1
|
Stellwagen D, Beattie EC, Seo JY, Malenka RC. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 2005; 25:3219-28. [PMID: 15788779 PMCID: PMC6725093 DOI: 10.1523/jneurosci.4486-04.2005] [Citation(s) in RCA: 770] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 01/10/2005] [Accepted: 02/17/2005] [Indexed: 01/20/2023] Open
Abstract
The proinflammatory cytokine tumor necrosis factor-alpha (TNFalpha) causes a rapid exocytosis of AMPA receptors in hippocampal pyramidal cells and is constitutively required for the maintenance of normal surface expression of AMPA receptors. Here we demonstrate that TNFalpha acts on neuronal TNFR1 receptors to preferentially exocytose glutamate receptor 2-lacking AMPA receptors through a phosphatidylinositol 3 kinase-dependent process. This increases excitatory synaptic strength while changing the molecular stoichiometry of synaptic AMPA receptors. Conversely, TNFalpha causes an endocytosis of GABA(A) receptors, resulting in fewer surface GABA(A) receptors and a decrease in inhibitory synaptic strength. These results suggest that TNFalpha can regulate neuronal circuit homeostasis in a manner that may exacerbate excitotoxic damage resulting from neuronal insults.
Collapse
|
Comparative Study |
20 |
770 |
2
|
Shepherd JD, Rumbaugh G, Wu J, Chowdhury S, Plath N, Kuhl D, Huganir RL, Worley PF. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 2007; 52:475-84. [PMID: 17088213 PMCID: PMC1764219 DOI: 10.1016/j.neuron.2006.08.034] [Citation(s) in RCA: 622] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 04/13/2006] [Accepted: 08/18/2006] [Indexed: 11/19/2022]
Abstract
Homeostatic plasticity may compensate for Hebbian forms of synaptic plasticity, such as long-term potentiation (LTP) and depression (LTD), by scaling neuronal output without changing the relative strength of individual synapses. This delicate balance between neuronal output and distributed synaptic weight may be necessary for maintaining efficient encoding of information across neuronal networks. Here, we demonstrate that Arc/Arg3.1, an immediate-early gene (IEG) that is rapidly induced by neuronal activity associated with information encoding in the brain, mediates homeostatic synaptic scaling of AMPA type glutamate receptors (AMPARs) via its ability to activate a novel and selective AMPAR endocytic pathway. High levels of Arc/Arg3.1 block the homeostatic increases in AMPAR function induced by chronic neuronal inactivity. Conversely, loss of Arc/Arg3.1 results in increased AMPAR function and abolishes homeostatic scaling of AMPARs. These observations, together with evidence that Arc/Arg3.1 is required for memory consolidation, reveal the importance of Arc/Arg3.1's dynamic expression as it exerts continuous and precise control over synaptic strength and cellular excitability.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
622 |
3
|
Jaffrey SR, Snyder SH. The biotin switch method for the detection of S-nitrosylated proteins. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:pl1. [PMID: 11752655 DOI: 10.1126/stke.2001.86.pl1] [Citation(s) in RCA: 572] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Many of the effects of nitric oxide are mediated by the direct modification of cysteine residues resulting in an adduct called a nitrosothiol. Here, we describe a novel method for detecting proteins that contain nitrosothiols. In this three-step procedure, nitrosylated cysteines are converted to biotinylated cysteines. Biotinylated proteins can then be detected by immunoblotting or can be purified by avidin-affinity chromatography. We include examples of the detection of S-nitrosylated proteins in brain lysates after in vitro S-nitrosylation, as well as the detection of endogenous S-nitrosothiols in selected neuronal proteins.
Collapse
|
|
24 |
572 |
4
|
Chen I, Howarth M, Lin W, Ting AY. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat Methods 2005; 2:99-104. [PMID: 15782206 DOI: 10.1038/nmeth735] [Citation(s) in RCA: 532] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 12/20/2004] [Indexed: 11/08/2022]
Abstract
We report a highly specific, robust and rapid new method for labeling cell surface proteins with biophysical probes. The method uses the Escherichia coli enzyme biotin ligase (BirA), which sequence-specifically ligates biotin to a 15-amino-acid acceptor peptide (AP). We report that BirA also accepts a ketone isostere of biotin as a cofactor, ligating this probe to the AP with similar kinetics and retaining the high substrate specificity of the native reaction. Because ketones are absent from native cell surfaces, AP-fused recombinant cell surface proteins can be tagged with the ketone probe and then specifically conjugated to hydrazide- or hydroxylamine-functionalized molecules. We demonstrate this two-stage protein labeling methodology on purified protein, in the context of mammalian cell lysate, and on epidermal growth factor receptor (EGFR) expressed on the surface of live HeLa cells. Both fluorescein and a benzophenone photoaffinity probe are incorporated, with total labeling times as short as 20 min.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
532 |
5
|
Rabani M, Levin JZ, Fan L, Adiconis X, Raychowdhury R, Garber M, Gnirke A, Nusbaum C, Hacohen N, Friedman N, Amit I, Regev A. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat Biotechnol 2011; 29:436-42. [PMID: 21516085 PMCID: PMC3114636 DOI: 10.1038/nbt.1861] [Citation(s) in RCA: 441] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 04/01/2011] [Indexed: 12/25/2022]
Abstract
Cellular RNA levels are determined by the interplay of RNA production, processing and degradation. However, because most studies of RNA regulation do not distinguish the separate contributions of these processes, little is known about how they are temporally integrated. Here we combine metabolic labeling of RNA at high temporal resolution with advanced RNA quantification and computational modeling to estimate RNA transcription and degradation rates during the response of mouse dendritic cells to lipopolysaccharide. We find that changes in transcription rates determine the majority of temporal changes in RNA levels, but that changes in degradation rates are important for shaping sharp 'peaked' responses. We used sequencing of the newly transcribed RNA population to estimate temporally constant RNA processing and degradation rates genome wide. Degradation rates vary significantly between genes and contribute to the observed differences in the dynamic response. Certain transcripts, including those encoding cytokines and transcription factors, mature faster. Our study provides a quantitative approach to study the integrative process of RNA regulation.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
441 |
6
|
Waung MW, Pfeiffer BE, Nosyreva ED, Ronesi JA, Huber KM. Rapid translation of Arc/Arg3.1 selectively mediates mGluR-dependent LTD through persistent increases in AMPAR endocytosis rate. Neuron 2008; 59:84-97. [PMID: 18614031 PMCID: PMC2580055 DOI: 10.1016/j.neuron.2008.05.014] [Citation(s) in RCA: 392] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/04/2008] [Accepted: 05/15/2008] [Indexed: 10/21/2022]
Abstract
Salient stimuli that modify behavior induce transcription of activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and transport Arc mRNA into dendrites, suggesting that local Arc translation mediates synaptic plasticity that encodes such stimuli. Here, we demonstrate that long-term synaptic depression (LTD) in hippocampal neurons induced by group 1 metabotropic glutamate receptors (mGluRs) relies on rapid translation of Arc. mGluR-LTD induction causes long-term increases in AMPA receptor endocytosis rate and dendritic synthesis of Arc, a component of the AMPAR endocytosis machinery. Knockdown of Arc prevents mGluRs from triggering AMPAR endocytosis or LTD, and acute blockade of new Arc synthesis with antisense oligonucleotides blocks mGluR-LTD and AMPAR trafficking. In contrast, LTD induced by NMDA receptors does not persistently alter AMPAR endocytosis rate, induce Arc synthesis, or require Arc protein. These data demonstrate a role for local Arc synthesis specifically in mGluR-LTD and suggest that mGluR-LTD may be one consequence of Arc mRNA induction during experience.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
392 |
7
|
Zeng Y, Ramya TNC, Dirksen A, Dawson PE, Paulson JC. High-efficiency labeling of sialylated glycoproteins on living cells. Nat Methods 2009; 6:207-9. [PMID: 19234450 PMCID: PMC2830088 DOI: 10.1038/nmeth.1305] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 01/21/2009] [Indexed: 11/09/2022]
Abstract
We describe a simple method for efficiently labeling cell-surface sialic acid-containing glycans on living animal cells. The method uses mild periodate oxidation to generate an aldehyde on sialic acids, followed by aniline-catalyzed oxime ligation with a suitable tag. Aniline catalysis dramatically accelerates oxime ligation, allowing use of low concentrations of aminooxy-biotin at neutral pH to label the majority of cell-surface sialylated glycoproteins while maintaining high cell viability.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
347 |
8
|
Rial Verde EM, Lee-Osbourne J, Worley PF, Malinow R, Cline HT. Increased expression of the immediate-early gene arc/arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron 2006; 52:461-74. [PMID: 17088212 PMCID: PMC3951199 DOI: 10.1016/j.neuron.2006.09.031] [Citation(s) in RCA: 327] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 06/24/2005] [Accepted: 08/18/2006] [Indexed: 11/19/2022]
Abstract
Arc/Arg3.1 is an immediate-early gene whose expression levels are increased by strong synaptic activation, including synapse-strengthening activity patterns. Arc/Arg3.1 mRNA is transported to activated dendritic regions, conferring the distribution of Arc/Arg3.1 protein both temporal correlation with the inducing stimulus and spatial specificity. Here, we investigate the effect of increased Arc/Arg3.1 levels on synaptic transmission. Surprisingly, Arc/Arg3.1 reduces the amplitude of synaptic currents mediated by AMPA-type glutamate receptors (AMPARs). This effect is prevented by RNAi knockdown of Arc/Arg3.1, by deleting a region of Arc/Arg3.1 known to interact with endophilin 3 or by blocking clathrin-coated endocytosis of AMPARs. In the hippocampal slice, Arc/Arg3.1 results in removal of AMPARs composed of GluR2 and GluR3 subunits (GluR2/3). Finally, Arc/Arg3.1 expression occludes NMDAR-dependent long-term depression. Our results demonstrate that Arc/Arg3.1 reduces the number of GluR2/3 receptors leading to a decrease in AMPAR-mediated synaptic currents, consistent with a role in the homeostatic regulation of synaptic strength.
Collapse
|
Comparative Study |
19 |
327 |
9
|
Orellana JA, Froger N, Ezan P, Jiang JX, Bennett MVL, Naus CC, Giaume C, Sáez JC. ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J Neurochem 2011; 118:826-40. [PMID: 21294731 PMCID: PMC3108012 DOI: 10.1111/j.1471-4159.2011.07210.x] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Inflammation contributes to neurodegeneration in post-ischemic brain, diabetes, and Alzheimer's disease. Participants in this inflammatory response include activation of microglia and astrocytes. We studied the role of microglia treated with amyloid-β peptide (Aβ) on hemichannel activity of astrocytes subjected to hypoxia in high glucose. Reoxygenation after 3 h hypoxia in high glucose induced transient astroglial permeabilization via Cx43 hemichannels and reduction in intercellular communication via Cx43 cell-cell channels. Both responses were greater and longer lasting in astrocytes previously exposed for 24 h to conditioned medium from Aβ-treated microglia (CM-Aβ). The effects of CM-Aβ were mimicked by TNF-α and IL-1β and were abrogated by neutralizing TNF-α with soluble receptor and IL-1β with a receptor antagonist. Astrocytes under basal conditions protected neurons against hypoxia, but exposure to CM-Aβ made them toxic to neurons subjected to a sub-lethal hypoxia/reoxygenation episode, revealing the additive nature of the insults. Astrocytes exposed to CM-Aβ induced permeabilization of cortical neurons through activation of neuronal pannexin 1 (Panx1) hemichannels by ATP and glutamate released through astroglial Cx43 hemichannels. In agreement, inhibition of NMDA or P2X receptors only partially reduced the activation of neuronal Panx1 hemichannels and neuronal mortality, but simultaneous inhibition of both receptors completely prevented the neurotoxic response. Therefore, we suggest that responses to ATP and glutamate converge in activation of neuronal Panx1 hemichannels. Thus, we propose that blocking hemichannels expressed by astrocytes and/or neurons in the inflamed nervous system could represent a novel and alternative strategy to reduce neuronal loss in various pathological states including Alzheimer's disease, diabetes and ischemia.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
298 |
10
|
Wang Z, Udeshi ND, O'Malley M, Shabanowitz J, Hunt DF, Hart GW. Enrichment and site mapping of O-linked N-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry. Mol Cell Proteomics 2010; 9:153-60. [PMID: 19692427 PMCID: PMC2808261 DOI: 10.1074/mcp.m900268-mcp200] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 08/18/2009] [Indexed: 11/06/2022] Open
Abstract
Numerous cellular processes are regulated by the reversible addition of either phosphate or O-linked beta-N-acetylglucosamine (O-GlcNAc) to nuclear and cytoplasmic proteins. Although sensitive methods exist for the enrichment and identification of protein phosphorylation sites, those for the enrichment of O-GlcNAc-containing peptides are lacking. Reported here is highly efficient methodology for the enrichment and characterization of O-GlcNAc sites from complex samples. In this method, O-GlcNAc-modified peptides are tagged with a novel biotinylation reagent, enriched by affinity chromatography, released from the solid support by photochemical cleavage, and analyzed by electron transfer dissociation mass spectrometry. Using this strategy, eight O-GlcNAc sites were mapped from a tau-enriched sample from rat brain. Sites of GlcNAcylation were characterized on important neuronal proteins such as tau, synucleins, and methyl CpG-binding protein 2.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
219 |
11
|
Jacob TC, Bogdanov YD, Magnus C, Saliba RS, Kittler JT, Haydon PG, Moss SJ. Gephyrin regulates the cell surface dynamics of synaptic GABAA receptors. J Neurosci 2005; 25:10469-78. [PMID: 16280585 PMCID: PMC6725824 DOI: 10.1523/jneurosci.2267-05.2005] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 08/13/2005] [Accepted: 10/05/2005] [Indexed: 11/21/2022] Open
Abstract
The efficacy of fast synaptic inhibition is critically dependent on the accumulation of GABAA receptors at inhibitory synapses, a process that remains poorly understood. Here, we examined the dynamics of cell surface GABAA receptors using receptor subunits modified with N-terminal extracellular ecliptic pHluorin reporters. In hippocampal neurons, GABAA receptors incorporating pHluorin-tagged subunits were found to be clustered at synaptic sites and also expressed as diffuse extrasynaptic staining. By combining FRAP (fluorescence recovery after photobleaching) measurements with live imaging of FM4-64-labeled active presynaptic terminals, it was evident that clustered synaptic receptors exhibit significantly lower rates of mobility at the cell surface compared with their extrasynaptic counterparts. To examine the basis of this confinement, we used RNAi to inhibit the expression of gephyrin, a protein shown to regulate the accumulation of GABAA receptors at synaptic sites. However, whether gephyrin acts to control the actual formation of receptor clusters, their stability, or is simply a global regulator of receptor cell surface number remains unknown. Inhibiting gephyrin expression did not modify the total number of GABAA receptors expressed on the neuronal cell surface but significantly decreased the number of receptor clusters. Live imaging revealed that clusters that formed in the absence of gephyrin were significantly more mobile compared with those in control neurons. Together, our results demonstrate that synaptic GABAA receptors have lower levels of lateral mobility compared with their extrasynaptic counterparts, and suggest a specific role for gephyrin in reducing the diffusion of GABAA receptors, facilitating their accumulation at inhibitory synapses.
Collapse
|
Comparative Study |
20 |
204 |
12
|
Abstract
This protocol describes a simple and efficient way to label specific cell surface proteins with biophysical probes on mammalian cells. Cell surface proteins tagged with a 15-amino acid peptide are biotinylated by Escherichia coli biotin ligase (BirA), whereas endogenous proteins are not modified. The biotin group then allows sensitive and stable binding by streptavidin conjugates. This protocol describes the optimal use of BirA and streptavidin for site-specific labeling and also how to produce BirA and monovalent streptavidin. Streptavidin is tetravalent and the cross-linking of biotinylated targets disrupts many of streptavidin's applications. Monovalent streptavidin has only a single functional biotin-binding site, but retains the femtomolar affinity, low off-rate and high thermostability of wild-type streptavidin. Site-specific biotinylation and streptavidin staining take only a few minutes, while expression of BirA takes 4 d and expression of monovalent streptavidin takes 8 d.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
190 |
13
|
Sánchez C, Sánchez I, Demmers JAA, Rodriguez P, Strouboulis J, Vidal M. Proteomics analysis of Ring1B/Rnf2 interactors identifies a novel complex with the Fbxl10/Jhdm1B histone demethylase and the Bcl6 interacting corepressor. Mol Cell Proteomics 2007; 6:820-34. [PMID: 17296600 DOI: 10.1074/mcp.m600275-mcp200] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ring1B/Rnf2 is a RING finger protein member of the Polycomb group (PcG) of proteins, which form chromatin-modifying complexes essential for embryonic development and stem cell renewal and which are commonly deregulated in cancer. Ring1B/Rnf2 is a ubiquitin E3 ligase that catalyzes the monoubiquitylation of the histone H2A, one of the histone modifications needed for the transcriptional repression activity of the PcG of proteins. Ring1B/Rnf2 was shown to be part of two complexes, the PRC1 PcG complex and the E2F6.com-1 complex, which also contains non-PcG members, thus raising the prospect for additional Ring1B/Rnf2 partners and functions extending beyond the PcG. Here we used a high throughput proteomics approach based on the single step purification, using streptavidin beads, of in vivo biotinylated Ring1B/Rnf2 and associated proteins from a nuclear extract from erythroid cells and their identification by mass spectrometry. About 50 proteins were confidently identified of which 20 had not been identified previously as subunits of Ring1B/Rnf2 complexes. We found that histone demethylases LSD1/Aof2 and Fbxl10/Jhdm1B, casein kinase subunits, and the BcoR corepressor were among the new interactors identified. We also isolated an Fbxl10/Jhdm1B complex by biotinylation tagging to identify shared interacting partners with Ring1B/Rnf2. In this way we identified a novel Ring1B-Fbxl10 complex that also includes Bcl6 corepressor (BcoR), CK2alpha, Skp1, and Nspc1/Pcgf1. The putative enzymatic activities and protein interaction and chromatin binding motifs present in this novel Ring1B-Fbxl10 complex potentially provide additional mechanisms for chromatin modification/recruitment to chromatin and more evidence for Ring1B/Rnf2 activities beyond those typically associated with PcG function. Lastly this work demonstrates the utility of biotinylation tagging for the rapid characterization of complex mixtures of multiprotein complexes achieved through the iterative use of this simple yet high throughput proteomics approach.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
178 |
14
|
Sanz-Clemente A, Matta JA, Isaac JT, Roche KW. Casein kinase 2 regulates the NR2 subunit composition of synaptic NMDA receptors. Neuron 2010; 67:984-96. [PMID: 20869595 PMCID: PMC2947143 DOI: 10.1016/j.neuron.2010.08.011] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2010] [Indexed: 10/19/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors (NMDARs) play a central role in development, synaptic plasticity, and neurological disease. NMDAR subunit composition defines their biophysical properties and downstream signaling. Casein kinase 2 (CK2) phosphorylates the NR2B subunit within its PDZ-binding domain; however, the consequences for NMDAR localization and function are unclear. Here we show that CK2 phosphorylation of NR2B regulates synaptic NR2B and NR2A in response to activity. We find that CK2 phosphorylates NR2B, but not NR2A, to drive NR2B-endocytosis and remove NR2B from synapses resulting in an increase in synaptic NR2A expression. During development there is an activity-dependent switch from NR2B to NR2A at cortical synapses. We observe an increase in CK2 expression and NR2B phosphorylation over this same critical period and show that the acute activity-dependent switch in NR2 subunit composition at developing hippocampal synapses requires CK2 activity. Thus, CK2 plays a central role in determining the NR2 subunit content of synaptic NMDARs.
Collapse
|
Research Support, N.I.H., Intramural |
15 |
170 |
15
|
Kheirolomoom A, Dayton PA, Lum AFH, Little E, Paoli EE, Zheng H, Ferrara KW. Acoustically-active microbubbles conjugated to liposomes: characterization of a proposed drug delivery vehicle. J Control Release 2007; 118:275-84. [PMID: 17300849 PMCID: PMC2662343 DOI: 10.1016/j.jconrel.2006.12.015] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Revised: 12/07/2006] [Accepted: 12/14/2006] [Indexed: 01/01/2023]
Abstract
A new acoustically-active delivery vehicle was developed by conjugating liposomes and microbubbles, using the high affinity interaction between avidin and biotin. Binding between microbubbles and liposomes, each containing 5% DSPE-PEG2kBiotin, was highly dependent on avidin concentration and observed above an avidin concentration of 10 nM. With an optimized avidin and liposome concentration, we measured and calculated as high as 1000 to 10,000 liposomes with average diameters of 200 and 100 nm, respectively, attached to each microbubble. Replacing avidin with neutravidin resulted in 3-fold higher binding, approaching the calculated saturation level. High-speed photography of this new drug delivery vehicle demonstrated that the liposome-bearing microbubbles oscillate in response to an acoustic pulse in a manner similar to microbubble contrast agents. Additionally, microbubbles carrying liposomes could be spatially concentrated on a monolayer of PC-3 cells at the focal point of ultrasound beam. As a result of cell-vehicle contact, the liposomes fused with the cells and internalization of NBD-cholesterol occurred shortly after incubation at 37 degrees C, with internalization of NBD-cholesterol substantially enhanced in the acoustic focus.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
164 |
16
|
Du J, Suzuki K, Wei Y, Wang Y, Blumenthal R, Chen Z, Falke C, Zarate CA, Manji HK. The anticonvulsants lamotrigine, riluzole, and valproate differentially regulate AMPA receptor membrane localization: relationship to clinical effects in mood disorders. Neuropsychopharmacology 2007; 32:793-802. [PMID: 16936714 DOI: 10.1038/sj.npp.1301178] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A growing body of data suggests that the glutamatergic system may be involved in the pathophysiology and treatment of severe mood disorders. Chronic treatment with the antimanic agents, lithium and valproate, resulted in reduced synaptic expression of the AMPA(-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor subunit GluR1 in the hippocampus, while treatment with an antidepressant (imipramine) enhanced the synaptic expression of GluR1. The anticonvulsants, lamotrigine (6-(2,3-dichlorophenyl)-1,2,4-triazine-3,5-diamine) and riluzole (2-amino-6-trifluoromethoxybenzothiazole), have been demonstrated to have efficacy in the depressive phase of bipolar disorder. We therefore sought to determine the role of these anticonvulsants, compared to that of the predominantly antimanic anticonvulsant valproate, on AMPA receptor localization. We found that the agents with a predominantly antidepressant profile, namely lamotrigine and riluzole, significantly enhanced the surface expression of GluR1 and GluR2 in a time- and dose-dependent manner in cultured hippocampal neurons. By contrast, the predominantly antimanic agent, valproate, significantly reduced surface expression of GluR1 and GluR2. Concomitant with the GluR1 and GluR2 changes, the peak value of depolarized membrane potential evoked by AMPA was significantly higher in lamotrigine- and riluzole-treated neurons, supporting the surface receptor changes. Phosphorylation of GluR1 at the PKA (cAMP-dependent protein kinase) site (S845) was enhanced in both lamotrigine- and riluzole-treated hippocampal neurons, but reduced in valproate-treated neurons. In addition, lamotrigine and riluzole, as well as the traditional antidepressant imipramine, also increased GluR1 phosphorylation at GluR1 (S845) in the hippocampus after chronic in vivo treatment. Our findings suggest that regulation of GluR1/2 surface levels and function may be responsible for the different clinical profile of anticonvulsants (antimanic or antidepressant), and may suggest avenues for the development of novel therapeutics for these illnesses.
Collapse
|
Research Support, N.I.H., Intramural |
18 |
161 |
17
|
Magalhaes AC, Holmes KD, Dale LB, Comps-Agrar L, Lee D, Yadav PN, Drysdale L, Poulter MO, Roth BL, Pin JP, Anisman H, Ferguson SSG. CRF receptor 1 regulates anxiety behavior via sensitization of 5-HT2 receptor signaling. Nat Neurosci 2010; 13:622-9. [PMID: 20383137 PMCID: PMC2862362 DOI: 10.1038/nn.2529] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 03/04/2010] [Indexed: 12/13/2022]
Abstract
Stress and anxiety disorders are risk factors for depression and these behaviors are modulated by corticotrophin-releasing factor receptor 1 (CRFR1) and serotonin receptor (5-HT(2)R). However, the potential behavioral and cellular interaction between these two receptors is unclear. We found that pre-administration of corticotrophin-releasing factor (CRF) into the prefrontal cortex of mice enhanced 5-HT(2)R-mediated anxiety behaviors in response to 2,5-dimethoxy-4-iodoamphetamine. In both heterologous cell cultures and mouse cortical neurons, activation of CRFR1 also enhanced 5-HT(2) receptor-mediated inositol phosphate formation. CRFR1-mediated increases in 5-HT(2)R signaling were dependent on receptor internalization and receptor recycling via rapid recycling endosomes, resulting in increased expression of 5-HT(2)R on the cell surface. Sensitization of 5-HT(2)R signaling by CRFR1 required intact PDZ domain-binding motifs at the end of the C-terminal tails of both receptor types. These data suggest a mechanism by which CRF, a peptide known to be released by stress, enhances anxiety-related behavior via sensitization of 5-HT(2)R signaling.
Collapse
MESH Headings
- Amphetamines/pharmacology
- Animals
- Anxiety/drug therapy
- Anxiety/metabolism
- Anxiety/physiopathology
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Biotinylation/methods
- Cells, Cultured
- Corticotropin-Releasing Hormone/pharmacology
- Cyclic AMP/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Embryo, Mammalian
- Fluorobenzenes/pharmacology
- Hormones/pharmacology
- Humans
- Inositol Phosphates/metabolism
- Ionophores/pharmacology
- Male
- Maze Learning/drug effects
- Maze Learning/physiology
- Mice
- Monensin/pharmacology
- Mutation/genetics
- Neurons
- Piperidines/pharmacology
- Prefrontal Cortex/cytology
- Rats
- Reaction Time/drug effects
- Receptors, Corticotropin-Releasing Hormone/genetics
- Receptors, Corticotropin-Releasing Hormone/physiology
- Receptors, Serotonin, 5-HT2/genetics
- Receptors, Serotonin, 5-HT2/metabolism
- Serotonin/pharmacology
- Serotonin 5-HT2 Receptor Agonists
- Serotonin 5-HT2 Receptor Antagonists
- Serotonin Agents/pharmacology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Transfection
- CRF Receptor, Type 1
Collapse
|
Research Support, N.I.H., Extramural |
15 |
154 |
18
|
Marsden KC, Beattie JB, Friedenthal J, Carroll RC. NMDA receptor activation potentiates inhibitory transmission through GABA receptor-associated protein-dependent exocytosis of GABA(A) receptors. J Neurosci 2007; 27:14326-37. [PMID: 18160640 PMCID: PMC6673443 DOI: 10.1523/jneurosci.4433-07.2007] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 11/02/2007] [Accepted: 11/10/2007] [Indexed: 11/21/2022] Open
Abstract
The trafficking of postsynaptic AMPA receptors (AMPARs) is a powerful mechanism for regulating the strength of excitatory synapses. It has become clear that the surface levels of inhibitory GABA(A) receptors (GABA(A)Rs) are also subject to regulation and that GABA(A)R trafficking may contribute to inhibitory plasticity, although the underlying mechanisms are not fully understood. Here, we report that NMDA receptor activation, which has been shown to drive excitatory long-term depression through AMPAR endocytosis, simultaneously increases expression of GABA(A)Rs at the dendritic surface of hippocampal neurons. This NMDA stimulus increases miniature IPSC amplitudes and requires the activity of Ca2+ calmodulin-dependent kinase II and the trafficking proteins N-ethylmaleimide-sensitive factor, GABA receptor-associated protein (GABARAP), and glutamate receptor interacting protein (GRIP). These data demonstrate for the first time that endogenous GABARAP and GRIP contribute to the regulated trafficking of GABA(A)Rs. In addition, they reveal that the bidirectional trafficking of AMPA and GABA(A) receptors can be driven by a single glutamatergic stimulus, providing a potent postsynaptic mechanism for modulating neuronal excitability.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
151 |
19
|
Kaewsapsak P, Shechner DM, Mallard W, Rinn JL, Ting AY. Live-cell mapping of organelle-associated RNAs via proximity biotinylation combined with protein-RNA crosslinking. eLife 2017; 6:e29224. [PMID: 29239719 PMCID: PMC5730372 DOI: 10.7554/elife.29224] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022] Open
Abstract
The spatial organization of RNA within cells is a crucial factor influencing a wide range of biological functions throughout all kingdoms of life. However, a general understanding of RNA localization has been hindered by a lack of simple, high-throughput methods for mapping the transcriptomes of subcellular compartments. Here, we develop such a method, termed APEX-RIP, which combines peroxidase-catalyzed, spatially restricted in situ protein biotinylation with RNA-protein chemical crosslinking. We demonstrate that, using a single protocol, APEX-RIP can isolate RNAs from a variety of subcellular compartments, including the mitochondrial matrix, nucleus, cytosol, and endoplasmic reticulum (ER), with specificity and sensitivity that rival or exceed those of conventional approaches. We further identify candidate RNAs localized to mitochondria-ER junctions and nuclear lamina, two compartments that are recalcitrant to classical biochemical purification. Since APEX-RIP is simple, versatile, and does not require special instrumentation, we envision its broad application in a variety of biological contexts.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
144 |
20
|
Elmariah SB, Oh EJ, Hughes EG, Balice-Gordon RJ. Astrocytes regulate inhibitory synapse formation via Trk-mediated modulation of postsynaptic GABAA receptors. J Neurosci 2006; 25:3638-50. [PMID: 15814795 PMCID: PMC6725365 DOI: 10.1523/jneurosci.3980-04.2005] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Astrocytes promote the formation and function of excitatory synapses in the CNS. However, whether and how astrocytes modulate inhibitory synaptogenesis are essentially unknown. We asked whether astrocytes regulate the formation of inhibitory synapses between hippocampal neurons during maturation in vitro. Neuronal coculture with astrocytes or treatment with astrocyte-conditioned medium (ACM) increased the number of inhibitory presynaptic terminals, the frequency of miniature IPSCs, and the number and synaptic localization of GABA(A) receptor (GABA(A)R) clusters during the first 10 d in vitro. We asked whether neurotrophins, which are potent modulators of inhibitory synaptic structure and function, mediate the effects of astrocytes on inhibitory synapses. ACM from BDNF- or tyrosine receptor kinase B (TrkB)-deficient astrocytes increased inhibitory presynaptic terminals and postsynaptic GABA(A)R clusters in wild-type neurons, suggesting that BDNF and TrkB expression in astrocytes is not required for these effects. In contrast, although the increase in the number of inhibitory presynaptic terminals persisted, no increase was observed in postsynaptic GABA(A)R clusters after ACM treatment of hippocampal neurons lacking BDNF or TrkB. These results suggest that neurons, not astrocytes, are the relevant source of BDNF and are the site of TrkB activation required for postsynaptic GABA(A)R modulation. These data also suggest that astrocytes may modulate postsynaptic development indirectly by stimulating Trk signaling between neurons. Together, these data show that astrocytes modulate inhibitory synapse formation via distinct presynaptic and postsynaptic mechanisms.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Animals, Newborn
- Astrocytes/cytology
- Astrocytes/physiology
- Biotinylation/methods
- Blotting, Western/methods
- Brain-Derived Neurotrophic Factor/physiology
- Cell Count/methods
- Cells, Cultured
- Coculture Techniques/methods
- Culture Media, Conditioned/pharmacology
- Electric Stimulation/methods
- Embryo, Mammalian
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Excitatory Postsynaptic Potentials/radiation effects
- Gene Expression Regulation/drug effects
- Glial Fibrillary Acidic Protein/metabolism
- Hippocampus/cytology
- Immunoglobulin G/pharmacology
- Immunohistochemistry/methods
- In Situ Nick-End Labeling/methods
- Mice
- Mice, Knockout
- Microtubule-Associated Proteins/metabolism
- Nerve Growth Factors/pharmacology
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Neurons/cytology
- Neurons/physiology
- Patch-Clamp Techniques/methods
- Presynaptic Terminals/drug effects
- Presynaptic Terminals/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, trkA/deficiency
- Receptor, trkA/immunology
- Receptor, trkA/metabolism
- Receptors, GABA-A/physiology
- Synapses/drug effects
- Synapses/physiology
- Synaptophysin/metabolism
- Time Factors
- Vesicular Glutamate Transport Protein 1/metabolism
- Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
19 |
137 |
21
|
Ito H, Iwabuchi M, Ogawa K. The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in Arabidopsis thaliana: detection using biotinylated glutathione. PLANT & CELL PHYSIOLOGY 2003; 44:655-60. [PMID: 12881492 DOI: 10.1093/pcp/pcg098] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
GSH has multiple actions in physiological responses of plants, but the molecular mechanisms are not fully understood. GSH plays an important role in functional alteration of proteins by reversible covalent incorporation (glutathionylation) in vertebrate cells. To investigate the function of glutathionylation in plant cells, we examined glutathionylated proteins in the suspension-cultured cells of Arabidopsis using biotinylated GSH. Biotinylated GSH was incorporated into about 20 proteins. Two of these proteins were identified as the key enzymes for sugar metabolism, triose-phosphate isomerase (TPI) and putative plastidic aldolase. Recombinant TPI was inactivated by GSSG, and it was reactivated by GSH. The physiological roles of glutathionylation of TPI and aldolase in sugar metabolism are discussed.
Collapse
|
|
22 |
134 |
22
|
Murata M, Nishiyori-Sueki H, Kojima-Ishiyama M, Carninci P, Hayashizaki Y, Itoh M. Detecting expressed genes using CAGE. Methods Mol Biol 2014; 1164:67-85. [PMID: 24927836 DOI: 10.1007/978-1-4939-0805-9_7] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cap analysis of gene expression (CAGE) provides accurate high-throughput measurement of RNA expression. By the large-scale analysis of 5' end of transcripts using CAGE method, it enables not only determination of the transcription start site but also prediction of promoter region. Here we provide a protocol for the construction of no-amplification non-tagging CAGE libraries for Illumina next-generation sequencers (nAnT-iCAGE). We have excluded the commonly used PCR amplification and cleavage of restriction enzyme to eliminate any potential biases. As a result, we achieved less biased simple preparation process.
Collapse
|
|
11 |
130 |
23
|
Jin W, Ge WP, Xu J, Cao M, Peng L, Yung W, Liao D, Duan S, Zhang M, Xia J. Lipid binding regulates synaptic targeting of PICK1, AMPA receptor trafficking, and synaptic plasticity. J Neurosci 2006; 26:2380-90. [PMID: 16510715 PMCID: PMC6793652 DOI: 10.1523/jneurosci.3503-05.2006] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The targeting and surface expression of membrane proteins are critical to their functions. In neurons, synaptic targeting and surface expression of AMPA-type glutamate receptors were found to be critical for synaptic plasticity such as long-term potentiation and long-term depression (LTD). PICK1 (protein interacting with C kinase 1) is a cytosolic protein that interacts with many membrane proteins, including AMPA receptors via its PDZ (postsynaptic density-95/Discs large/zona occludens-1) domain. Its interactions with membrane proteins regulate their subcellular targeting and surface expression. However, the mechanism by which PICK1 regulates protein trafficking has not been fully elucidated. Here, we show that PICK1 directly binds to lipids, mainly phosphoinositides, via its BAR (Bin/amphiphysin/Rvs) domain. Lipid binding of the PICK1 BAR domain is positively regulated by its PDZ domain and negatively regulated by its C-terminal acidic domain. Mutation of critical residues of the PICK1 BAR domain eliminates its lipid-binding capability. Lipid binding of PICK1 controls the subcellular localization of the protein, because BAR domain mutant of PICK1 has diminished synaptic targeting compared with wild-type PICK1. In addition, the BAR domain mutant of PICK1 does not cluster AMPA receptors. Moreover, wild-type PICK1 enhances synaptic targeting of AMPA receptors, whereas the BAR domain mutant of PICK1 fails to do so. The BAR domain mutant of PICK1 loses its ability to regulate surface expression of the AMPA receptors and impairs expression of LTD in hippocampal neurons. Together, our findings indicate that the lipid binding of the PICK1 BAR domain is important for its synaptic targeting, AMPA receptor trafficking, and synaptic plasticity.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
120 |
24
|
Gao M, Sossa K, Song L, Errington L, Cummings L, Hwang H, Kuhl D, Worley P, Lee HK. A specific requirement of Arc/Arg3.1 for visual experience-induced homeostatic synaptic plasticity in mouse primary visual cortex. J Neurosci 2010; 30:7168-78. [PMID: 20505084 PMCID: PMC2881313 DOI: 10.1523/jneurosci.1067-10.2010] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/07/2010] [Accepted: 04/15/2010] [Indexed: 11/21/2022] Open
Abstract
Visual experience scales down excitatory synapses in the superficial layers of visual cortex in a process that provides an in vivo paradigm of homeostatic synaptic scaling. Experience-induced increases in neural activity rapidly upregulates mRNAs of immediate early genes involved in synaptic plasticity, one of which is Arc (activity-regulated cytoskeleton protein or Arg3.1). Cell biological studies indicate that Arc/Arg3.1 protein functions to recruit endocytic machinery for AMPA receptor internalization, and this action, together with its activity-dependent expression, rationalizes a role for Arc/Arg3.1 in homeostatic synaptic scaling. Here, we investigated the role of Arc/Arg3.1 in homeostatic scaling in vivo by examining experience-dependent development of layer 2/3 neurons in the visual cortex of Arc/Arg3.1 knock-out (KO) mice. Arc/Arg3.1 KOs show minimal changes in basal and developmental regulation of excitatory synaptic strengths but display a profound deficit in homeostatic regulation of excitatory synapses by visual experience. As additional evidence of specificity, we found that the visual experience-induced regulation of inhibitory synapses is normal, although the basal inhibitory synaptic strength is increased in the Arc/Arg3.1 KOs. Our results demonstrate that Arc/Arg3.1 plays a selective role in regulating visual experience-dependent homeostatic plasticity of excitatory synaptic transmission in vivo.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
118 |
25
|
Rybak JN, Ettorre A, Kaissling B, Giavazzi R, Neri D, Elia G. In vivo protein biotinylation for identification of organ-specific antigens accessible from the vasculature. Nat Methods 2005; 2:291-8. [PMID: 15782212 DOI: 10.1038/nmeth745] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Accepted: 02/02/2005] [Indexed: 01/07/2023]
Abstract
We describe a new methodology, based on terminal perfusion of rodents with a reactive ester derivative of biotin that enables the covalent modification of proteins readily accessible from the bloodstream. Biotinylated proteins from total organ extracts can be purified on streptavidin resin in the presence of strong detergents, digested on the resin and subjected to liquid chromatography-tandem mass spectrometry for identification. In the present study, in vivo biotinylation procedure led to the identification of hundreds of proteins in different mouse organs, including some showing a restricted pattern of expression in certain body tissues. Furthermore, biotinylation of mice with F9 subcutaneous tumors or orthotopic kidney tumors revealed both quantitative and qualitative differences in the recovery of biotinylated proteins, as compared to normal tissues. This technology is applicable to proteomic investigations of the differential expression of accessible proteins in physiological and pathological processes in animal models, and to human surgical specimens using ex vivo perfusion procedures.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
117 |