for G. sulfurreducens, which are known to consume acetate efficiently and use a solid conductive matrix for electron transport.
Collapse
|
|
16 |
292 |
14
|
Kim JR, Cheng S, Oh SE, Logan BE. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:1004-9. [PMID: 17328216 DOI: 10.1021/es062202m] [Citation(s) in RCA: 283] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Proton exchange membranes (PEMs) are often used in microbial fuel cells (MFCs) to separate the liquid in the anode and cathode chambers while allowing protons to pass between the chambers. However, negatively or positively charged species present at high concentrations in the medium can also be used to maintain charge balance during power generation. An anion exchange membrane (AEM) produced the largest power density (up to 610 mW/m2) and Coulombic efficiency (72%) in MFCs relative to values achieved with a commonly used PEM (Nafion), a cation exchange membrane (CEM), or three different ultrafiltration (UF) membranes with molecular weight cut offs of 0.5K, 1K, and 3K Daltons in different types of MFCs. The increased performance of the AEM was due to proton charge-transfer facilitated by phosphate anions and low internal resistance. The type of membrane affected maximum power densities in two-chamber, air-cathode cube MFCs (C-MFCs) with low internal resistance (84-91 omega for all membranes except UF-0.5K) but not in two-chamber aqueous-cathode bottle MFCs (B-MFCs) due to their higher internal resistances (1230-1272 omega except UF-0.5K). The UF-0.5K membrane produced very high internal resistances (6009 omega, B-MFC; 1814omega, C-MFC) and was the least permeable to both oxygen (mass transfer coefficient of k(O) = 0.19 x 10(-4) cm/s) and acetate (k(A) = 0.89 x 10(-8) cm/s). Nafion was the most permeable membrane to oxygen (k(O) = 1.3 x 10(-4) cm/s), and the UF-3K membrane was the most permeable to acetate (k(A) = 7.2 x 10(-8) cm/s). Only a small percent of substrate was unaccounted for based on measured Coulombic efficiencies and estimates of biomass production and substrate losses using Nafion, CEM, and AEM membranes (4-8%), while a substantial portion of substrate was lost to unidentified processes for the UF membranes (40-89%). These results show that many types of membranes can be used in two-chambered MFCs, even membranes that transfer negatively charged species.
Collapse
|
|
18 |
283 |
15
|
Yong YC, Dong XC, Chan-Park MB, Song H, Chen P. Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS NANO 2012; 6:2394-400. [PMID: 22360743 DOI: 10.1021/nn204656d] [Citation(s) in RCA: 277] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Microbial fuel cell (MFC) is of great interest as a promising green energy source to harvest electricity from various organic matters. However, low bacterial loading capacity and low extracellular electron transfer efficiency between the bacteria and the anode often limit the practical applications of MFC. In this work, a macroporous and monolithic MFC anode based on polyaniline hybridized three-dimensional (3D) graphene is demonstrated. It outperforms the planar carbon electrode because of its abilities to three-dimensionally interface with bacterial biofilm, facilitate electron transfer, and provide multiplexed and highly conductive pathways. This study adds a new dimension to the MFC anode design as well as to the emerging graphene applications.
Collapse
|
|
13 |
277 |
16
|
Holmes DE, Bond DR, O'Neil RA, Reimers CE, Tender LR, Lovley DR. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. MICROBIAL ECOLOGY 2004; 48:178-90. [PMID: 15546038 DOI: 10.1007/s00248-003-0004-4] [Citation(s) in RCA: 264] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2003] [Accepted: 06/06/2003] [Indexed: 05/20/2023]
Abstract
The microbial communities associated with electrodes from underwater fuel cells harvesting electricity from five different aquatic sediments were investigated. Three fuel cells were constructed with marine, salt-marsh, or freshwater sediments incubated in the laboratory. Fuel cells were also deployed in the field in salt marsh sediments in New Jersey and estuarine sediments in Oregon, USA. All of the sediments produced comparable amounts of power. Analysis of 16S rRNA gene sequences after 3-7 months of incubation demonstrated that all of the energy-harvesting anodes were highly enriched in microorganisms in the delta-Proteobacteria when compared with control electrodes not connected to a cathode. Geobacteraceae accounted for the majority of delta-Proteobacterial sequences or all of the energy-harvesting anodes, except the one deployed at the Oregon estuarine site. Quantitative PCR analysis of 16S rRNA genes and culturing studies indicated that Geobacteraceae were 100-fold more abundant on the marine-deployed anodes versus controls. Sequences most similar to microorganisms in the family Desulfobulbaceae predominated on the anode deployed in the estuarine sediments, and a significant proportion of the sequences recovered from the freshwater anodes were closely related to the Fe(III)-reducing isolate, Geothrix fermentans. There was also a specific enrichment of microorganisms on energy harvesting cathodes, but the enriched populations varied with the sediment/water source. Thus, future studies designed to help optimize the harvesting of electricity from aquatic sediments or waste organic matter should focus on the electrode interactions of these microorganisms which are most competitive in colonizing anodes and cathodes.
Collapse
|
Comparative Study |
21 |
264 |
17
|
Jung S, Regan JM. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microbiol Biotechnol 2007; 77:393-402. [PMID: 17786426 DOI: 10.1007/s00253-007-1162-y] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/02/2007] [Accepted: 08/09/2007] [Indexed: 10/22/2022]
Abstract
Microbial fuel cells (MFCs) harness the electrochemical activity of certain microbes for the production of electricity from reduced compounds. Characterizations of MFC anode biofilms have collectively shown very diverse microbial communities, raising ecological questions about competition and community succession within these anode-reducing communities. Three sets of triplicate, two-chamber MFCs inoculated with anaerobic sludge and differing in energy sources (acetate, lactate, and glucose) were operated to explore these questions. Based on 16S rDNA-targeted denaturing gradient gel electrophoresis (DGGE), all anode communities contained sequences closely affiliated with Geobacter sulfurreducens (>99% similarity) and an uncultured bacterium clone in the Bacteroidetes class (99% similarity). Various other Geobacter-like sequences were also enriched in most of the anode biofilms. While the anode communities in replicate reactors for each substrate generally converged to a reproducible community, there were some variations in the relative distribution of these putative anode-reducing Geobacter-like strains. Firmicutes were found only in glucose-fed MFCs, presumably serving the roles of converting complex carbon into simple molecules and scavenging oxygen. The maximum current density in these systems was negatively correlated with internal resistance variations among replicate reactors and, likely, was only minimally affected by anode community differences in these two-chamber MFCs with high internal resistance.
Collapse
|
|
18 |
229 |
18
|
Qiao Y, Bao SJ, Li CM, Cui XQ, Lu ZS, Guo J. Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells. ACS NANO 2008; 2:113-119. [PMID: 19206554 DOI: 10.1021/nn700102s] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A unique nanostructured polyaniline (PANI)/mesoporous TiO(2) composite was synthesized and explored as an anode in Escherichia coli microbial fuel cells (MFCs). The results of X-ray diffraction, morphology, and nitrogen adsorption-desorption studies demonstrate a networked nanostructure with uniform nanopore distribution and high specific surface area of the composite. The composite MFC anode was fabricated and its catalytic behavior investigated. Optimization of the anode shows that the composite with 30 wt % PANI gives the best bio- and electrocatalytic performance. A possible mechanism to explain the excellent performance is proposed. In comparison to previously reported work with E. coli MFCs, the composite anode delivers 2-fold higher power density (1495 mW/m(2)). Thus, it has great potential to be used as the anode for a high-power MFC and may also provide a new universal approach for improving different types of MFCs.
Collapse
|
|
17 |
207 |
19
|
Chang IS, Jang JK, Gil GC, Kim M, Kim HJ, Cho BW, Kim BH. Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 2004; 19:607-13. [PMID: 14683644 DOI: 10.1016/s0956-5663(03)00272-0] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A mediator-less microbial fuel cell (MFC) was used as a biochemical oxygen demand (BOD) sensor in an amperometric mode for real-time wastewater monitoring. At a hydraulic retention time of 1.05 h, BOD values of up to 100 mg/l were measured based on a linear relationship, while higher BOD values were measured using a lower feeding rate. About 60 min was required to reach a new steady-state current after the MFCs had been fed with different strength artificial wastewaters (Aws). The current generated from the MFCs fed with AW with a BOD of 100 mg/l was compared to determine the repeatability, and the difference was less than 10%. When the MFC was starved, the original current value was regained with a varying recovery time depending on the length of the starvation. During starvation, the MFC generated a background level current, probably due to an endogenous metabolism.
Collapse
|
|
21 |
192 |
20
|
Kim BH, Chang IS, Gadd GM. Challenges in microbial fuel cell development and operation. Appl Microbiol Biotechnol 2007; 76:485-94. [PMID: 17593364 DOI: 10.1007/s00253-007-1027-4] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 05/02/2007] [Accepted: 05/21/2007] [Indexed: 11/28/2022]
Abstract
A microbial fuel cell (MFC) is a device that converts chemical energy into electricity through the catalytic activities of microorganisms. Although there is great potential of MFCs as an alternative energy source, novel wastewater treatment process, and biosensor for oxygen and pollutants, extensive optimization is required to exploit the maximum microbial potential. In this article, the main limiting factors of MFC operation are identified and suggestions are made to improve performance.
Collapse
|
|
18 |
164 |
21
|
Liu J, Qiao Y, Guo CX, Lim S, Song H, Li CM. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells. BIORESOURCE TECHNOLOGY 2012; 114:275-280. [PMID: 22483349 DOI: 10.1016/j.biortech.2012.02.116] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 02/10/2012] [Accepted: 02/24/2012] [Indexed: 05/31/2023]
Abstract
Graphene was electrochemically deposited on carbon cloth to fabricate an anode for a Pseudomonas aeruginosa mediatorless microbial fuel cell (MFC). The graphene modification improved power density and energy conversion efficiency by 2.7 and 3 times, respectively. The improvement is attributed to the high biocompatibility of graphene which promotes bacteria growth on the electrode surface that results in the creation of more direct electron transfer activation centers and stimulates excretion of mediating molecules for higher electron transfer rate. A parallel bioelectrocatalytic mechanism consisting of simultaneous direct electron transfer and cell-excreted mediator-enabled electron transfer was established in the P. aeruginosa-catalyzed MFC. This study does not only offer fundamental insights into MFC reactions, but also suggests a low cost manufacturing process to fabricate high power MFCs for practical applications.
Collapse
|
|
13 |
140 |
22
|
Kiely PD, Rader G, Regan JM, Logan BE. Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts. BIORESOURCE TECHNOLOGY 2011; 102:361-366. [PMID: 20570144 DOI: 10.1016/j.biortech.2010.05.017] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/04/2010] [Accepted: 05/06/2010] [Indexed: 05/29/2023]
Abstract
To better understand how cathode performance and substrates affected communities that evolved in these reactors over long periods of time, microbial fuel cells were operated for more than 1 year with individual endproducts of lignocellulose fermentation (acetic acid, formic acid, lactic acid, succinic acid, or ethanol). Large variations in reactor performance were primarily due to the specific substrates, with power densities ranging from 835 ± 21 to 62 ± 1mW/m(3). Cathodes performance degraded over time, as shown by an increase in power of up to 26% when the cathode biofilm was removed, and 118% using new cathodes. Communities that developed on the anodes included exoelectrogenic families, such as Rhodobacteraceae, Geobacteraceae, and Peptococcaceae, with the Deltaproteobacteria dominating most reactors. Pelobacter propionicus was the predominant member in reactors fed acetic acid, and it was abundant in several other MFCs. These results provide valuable insights into the effects of long-term MFC operation on reactor performance.
Collapse
|
|
14 |
136 |
23
|
Li WW, Sheng GP, Liu XW, Yu HQ. Recent advances in the separators for microbial fuel cells. BIORESOURCE TECHNOLOGY 2011; 102:244-52. [PMID: 20382524 DOI: 10.1016/j.biortech.2010.03.090] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/20/2010] [Accepted: 03/23/2010] [Indexed: 05/11/2023]
Abstract
Separator plays an important role in microbial fuel cells (MFCs). Despite of the rapid development of separators in recent years, there are remaining barriers such as proton transfer limitation and oxygen leakage, which increase the internal resistance and decrease the MFC performance, and thus limit the practical application of MFCs. In this review, various separator materials, including cation exchange membrane, anion exchange membrane, bipolar membrane, microfiltration membrane, ultrafiltration membranes, porous fabrics, glass fibers, J-Cloth and salt bridge, are systematically compared. In addition, recent progresses in separator configuration, especially the development of separator electrode assemblies, are summarized. The advances in separator materials and configurations have opened up new promises to overcome these limitations, but challenges remain for the practical application. Here, an outlook for future development and scaling-up of MFC separators is presented and some suggestions are highlighted.
Collapse
|
Comparative Study |
14 |
132 |
24
|
Di Lorenzo M, Curtis TP, Head IM, Scott K. A single-chamber microbial fuel cell as a biosensor for wastewaters. WATER RESEARCH 2009; 43:3145-3154. [PMID: 19482326 DOI: 10.1016/j.watres.2009.01.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 01/08/2009] [Accepted: 01/11/2009] [Indexed: 05/27/2023]
Abstract
The traditional 5-day test of the biochemical oxygen demand (BOD(5) test) has many disadvantages, and principally it is unsuitable for process control and real-time monitoring. As an alternative, a single-chamber microbial fuel cell (SCMFC) with an air cathode was tested as a biosensor and the performance analysed in terms of its measurement range, its response time, its reproducibility and its operational stability. When artificial wastewater was used as fuel, the biosensor output had a linear relationship with the BOD concentration up to 350 mg BOD cm(-3); very high reproducibility; and stability over 7 months of operation. The system was further improved by reducing by 75% the total anolyte volume. In this way a response time close to the hydraulic retention time (HRT) of the biosensor (i.e. 40 min) was reached. When the small volume SCMFC biosensor was fed with real wastewater a good correlation between COD concentration and current output was obtained, demonstrating the applicability of this system to real effluents. The measurements obtained with the biosensor were also in accordance with values obtained with standard measurement methods.
Collapse
|
|
16 |
130 |
25
|
Sun J, Hu YY, Bi Z, Cao YQ. Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. BIORESOURCE TECHNOLOGY 2009; 100:3185-3192. [PMID: 19269168 DOI: 10.1016/j.biortech.2009.02.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/01/2009] [Accepted: 02/02/2009] [Indexed: 05/27/2023]
Abstract
Electricity generation from readily biodegradable organic substrates accompanied by decolorization of azo dye was investigated using a microfiltration membrane air-cathode single-chamber microbial fuel cell (MFC). Batch experiment results showed that accelerated decolorization of active brilliant red X-3B (ABRX3) was achieved in the MFC as compared to traditional anaerobic technology. Biodegradation was the dominant mechanism of the dye removal, and glucose was the optimal co-substrate for ABRX3 decolorization, while acetate was the worst one. Confectionery wastewater (CW) was also shown to be a good co-substrate for ABRX3 decolorization and a cheap fuel source for electricity generation in the MFC. Low resistance was more favorable for dye decolorization than high resistance. Suspended sludge (SS) should be retained in the MFC for accelerated decolorization of ABRX3. Electricity generation was not significantly affected by the ABRX3 at 300 mg/L, while higher concentrations inhibited electricity generation. However, voltage can be recovered to the original level after replacement with anodic medium not containing azo dye.
Collapse
|
|
16 |
128 |