1
|
Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O'Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435:677-81. [PMID: 15902208 DOI: 10.1038/nature03579] [Citation(s) in RCA: 2706] [Impact Index Per Article: 135.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 03/31/2005] [Indexed: 12/16/2022]
Abstract
Proteins in the Bcl-2 family are central regulators of programmed cell death, and members that inhibit apoptosis, such as Bcl-X(L) and Bcl-2, are overexpressed in many cancers and contribute to tumour initiation, progression and resistance to therapy. Bcl-X(L) expression correlates with chemo-resistance of tumour cell lines, and reductions in Bcl-2 increase sensitivity to anticancer drugs and enhance in vivo survival. The development of inhibitors of these proteins as potential anti-cancer therapeutics has been previously explored, but obtaining potent small-molecule inhibitors has proved difficult owing to the necessity of targeting a protein-protein interaction. Here, using nuclear magnetic resonance (NMR)-based screening, parallel synthesis and structure-based design, we have discovered ABT-737, a small-molecule inhibitor of the anti-apoptotic proteins Bcl-2, Bcl-X(L) and Bcl-w, with an affinity two to three orders of magnitude more potent than previously reported compounds. Mechanistic studies reveal that ABT-737 does not directly initiate the apoptotic process, but enhances the effects of death signals, displaying synergistic cytotoxicity with chemotherapeutics and radiation. ABT-737 exhibits single-agent-mechanism-based killing of cells from lymphoma and small-cell lung carcinoma lines, as well as primary patient-derived cells, and in animal models, ABT-737 improves survival, causes regression of established tumours, and produces cures in a high percentage of the mice.
Collapse
|
Journal Article |
20 |
2706 |
2
|
Rajagopalan S, Kurz S, Münzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 1996; 97:1916-23. [PMID: 8621776 PMCID: PMC507261 DOI: 10.1172/jci118623] [Citation(s) in RCA: 1833] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We tested the hypothesis that angiotensin II-induced hypertension is associated with an increase in vascular .O2- production, and characterized the oxidase involved in this process. Infusion of angiotensin II (0.7 mg/kg per d) increased systolic blood pressure and doubled vascular .O2- production (assessed by lucigenin chemiluminescence), predominantly from the vascular media. NE infusion (2.75 mg/kg per d) produced a similar degree of hypertension, but did not increase vascular .O2- production. Studies using various enzyme inhibitors and vascular homogenates suggested that the predominant source of .O2- activated by angiotensin II infusion is an NADH/NADPH-dependent, membrane-bound oxidase. Angiotensin II-, but not NE-, induced hypertension was associated with impaired relaxations to acetylcholine, the calcium ionophore A23187, and nitroglycerin. These relaxations were variably corrected by treatment of vessels with liposome-encapsulated superoxide dismutase. When Losartan was administered concomitantly with angiotensin II, vascular .O2- production and relaxations were normalized, demonstrating a role for the angiotensin type-1 receptor in these processes. We conclude that forms of hypertension associated with elevated circulating levels of angiotensin II may have unique vascular effects not shared by other forms of hypertension because they increase vascular smooth muscle .O2- production via NADH/NADPH oxidase activation.
Collapse
|
research-article |
29 |
1833 |
3
|
Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 2004; 280:5892-901. [PMID: 15590663 DOI: 10.1074/jbc.m404751200] [Citation(s) in RCA: 1685] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Alzheimer's disease (AD) involves amyloid beta (Abeta) accumulation, oxidative damage, and inflammation, and risk is reduced with increased antioxidant and anti-inflammatory consumption. The phenolic yellow curry pigment curcumin has potent anti-inflammatory and antioxidant activities and can suppress oxidative damage, inflammation, cognitive deficits, and amyloid accumulation. Since the molecular structure of curcumin suggested potential Abeta binding, we investigated whether its efficacy in AD models could be explained by effects on Abeta aggregation. Under aggregating conditions in vitro, curcumin inhibited aggregation (IC(50) = 0.8 microM) as well as disaggregated fibrillar Abeta40 (IC(50) = 1 microM), indicating favorable stoichiometry for inhibition. Curcumin was a better Abeta40 aggregation inhibitor than ibuprofen and naproxen, and prevented Abeta42 oligomer formation and toxicity between 0.1 and 1.0 microM. Under EM, curcumin decreased dose dependently Abeta fibril formation beginning with 0.125 microM. The effects of curcumin did not depend on Abeta sequence but on fibril-related conformation. AD and Tg2576 mice brain sections incubated with curcumin revealed preferential labeling of amyloid plaques. In vivo studies showed that curcumin injected peripherally into aged Tg mice crossed the blood-brain barrier and bound plaques. When fed to aged Tg2576 mice with advanced amyloid accumulation, curcumin labeled plaques and reduced amyloid levels and plaque burden. Hence, curcumin directly binds small beta-amyloid species to block aggregation and fibril formation in vitro and in vivo. These data suggest that low dose curcumin effectively disaggregates Abeta as well as prevents fibril and oligomer formation, supporting the rationale for curcumin use in clinical trials preventing or treating AD.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
1685 |
4
|
Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, Poyurovsky MV, Olszewski K, Gan B. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 2021; 593:586-590. [PMID: 33981038 PMCID: PMC8895686 DOI: 10.1038/s41586-021-03539-7] [Citation(s) in RCA: 1130] [Impact Index Per Article: 282.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
Ferroptosis, a form of regulated cell death that is induced by excessive lipid peroxidation, is a key tumour suppression mechanism1-4. Glutathione peroxidase 4 (GPX4)5,6 and ferroptosis suppressor protein 1 (FSP1)7,8 constitute two major ferroptosis defence systems. Here we show that treatment of cancer cells with GPX4 inhibitors results in acute depletion of N-carbamoyl-L-aspartate, a pyrimidine biosynthesis intermediate, with concomitant accumulation of uridine. Supplementation with dihydroorotate or orotate-the substrate and product of dihydroorotate dehydrogenase (DHODH)-attenuates or potentiates ferroptosis induced by inhibition of GPX4, respectively, and these effects are particularly pronounced in cancer cells with low expression of GPX4 (GPX4low). Inactivation of DHODH induces extensive mitochondrial lipid peroxidation and ferroptosis in GPX4low cancer cells, and synergizes with ferroptosis inducers to induce these effects in GPX4high cancer cells. Mechanistically, DHODH operates in parallel to mitochondrial GPX4 (but independently of cytosolic GPX4 or FSP1) to inhibit ferroptosis in the mitochondrial inner membrane by reducing ubiquinone to ubiquinol (a radical-trapping antioxidant with anti-ferroptosis activity). The DHODH inhibitor brequinar selectively suppresses GPX4low tumour growth by inducing ferroptosis, whereas combined treatment with brequinar and sulfasalazine, an FDA-approved drug with ferroptosis-inducing activity, synergistically induces ferroptosis and suppresses GPX4high tumour growth. Our results identify a DHODH-mediated ferroptosis defence mechanism in mitochondria and suggest a therapeutic strategy of targeting ferroptosis in cancer treatment.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
1130 |
5
|
van Delft MF, Wei AH, Mason KD, Vandenberg CJ, Chen L, Czabotar PE, Willis SN, Scott CL, Day CL, Cory S, Adams JM, Roberts AW, Huang DC. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 2006; 10:389-99. [PMID: 17097561 PMCID: PMC2953559 DOI: 10.1016/j.ccr.2006.08.027] [Citation(s) in RCA: 1034] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 06/28/2006] [Accepted: 08/24/2006] [Indexed: 10/23/2022]
Abstract
Since apoptosis is impaired in malignant cells overexpressing prosurvival Bcl-2 proteins, drugs mimicking their natural antagonists, BH3-only proteins, might overcome chemoresistance. Of seven putative BH3 mimetics tested, only ABT-737 triggered Bax/Bak-mediated apoptosis. Despite its high affinity for Bcl-2, Bcl-x(L), and Bcl-w, many cell types proved refractory to ABT-737. We show that this resistance reflects ABT-737's inability to target another prosurvival relative, Mcl-1. Downregulation of Mcl-1 by several strategies conferred sensitivity to ABT-737. Furthermore, enforced Mcl-1 expression in a mouse lymphoma model conferred resistance. In contrast, cells overexpressing Bcl-2 remained highly sensitive to ABT-737. Hence, ABT-737 should prove efficacious in tumors with low Mcl-1 levels, or when combined with agents that inactivate Mcl-1, even to treat those tumors that overexpress Bcl-2.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biphenyl Compounds/metabolism
- Biphenyl Compounds/pharmacology
- Biphenyl Compounds/therapeutic use
- Cells, Cultured
- Cytokines/metabolism
- Disease Models, Animal
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Myeloid Cell Leukemia Sequence 1 Protein
- Neoplasm Proteins/metabolism
- Nitrophenols/metabolism
- Nitrophenols/pharmacology
- Nitrophenols/therapeutic use
- Piperazines/metabolism
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/chemistry
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA Interference
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sulfonamides/metabolism
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- bcl-2 Homologous Antagonist-Killer Protein/genetics
- bcl-2 Homologous Antagonist-Killer Protein/metabolism
- bcl-2-Associated X Protein/chemistry
- bcl-2-Associated X Protein/genetics
- bcl-2-Associated X Protein/metabolism
Collapse
|
Research Support, N.I.H., Extramural |
19 |
1034 |
6
|
Ames BN, Durston WE, Yamasaki E, Lee FD. Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci U S A 1973; 70:2281-5. [PMID: 4151811 PMCID: PMC433718 DOI: 10.1073/pnas.70.8.2281] [Citation(s) in RCA: 1027] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
18 Carcinogens, including aflatoxin B(1), benzo(a)pyrene, acetylaminofluorene, benzidine, and dimethylamino-trans-stilbene, are shown to be activated by liver homogenates to form potent frameshift mutagens. We believe that these carcinogens have in common a ring system sufficiently planar for a stacking interaction with DNA base pairs and a part of the molecule capable of being metabolized to a reactive group: these structural features are discussed in terms of the theory of frameshift mutagenesis. We propose that these carcinogens, and many others that are mutagens, cause cancer by somatic mutation. A simple, inexpensive, and extremely sensitive test for detection of carcinogens as mutagens is described. It consists of the use of a rat or human liver homogenate for carcinogen activation (thus supplying mammalian metabolism) and a set of Salmonella histidine mutants for mutagen detection. The homogenate, bacteria, and a TPNH-generating system are all incubated together on a petri plate. With the most active compounds, as little as a few nanograms can be detected.
Collapse
|
research-article |
52 |
1027 |
7
|
Certo M, Del Gaizo Moore V, Nishino M, Wei G, Korsmeyer S, Armstrong SA, Letai A. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 2006; 9:351-65. [PMID: 16697956 DOI: 10.1016/j.ccr.2006.03.027] [Citation(s) in RCA: 997] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 02/06/2006] [Accepted: 03/31/2006] [Indexed: 12/12/2022]
Abstract
We show that the antiapoptotic proteins BCL-2, BCL-XL, MCL-1, BFL-1, and BCL-w each bear a unique pattern of interaction with a panel of peptides derived from BH3 domains of BH3-only proteins. Cellular dependence on an antiapoptotic protein for survival can be decoded based on the pattern of mitochondrial sensitivity to this peptide panel, a strategy that we call BH3 profiling. Dependence on antiapoptotic proteins correlates with sequestration of activator BH3-only proteins like BID or BIM by antiapoptotic proteins. Sensitivity to the cell-permeable BCL-2 antagonist ABT-737 is also related to priming of BCL-2 by activator BH3-only molecules. Our data allow us to distinguish a cellular state we call "primed for death," which can be determined by BH3 profiling and which correlates with dependence on antiapoptotic family members for survival.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
997 |
8
|
Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J. Essential role for Nix in autophagic maturation of erythroid cells. Nature 2008; 454:232-5. [PMID: 18454133 PMCID: PMC2570948 DOI: 10.1038/nature07006] [Citation(s) in RCA: 926] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Accepted: 04/16/2008] [Indexed: 01/17/2023]
Abstract
Erythroid cells undergo enucleation and the removal of organelles during terminal differentiation. Although autophagy has been suggested to mediate the elimination of organelles for erythroid maturation, the molecular mechanisms underlying this process remain undefined. Here we report a role for a Bcl-2 family member, Nix (also called Bnip3L), in the regulation of erythroid maturation through mitochondrial autophagy. Nix(-/-) mice developed anaemia with reduced mature erythrocytes and compensatory expansion of erythroid precursors. Erythrocytes in the peripheral blood of Nix(-/-) mice exhibited mitochondrial retention and reduced lifespan in vivo. Although the clearance of ribosomes proceeded normally in the absence of Nix, the entry of mitochondria into autophagosomes for clearance was defective. Deficiency in Nix inhibited the loss of mitochondrial membrane potential (DeltaPsi(m)), and treatment with uncoupling chemicals or a BH3 mimetic induced the loss of DeltaPsi(m) and restored the sequestration of mitochondria into autophagosomes in Nix(-/-) erythroid cells. These results suggest that Nix-dependent loss of DeltaPsi(m) is important for targeting the mitochondria into autophagosomes for clearance during erythroid maturation, and interference with this function impairs erythroid maturation and results in anaemia. Our study may also provide insights into molecular mechanisms underlying mitochondrial quality control involving mitochondrial autophagy.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
926 |
9
|
Benson SC, Pershadsingh HA, Ho CI, Chittiboyina A, Desai P, Pravenec M, Qi N, Wang J, Avery MA, Kurtz TW. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgamma-modulating activity. Hypertension 2004; 43:993-1002. [PMID: 15007034 DOI: 10.1161/01.hyp.0000123072.34629.57] [Citation(s) in RCA: 847] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The metabolic syndrome is a common precursor of cardiovascular disease and type 2 diabetes that is characterized by the clustering of insulin resistance, dyslipidemia, and increased blood pressure. In humans, mutations in the peroxisome proliferator-activated receptor-gamma (PPARgamma) have been reported to cause the full-blown metabolic syndrome, and drugs that activate PPARgamma have proven to be effective agents for the prevention and treatment of insulin resistance and type 2 diabetes. Here we report that telmisartan, a structurally unique angiotensin II receptor antagonist used for the treatment of hypertension, can function as a partial agonist of PPARgamma; influence the expression of PPARgamma target genes involved in carbohydrate and lipid metabolism; and reduce glucose, insulin, and triglyceride levels in rats fed a high-fat, high-carbohydrate diet. None of the other commercially available angiotensin II receptor antagonists appeared to activate PPARgamma when tested at concentrations typically achieved in plasma with conventional oral dosing. In contrast to ordinary antihypertensive and antidiabetic agents, molecules that can simultaneously block the angiotensin II receptor and activate PPARgamma have the potential to treat both hemodynamic and biochemical features of the metabolic syndrome and could provide unique opportunities for the prevention and treatment of diabetes and cardiovascular disease in high-risk populations.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
847 |
10
|
Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA, Ellis S, Kelly PN, Ekert PG, Metcalf D, Roberts AW, Huang DCS, Kile BT. Programmed anuclear cell death delimits platelet life span. Cell 2007; 128:1173-86. [PMID: 17382885 DOI: 10.1016/j.cell.2007.01.037] [Citation(s) in RCA: 806] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 12/04/2006] [Accepted: 01/06/2007] [Indexed: 11/28/2022]
Abstract
Platelets are anuclear cytoplasmic fragments essential for blood clotting and wound healing. Despite much speculation, the factors determining their life span in the circulation are unknown. We show here that an intrinsic program for apoptosis controls platelet survival and dictates their life span. Pro-survival Bcl-x(L) constrains the pro-apoptotic activity of Bak to maintain platelet survival, but as Bcl-x(L) degrades, aged platelets are primed for cell death. Genetic ablation or pharmacological inactivation of Bcl-x(L) reduces platelet half-life and causes thrombocytopenia in a dose-dependent manner. Deletion of Bak corrects these defects, and platelets from Bak-deficient mice live longer than normal. Thus, platelets are, by default, genetically programmed to die by apoptosis. The antagonistic balance between Bcl-x(L) and Bak constitutes a molecular clock that determines platelet life span: this represents an important paradigm for cellular homeostasis, and has profound implications for the diagnosis and treatment of disorders that affect platelet number and function.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
806 |
11
|
Gülçin I. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 2006; 217:213-20. [PMID: 16243424 DOI: 10.1016/j.tox.2005.09.011] [Citation(s) in RCA: 692] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 09/27/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
Caffeic acid (3,4-dihydroxycinnamic acid) is among the major hydroxycinnamic acids present in wine; sinapic acid, which is a potent antioxidant. It has also been identified as one of the active antioxidant. In the present study, the antioxidant properties of the caffeic acid were evaluated by using different in vitro antioxidant assays such as 2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, total antioxidant activity by ferric thiocyanate method, total reductive capability using the potassium ferricyanide reduction method, superoxide anion radical scavenging and metal chelating activities. alpha-Tocopherol, trolox, a water-soluble analogue of tocopherol, butylated hydroxyanisole (BHA), and butylated hydroxytoluene (BHT) were used as the reference antioxidant compounds. At the concentrations of 10 and 30 microg/mL, caffeic acid showed 68.2 and 75.8% inhibition on lipid peroxidation of linoleic acid emulsion, respectively. On the other hand, 20 microg/mL of standard antioxidant such as BHA, BHT, alpha-tocopherol and trolox indicated an inhibition of 74.4, 71.2, 54.7 and 20.1% on peroxidation of linoleic acid emulsion, respectively. In addition, caffeic acid is an effective ABTS(+) scavenging, DPPH scavenging, superoxide anion radical scavenging, total reducing power and metal chelating on ferrous ions activities.
Collapse
|
|
19 |
692 |
12
|
Snider RM, Constantine JW, Lowe JA, Longo KP, Lebel WS, Woody HA, Drozda SE, Desai MC, Vinick FJ, Spencer RW. A potent nonpeptide antagonist of the substance P (NK1) receptor. Science 1991; 251:435-7. [PMID: 1703323 DOI: 10.1126/science.1703323] [Citation(s) in RCA: 687] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CP-96,345 [(2S, 3S)-cis-2-(diphenylmethyl)-N-[(2-methoxyphenyl)- methyl]-1-azabicyclo[2.2.2]octan-3-amine] is a potent nonpeptide antagonist of the substance P (NK1) receptor. CP-96,345 inhibited 3H-labeled substance P binding and was a classical competitive antagonist in the NK1 monoreceptor dog carotid artery preparation. CP-96,345 inhibited substance P-induced salivation in the rat, a classical in vivo bioassay, but did not inhibit NK2, NK3, or numerous other receptors; it is thus a selective NK1 antagonist. This compound may prove to be a powerful tool for investigation of the physiological properties of substance P and exploration of its role in diseases.
Collapse
|
|
34 |
687 |
13
|
Julius S, Nesbitt SD, Egan BM, Weber MA, Michelson EL, Kaciroti N, Black HR, Grimm RH, Messerli FH, Oparil S, Schork MA. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N Engl J Med 2006; 354:1685-97. [PMID: 16537662 DOI: 10.1056/nejmoa060838] [Citation(s) in RCA: 639] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Prehypertension is considered a precursor of stage 1 hypertension and a predictor of excessive cardiovascular risk. We investigated whether pharmacologic treatment of prehypertension prevents or postpones stage 1 hypertension. METHODS Participants with repeated measurements of systolic pressure of 130 to 139 mm Hg and diastolic pressure of 89 mm Hg or lower, or systolic pressure of 139 mm Hg or lower and diastolic pressure of 85 to 89 mm Hg, were randomly assigned to receive two years of candesartan (Atacand, AstraZeneca) or placebo, followed by two years of placebo for all. When a participant reached the study end point of stage 1 hypertension, treatment with antihypertensive agents was initiated. Both the candesartan group and the placebo group were instructed to make changes in lifestyle to reduce blood pressure throughout the trial. RESULTS A total of 409 participants were randomly assigned to candesartan, and 400 to placebo. Data on 772 participants (391 in the candesartan group and 381 in the placebo group; mean age, 48.5 years; 59.6 percent men) were available for analysis. During the first two years, hypertension developed in 154 participants in the placebo group and 53 of those in the candesartan group (relative risk reduction, 66.3 percent; P<0.001). After four years, hypertension had developed in 240 participants in the placebo group and 208 of those in the candesartan group (relative risk reduction, 15.6 percent; P<0.007). Serious adverse events occurred in 3.5 percent of the participants assigned to candesartan and 5.9 percent of those receiving placebo. CONCLUSIONS Over a period of four years, stage 1 hypertension developed in nearly two thirds of patients with untreated prehypertension (the placebo group). Treatment of prehypertension with candesartan appeared to be well tolerated and reduced the risk of incident hypertension during the study period. Thus, treatment of prehypertension appears to be feasible. (ClinicalTrials.gov number, NCT00227318.).
Collapse
|
Multicenter Study |
19 |
639 |
14
|
Stoll M, Steckelings UM, Paul M, Bottari SP, Metzger R, Unger T. The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 1995; 95:651-7. [PMID: 7860748 PMCID: PMC295531 DOI: 10.1172/jci117710] [Citation(s) in RCA: 630] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Angiotensin II (ANG II) is known to be a potent growth promoting factor for vascular smooth muscle cells and fibroblasts but little is known about its influence on growth in endothelial cells. We studied the effects of ANG II on endothelial growth and the role of the angiotensin receptor subtypes involved. Proliferation of rat coronary endothelial cells (CEC) and rat vascular smooth muscle cells (VSMC) was determined by [3H]thymidine incorporation, the MTT-test and by directly counting cells in a coulter counter. Angiotensin AT1- and AT2-receptors were demonstrated by binding studies and by the presence of their respective mRNA through reverse transcription polymerase chain reaction (RT-PCR). In contrast to VSMC, which in culture only express the AT1-receptor, CEC express both, AT1- and AT2-receptors simultaneously up to the third passage. Whereas ANG II stimulated growth of quiescent VSMC, an effect abolished by pretreatment with the AT1-receptor antagonist, losartan, ANG II did not induce proliferation in quiescent CEC. However, after pretreatment of quiescent endothelial cells (< passage 4) with the AT2-receptor antagonist, PD 123177, ANG II induced proliferation. This effect was reversed by additional pretreatment with losartan. ANG II significantly inhibited the proliferation of bFGF-stimulated CEC in a dose-dependent manner by maximally 50%. This effect was prevented by PD 123177 while losartan was ineffective. The AT2-receptor agonist, CGP 42112, mimicked the antiproliferative actions of ANG II, confirming the specificity of the effect. Our results show that the growth modulating actions of ANG II depend on the type of angiotensin receptor present on a given cell. In coronary endothelial cells, the antiproliferative actions of the AT2-receptor offset the growth promoting effects mediated by the AT1-receptor.
Collapse
MESH Headings
- Angiotensin I/pharmacology
- Angiotensin II/antagonists & inhibitors
- Angiotensin II/pharmacology
- Angiotensin Receptor Antagonists
- Animals
- Aorta
- Base Sequence
- Binding, Competitive
- Biphenyl Compounds/pharmacology
- Cell Division/drug effects
- Cells, Cultured
- Coronary Vessels/physiology
- DNA/biosynthesis
- DNA Primers
- Dose-Response Relationship, Drug
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Gene Expression/drug effects
- Imidazoles/pharmacology
- Kinetics
- Losartan
- Molecular Sequence Data
- Muscle, Smooth, Vascular
- Oligopeptides/pharmacology
- Polymerase Chain Reaction
- Pyridines/pharmacology
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Rats
- Receptors, Angiotensin/biosynthesis
- Receptors, Angiotensin/physiology
- Tetrazoles/pharmacology
- Thymidine/metabolism
Collapse
|
research-article |
30 |
630 |
15
|
Ushio-Fukai M, Zafari AM, Fukui T, Ishizaka N, Griendling KK. p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J Biol Chem 1996; 271:23317-21. [PMID: 8798532 DOI: 10.1074/jbc.271.38.23317] [Citation(s) in RCA: 599] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Superoxide anion formation is vital to the microbicidal activity of phagocytes. Recently, however, there is accumulating evidence that it is also involved in cell growth in vascular smooth muscle cells (VSMCs). We have shown that the hypertrophic agent angiotensin II stimulates superoxide production by activating the membrane-bound NADH/NADPH oxidase and that inhibition of this oxidase attenuates vascular hypertrophy. However, the molecular identity of this oxidase in VSMCs is unknown. We have recently cloned the cytochrome b558 alpha-subunit, p22(phox) (one of the key electron transfer elements of the NADPH oxidase in phagocytes), from a rat VSMC cDNA library, but its role in VSMC oxidase activity remains unclarified. Here we report that the complete inhibition of p22(phox) mRNA expression by stable transfection of antisense p22(phox) cDNA into VSMCs results in a decrease in cytochrome b content, which is accompanied by a significant inhibition of angiotensin II-stimulated NADH/NADPH-dependent superoxide production, subsequent hydrogen peroxide production, and [3H]leucine incorporation. We provide the first evidence that p22(phox) is a critical component of superoxide-generating vascular NADH/NADPH oxidase and suggest a central role for this oxidase system in vascular hypertrophy.
Collapse
|
|
29 |
599 |
16
|
Abstract
Enhancer of zeste homolog 2 (EZH2) is enzymatic catalytic subunit of polycomb repressive complex 2 (PRC2) that can alter downstream target genes expression by trimethylation of Lys-27 in histone 3 (H3K27me3). EZH2 could also regulate gene expression in ways besides H3K27me3. Functions of EZH2 in cells proliferation, apoptosis, and senescence have been identified. Its important roles in the pathophysiology of cancer are now widely concerned. Therefore, targeting EZH2 for cancer therapy is a hot research topic now and different types of EZH2 inhibitors have been developed. In this review, we summarize the structure and action modes of EZH2, focusing on up-to-date findings regarding the role of EZH2 in cancer initiation, progression, metastasis, metabolism, drug resistance, and immunity regulation. Furtherly, we highlight the advance of targeting EZH2 therapies in experiments and clinical studies.
Collapse
|
Review |
5 |
577 |
17
|
Delbridge ARD, Grabow S, Strasser A, Vaux DL. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat Rev Cancer 2016; 16:99-109. [PMID: 26822577 DOI: 10.1038/nrc.2015.17] [Citation(s) in RCA: 570] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The 'hallmarks of cancer' are generally accepted as a set of genetic and epigenetic alterations that a normal cell must accrue to transform into a fully malignant cancer. It follows that therapies designed to counter these alterations might be effective as anti-cancer strategies. Over the past 30 years, research on the BCL-2-regulated apoptotic pathway has led to the development of small-molecule compounds, known as 'BH3-mimetics', that bind to pro-survival BCL-2 proteins to directly activate apoptosis of malignant cells. This Timeline article focuses on the discovery and study of BCL-2, the wider BCL-2 protein family and, specifically, its roles in cancer development and therapy.
Collapse
|
Review |
9 |
570 |
18
|
Blair RM, Fang H, Branham WS, Hass BS, Dial SL, Moland CL, Tong W, Shi L, Perkins R, Sheehan DM. The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicol Sci 2000; 54:138-53. [PMID: 10746941 DOI: 10.1093/toxsci/54.1.138] [Citation(s) in RCA: 565] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have utilized a validated (standardized) estrogen receptor (ER) competitive-binding assay to determine the ER affinity for a large, structurally diverse group of chemicals. Uteri from ovariectomized Sprague-Dawley rats were the ER source for the competitive-binding assay. Initially, test chemicals were screened at high concentrations to determine whether a chemical competed with [3H]-estradiol for the ER. Test chemicals that exhibited affinity for the ER in the first tier were subsequently assayed using a wide range of concentrations to characterize the binding curve and to determine each chemical's IC50 and relative binding affinity (RBA) values. Overall, we assayed 188 chemicals, covering a 1 x 10(6)-fold range of RBAs from several different chemical or use categories, including steroidal estrogens, synthetic estrogens, antiestrogens, other miscellaneous steroids, alkylphenols, diphenyl derivatives, organochlorines, pesticides, alkylhydroxybenzoate preservatives (parabens), phthalates, benzophenone compounds, and a number of other miscellaneous chemicals. Of the 188 chemicals tested, 100 bound to the ER while 88 were non-binders. Included in the 100 chemicals that bound to the ER were 4-benzyloxyphenol, 2,4-dihydroxybenzophenone, and 2,2'-methylenebis(4-chlorophenol), compounds that have not been shown previously to bind the ER. It was also evident that certain structural features, such as an overall ring structure, were important for ER binding. The current study provides the most structurally diverse ER RBA data set with the widest range of RBA values published to date.
Collapse
|
|
25 |
565 |
19
|
Hohmann AG, Suplita RL, Bolton NM, Neely MH, Fegley D, Mangieri R, Krey JF, Walker JM, Holmes PV, Crystal JD, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D. An endocannabinoid mechanism for stress-induced analgesia. Nature 2005; 435:1108-12. [PMID: 15973410 DOI: 10.1038/nature03658] [Citation(s) in RCA: 564] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 04/18/2005] [Indexed: 11/09/2022]
Abstract
Acute stress suppresses pain by activating brain pathways that engage opioid or non-opioid mechanisms. Here we show that an opioid-independent form of this phenomenon, termed stress-induced analgesia, is mediated by the release of endogenous marijuana-like (cannabinoid) compounds in the brain. Blockade of cannabinoid CB(1) receptors in the periaqueductal grey matter of the midbrain prevents non-opioid stress-induced analgesia. In this region, stress elicits the rapid formation of two endogenous cannabinoids, the lipids 2-arachidonoylglycerol (2-AG) and anandamide. A newly developed inhibitor of the 2-AG-deactivating enzyme, monoacylglycerol lipase, selectively increases 2-AG concentrations and, when injected into the periaqueductal grey matter, enhances stress-induced analgesia in a CB1-dependent manner. Inhibitors of the anandamide-deactivating enzyme fatty-acid amide hydrolase, which selectively elevate anandamide concentrations, exert similar effects. Our results indicate that the coordinated release of 2-AG and anandamide in the periaqueductal grey matter might mediate opioid-independent stress-induced analgesia. These studies also identify monoacylglycerol lipase as a previously unrecognized therapeutic target.
Collapse
|
|
20 |
564 |
20
|
Schupp M, Janke J, Clasen R, Unger T, Kintscher U. Angiotensin Type 1 Receptor Blockers Induce Peroxisome Proliferator–Activated Receptor-γ Activity. Circulation 2004; 109:2054-7. [PMID: 15117841 DOI: 10.1161/01.cir.0000127955.36250.65] [Citation(s) in RCA: 555] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background—
Angiotensin type 1 receptor (AT
1
R) blockers (ARB) have been shown to reduce the incidence of type 2 diabetes mellitus by an unknown molecular mechanism. The peroxisome proliferator–activated receptor-γ (PPARγ) is the central regulator of insulin and glucose metabolism improving insulin sensitivity. We investigated the regulation of PPARγ function by ARBs.
Methods and Results—
The ARBs irbesartan and telmisartan (10 μmol/L) potently enhanced PPARγ-dependent 3T3-L1 adipocyte differentiation associated with a significant increase in mRNA expression of the adipogenic marker gene adipose protein 2 (aP2), as measured by quantitative real-time polymerase chain reaction (irbesartan: 3.3±0.1-fold induction; telmisartan: 3.1±0.3-fold induction; both
P
<0.01). Telmisartan showed a more pronounced induction of aP2 expression in lower, pharmacologically relevant concentrations compared with the other ARBs. The ARB losartan enhanced aP2 expression only at high concentrations (losartan 100 μmol/L: 3.6±0.3-fold induction;
P
<0.01), whereas eprosartan up to 100 μmol/L had no significant effects. In transcription reporter assays, irbesartan and telmisartan (10 μmol/L) markedly induced transcriptional activity of PPARγ by 3.4±0.9-fold and 2.6±0.6-fold (
P
<0.05), respectively, compared with 5.2±1.1-fold stimulation by the PPARγ ligand pioglitazone (10 μmol/L). Irbesartan and telmisartan also induced PPARγ activity in an AT
1
R-deficient cell model (PC12W), demonstrating that these ARBs stimulate PPARγ activity independent of their AT
1
R blocking actions.
Conclusions—
The present study demonstrates that a specific subset of ARBs induces PPARγ activity, thereby promoting PPARγ-dependent differentiation in adipocytes. The activation of PPARγ demonstrates new pleiotropic actions of certain ARBs, providing a potential mechanism for their insulin-sensitizing/antidiabetic effects.
Collapse
|
|
21 |
555 |
21
|
Ribeiro MO, Antunes E, de Nucci G, Lovisolo SM, Zatz R. Chronic inhibition of nitric oxide synthesis. A new model of arterial hypertension. Hypertension 1992; 20:298-303. [PMID: 1516948 DOI: 10.1161/01.hyp.20.3.298] [Citation(s) in RCA: 549] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent studies have indicated that acute inhibition of nitric oxide biosynthesis in the rat promotes arterial hypertension and renal vasoconstriction. We evaluated the renal and systemic effects of 4-6 weeks of nitric oxide blockade in Munich-Wistar rats receiving the nitric oxide inhibitor nitro-L-arginine orally. Age-matched untreated rats were used as controls. In an additional seven rats, nitric oxide blockade was carried out in conjunction with oral administration of the novel angiotensin II antagonist losartan potassium. Tail-cuff pressure rose progressively in nitro-L-arginine-treated rats, reaching 164 +/- 6 mm Hg at 4-6 weeks, compared with 108 +/- 3 mm Hg in controls. In rats concomitantly receiving losartan, tail-cuff pressure reached 125 +/- 6 mm Hg, still elevated compared with rats receiving losartan alone (98 +/- 3 mm Hg). Nitro-L-arginine-treated rats presented marked renal vasoconstriction and hypoperfusion, as well as a 30% fall in glomerular filtration rate and a 39% increase in filtration fraction. Treatment with Losartan normalized glomerular filtration rate, but not filtration fraction or renal vascular resistance. Plasma renin activity was elevated after nitro-L-arginine treatment. Renal histological examination revealed widespread arteriolar narrowing, focal arteriolar obliteration, and segmental fibrinoid necrosis in the glomeruli. In a separate group of rats, nitro-L-arginine administered for 1 week induced hypertension that was partially reversed by acute L-arginine, but not D-arginine or L-glycine, infusions. We conclude that chronic nitric oxide blockade may constitute a new model of severe arterial hypertension.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
33 |
549 |
22
|
Inuzuka H, Shaik S, Onoyama I, Gao D, Tseng A, Maser RS, Zhai B, Wan L, Gutierrez A, Lau AW, Xiao Y, Christie AL, Aster J, Settleman J, Gygi SP, Kung AL, Look T, Nakayama KI, DePinho RA, Wei W. SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature 2011; 471:104-9. [PMID: 21368833 PMCID: PMC3076007 DOI: 10.1038/nature09732] [Citation(s) in RCA: 546] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 11/29/2010] [Indexed: 12/21/2022]
Abstract
The effective use of targeted therapy is highly dependent on the identification of responder patient populations. Loss of FBW7, which encodes a tumour-suppressor protein, is frequently found in various types of human cancer, including breast cancer, colon cancer and T-cell acute lymphoblastic leukaemia (T-ALL). In line with these genomic data, engineered deletion of Fbw7 in mouse T cells results in T-ALL, validating FBW7 as a T-ALL tumour suppressor. Determining the precise molecular mechanisms by which FBW7 exerts antitumour activity is an area of intensive investigation. These mechanisms are thought to relate in part to FBW7-mediated destruction of key proteins relevant to cancer, including Jun, Myc, cyclin E and notch 1 (ref. 9), all of which have oncoprotein activity and are overexpressed in various human cancers, including leukaemia. In addition to accelerating cell growth, overexpression of Jun, Myc or notch 1 can also induce programmed cell death. Thus, considerable uncertainty surrounds how FBW7-deficient cells evade cell death in the setting of upregulated Jun, Myc and/or notch 1. Here we show that the E3 ubiquitin ligase SCF(FBW7) (a SKP1-cullin-1-F-box complex that contains FBW7 as the F-box protein) governs cellular apoptosis by targeting MCL1, a pro-survival BCL2 family member, for ubiquitylation and destruction in a manner that depends on phosphorylation by glycogen synthase kinase 3. Human T-ALL cell lines showed a close relationship between FBW7 loss and MCL1 overexpression. Correspondingly, T-ALL cell lines with defective FBW7 are particularly sensitive to the multi-kinase inhibitor sorafenib but resistant to the BCL2 antagonist ABT-737. On the genetic level, FBW7 reconstitution or MCL1 depletion restores sensitivity to ABT-737, establishing MCL1 as a therapeutically relevant bypass survival mechanism that enables FBW7-deficient cells to evade apoptosis. Therefore, our work provides insight into the molecular mechanism of direct tumour suppression by FBW7 and has implications for the targeted treatment of patients with FBW7-deficient T-ALL.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
546 |
23
|
Su R, Dong L, Li Y, Gao M, Han L, Wunderlich M, Deng X, Li H, Huang Y, Gao L, Li C, Zhao Z, Robinson S, Tan B, Qing Y, Qin X, Prince E, Xie J, Qin H, Li W, Shen C, Sun J, Kulkarni P, Weng H, Huang H, Chen Z, Zhang B, Wu X, Olsen MJ, Müschen M, Marcucci G, Salgia R, Li L, Fathi AT, Li Z, Mulloy JC, Wei M, Horne D, Chen J. Targeting FTO Suppresses Cancer Stem Cell Maintenance and Immune Evasion. Cancer Cell 2020; 38:79-96.e11. [PMID: 32531268 PMCID: PMC7363590 DOI: 10.1016/j.ccell.2020.04.017] [Citation(s) in RCA: 516] [Impact Index Per Article: 103.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/19/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022]
Abstract
Fat mass and obesity-associated protein (FTO), an RNA N6-methyladenosine (m6A) demethylase, plays oncogenic roles in various cancers, presenting an opportunity for the development of effective targeted therapeutics. Here, we report two potent small-molecule FTO inhibitors that exhibit strong anti-tumor effects in multiple types of cancers. We show that genetic depletion and pharmacological inhibition of FTO dramatically attenuate leukemia stem/initiating cell self-renewal and reprogram immune response by suppressing expression of immune checkpoint genes, especially LILRB4. FTO inhibition sensitizes leukemia cells to T cell cytotoxicity and overcomes hypomethylating agent-induced immune evasion. Our study demonstrates that FTO plays critical roles in cancer stem cell self-renewal and immune evasion and highlights the broad potential of targeting FTO for cancer therapy.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
516 |
24
|
Münzel T, Sayegh H, Freeman BA, Tarpey MM, Harrison DG. Evidence for enhanced vascular superoxide anion production in nitrate tolerance. A novel mechanism underlying tolerance and cross-tolerance. J Clin Invest 1995; 95:187-94. [PMID: 7814613 PMCID: PMC295403 DOI: 10.1172/jci117637] [Citation(s) in RCA: 504] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We sought to examine mechanisms underlying nitroglycerin (NTG) tolerance and "cross-tolerance" to other nitrovasodilators. Rabbits were treated for 3 d with NTG patches (0.4 mg/h) and their aortic segments studied in organ chambers. Relaxations were examined after preconstriction with phenylephrine. In NTG tolerant rabbit aorta, relaxations to cGMP-dependent vasodilators such as NTG (45 +/- 6%), SIN-1 (69 +/- 7%), and acetylcholine (ACh, 64 +/- 5%) were attenuated vs. controls, (90 +/- 2, 94 +/- 3, and 89 +/- 2% respectively, P < 0.05 for all), while responses to the cAMP-dependent vasodilator forskolin remained unchanged. In tolerant aorta, endothelial removal markedly enhanced relaxations to NTG and SIN-1 (82 +/- 4 and 95 +/- 3%, respectively). Other studies were performed to determine how the endothelium enhances tolerance. Vascular steady state .-O2 levels (assessed by lucigenin chemiluminescence) was increased twofold in tolerant vs. control vessels with endothelium (0.31 +/- 0.01 vs. 0.61 +/- 0.01 nmol/mg per minute). This difference was less in vessels after denudation of the endothelium. Diphenylene iodonium, an inhibitor of flavoprotein containing oxidases, and Tiron a direct .-O2 scavenger normalized .-O2 levels. In contrast, oxypurinol (1 mM) an inhibitor of xanthine oxidase, rotenone (50 microM) an inhibitor of mitochondrial electron transport and NG-nitro-L-arginine (100 microM) an inhibitor of nitric oxide synthase did not affect the chemiluminescence signals from NTG-tolerant aortas. Pretreatment of tolerant aorta with liposome-entrapped, pH sensitive superoxide dismutase (600 U/ml) significantly enhanced maximal relaxation in response to NTG, SIN-1, and ACh, and effectively reduced chemiluminescence signals. These studies show that continuous NTG treatment is associated with increased vascular .-O2-production and consequent inhibition of NO. mediated vasorelaxation produced by both exogenous and endogenous nitrovasodilators.
Collapse
|
research-article |
30 |
504 |
25
|
Bauernfeind F, Bartok E, Rieger A, Franchi L, Núñez G, Hornung V. Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:613-7. [PMID: 21677136 PMCID: PMC3131480 DOI: 10.4049/jimmunol.1100613] [Citation(s) in RCA: 504] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A common denominator among the multiple damage-inducing agents that ultimately lead to activation of NLRP3 has not yet been identified. Recently, production of reactive oxygen species (ROS) has been suggested to act as a common event upstream of the NLRP3 inflammasome machinery. Because de novo translation of NLRP3 is an essential step in the activation of NLRP3, we investigated the role of substances that inhibit either ROS production or its oxidative activity. Although we observe that NLRP3 inflammasome activation is unique among other known inflammasomes in its sensitivity to ROS inhibition, we have found that this phenomenon is attributable to the fact that NLRP3 strictly requires priming by a proinflammatory signal, a step that is blocked by ROS inhibitors. Although these data do not exclude a general role for ROS production in the process of NLRP3-triggered inflammation, they would put ROS upstream of NLRP3 induction, but not activation.
Collapse
|
Comparative Study |
14 |
504 |