1
|
Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998; 92:829-39. [PMID: 9529258 DOI: 10.1016/s0092-8674(00)81410-5] [Citation(s) in RCA: 2969] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adaptive thermogenesis is an important component of energy homeostasis and a metabolic defense against obesity. We have cloned a novel transcriptional coactivator of nuclear receptors, termed PGC-1, from a brown fat cDNA library. PGC-1 mRNA expression is dramatically elevated upon cold exposure of mice in both brown fat and skeletal muscle, key thermogenic tissues. PGC-1 greatly increases the transcriptional activity of PPARgamma and the thyroid hormone receptor on the uncoupling protein (UCP-1) promoter. Ectopic expression of PGC-1 in white adipose cells activates expression of UCP-1 and key mitochondrial enzymes of the respiratory chain, and increases the cellular content of mitochondrial DNA. These results indicate that PGC-1 plays a key role in linking nuclear receptors to the transcriptional program of adaptive thermogenesis.
Collapse
|
|
27 |
2969 |
2
|
Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 1997; 77:731-58. [PMID: 9234964 DOI: 10.1152/physrev.1997.77.3.731] [Citation(s) in RCA: 1370] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The molecular origin of standard metabolic rate and thermogenesis in mammals is examined. It is pointed out that there are important differences and distinctions between the cellular reactions that 1) couple to oxygen consumption, 2) uncouple metabolism, 3) hydrolyze ATP, 4) control metabolic rate, 5) regulate metabolic rate, 6) produce heat, and 7) dissipate free energy. The quantitative contribution of different cellular reactions to these processes is assessed in mammals. We estimate that approximately 90% of mammalian oxygen consumption in the standard state is mitochondrial, of which approximately 20% is uncoupled by the mitochondrial proton leak and 80% is coupled to ATP synthesis. The consequences of the significant contribution of proton leak to standard metabolic rate for tissue P-to-O ratio, heat production, and free energy dissipation by oxidative phosphorylation and the estimated contribution of ATP-consuming processes to tissue oxygen consumption rate are discussed. Of the 80% of oxygen consumption coupled to ATP synthesis, approximately 25-30% is used by protein synthesis, 19-28% by the Na(+)-K(+)-ATPase, 4-8% by the Ca2(+)-ATPase, 2-8% by the actinomyosin ATPase, 7-10% by gluconeogenesis, and 3% by ureagenesis, with mRNA synthesis and substrate cycling also making significant contributions. The main cellular reactions that uncouple standard energy metabolism are the Na+, K+, H+, and Ca2+ channels and leaks of cell membranes and protein breakdown. Cellular metabolic rate is controlled by a number of processes including metabolic demand and substrate supply. The differences in standard metabolic rate between animals of different body mass and phylogeny appear to be due to proportionate changes in the whole of energy metabolism. Heat is produced by some reactions and taken up by others but is mainly produced by the reactions of mitochondrial respiration, oxidative phosphorylation, and proton leak on the inner mitochondrial membrane. Free energy is dissipated by all cellular reactions, but the major contributions are by the ATP-utilizing reactions and the uncoupling reactions. The functions and evolutionary significance of standard metabolic rate are discussed.
Collapse
|
Review |
28 |
1370 |
3
|
Enerbäck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 1997; 387:90-4. [PMID: 9139827 DOI: 10.1038/387090a0] [Citation(s) in RCA: 1046] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mitochondrial uncoupling protein (UCP) in the mitochondrial inner membrane of mammalian brown adipose tissue generates heat by uncoupling oxidative phosphorylation. This process protects against cold and regulates energy balance. Manipulation of thermogenesis could be an effective strategy against obesity. Here we determine the role of UCP in the regulation of body mass by targeted inactivation of the gene encoding it. We find that UCP-deficient mice consume less oxygen after treatment with a beta3-adrenergic-receptor agonist and that they are sensitive to cold, indicating that their thermoregulation is defective. However, this deficiency caused neither hyperphagia nor obesity in mice fed on either a standard or a high-fat diet. We propose that the loss of UCP may be compensated by UCP2, a newly discovered homologue of UCP; this gene is ubiquitously expressed and is induced in the brown fat of UCP-deficient mice.
Collapse
|
|
28 |
1046 |
4
|
Kregel KC. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol (1985) 2002; 92:2177-86. [PMID: 11960972 DOI: 10.1152/japplphysiol.01267.2001] [Citation(s) in RCA: 922] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cells from virtually all organisms respond to a variety of stresses by the rapid synthesis of a highly conserved set of polypeptides termed heat shock proteins (HSPs). The precise functions of HSPs are unknown, but there is considerable evidence that these stress proteins are essential for survival at both normal and elevated temperatures. HSPs also appear to play a critical role in the development of thermotolerance and protection from cellular damage associated with stresses such as ischemia, cytokines, and energy depletion. These observations suggest that HSPs play an important role in both normal cellular homeostasis and the stress response. This mini-review examines recent evidence and hypotheses suggesting that the HSPs may be important modifying factors in cellular responses to a variety of physiologically relevant conditions such as hyperthermia, exercise, oxidative stress, metabolic challenge, and aging.
Collapse
|
Review |
23 |
922 |
5
|
Ouellet V, Labbé SM, Blondin DP, Phoenix S, Guérin B, Haman F, Turcotte EE, Richard D, Carpentier AC. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest 2012; 122:545-52. [PMID: 22269323 PMCID: PMC3266793 DOI: 10.1172/jci60433] [Citation(s) in RCA: 771] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/16/2011] [Indexed: 11/17/2022] Open
Abstract
Brown adipose tissue (BAT) is vital for proper thermogenesis during cold exposure in rodents, but until recently its presence in adult humans and its contribution to human metabolism were thought to be minimal or insignificant. Recent studies using PET with 18F-fluorodeoxyglucose (18FDG) have shown the presence of BAT in adult humans. However, whether BAT contributes to cold-induced nonshivering thermogenesis in humans has not been proven. Using PET with 11C-acetate, 18FDG, and 18F-fluoro-thiaheptadecanoic acid (18FTHA), a fatty acid tracer, we have quantified BAT oxidative metabolism and glucose and nonesterified fatty acid (NEFA) turnover in 6 healthy men under controlled cold exposure conditions. All subjects displayed substantial NEFA and glucose uptake upon cold exposure. Furthermore, we demonstrated cold-induced activation of oxidative metabolism in BAT, but not in adjoining skeletal muscles and subcutaneous adipose tissue. This activation was associated with an increase in total energy expenditure. We found an inverse relationship between BAT activity and shivering. We also observed an increase in BAT radio density upon cold exposure, indicating reduced BAT triglyceride content. In sum, our study provides evidence that BAT acts as a nonshivering thermogenesis effector in humans.
Collapse
|
research-article |
13 |
771 |
6
|
Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, Seydoux J, Muzzin P, Giacobino JP. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett 1997; 408:39-42. [PMID: 9180264 DOI: 10.1016/s0014-5793(97)00384-0] [Citation(s) in RCA: 765] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Brown adipose tissue (BAT) and skeletal muscle are important sites of nonshivering thermogenesis. The uncoupling protein-1 (UCP1) is the main effector of nonshivering thermogenesis in BAT and the recently described ubiquitous UCP2 [1] has been implicated in energy balance. In an attempt to better understand the biochemical events underlying nonshivering thermogenesis in muscle, we screened a human skeletal muscle cDNA library and isolated three clones: UCP2, UCP3L and UCP3S. The novel UCP3 was 57% and 73% identical to human UCP1 and UCP2, respectively, highly skeletal muscle-specific and its expression was unaffected by cold acclimation. This new member of the UCP family is a candidate protein for the modulation of the respiratory control in skeletal muscle.
Collapse
|
|
28 |
765 |
7
|
Pörtner HO. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol A Mol Integr Physiol 2002; 132:739-61. [PMID: 12095860 DOI: 10.1016/s1095-6433(02)00045-4] [Citation(s) in RCA: 746] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The physiological mechanisms limiting and adjusting cold and heat tolerance have regained interest in the light of global warming and associated shifts in the geographical distribution of ectothermic animals. Recent comparative studies, largely carried out on marine ectotherms, indicate that the processes and limits of thermal tolerance are linked with the adjustment of aerobic scope and capacity of the whole animal as a crucial step in thermal adaptation on top of parallel adjustments at the molecular or membrane level. In accordance with Shelford's law of tolerance decreasing whole animal aerobic scope characterises the onset of thermal limitation at low and high pejus thresholds (pejus=getting worse). The drop in aerobic scope of an animal indicated by falling oxygen levels in the body fluids and or the progressively limited capacity of circulatory and ventilatory mechanisms. At high temperatures, excessive oxygen demand causes insufficient oxygen levels in the body fluids, whereas at low temperatures the aerobic capacity of mitochondria may become limiting for ventilation and circulation. Further cooling or warming beyond these limits leads to low or high critical threshold temperatures (T(c)) where aerobic scope disappears and transition to an anaerobic mode of mitochondrial metabolism and progressive insufficiency of cellular energy levels occurs. The adjustments of mitochondrial densities and their functional properties appear as a critical process in defining and shifting thermal tolerance windows. The finding of an oxygen limited thermal tolerance owing to loss of aerobic scope is in line with Taylor's and Weibel's concept of symmorphosis, which implies that excess capacity of any component of the oxygen delivery system is avoided. The present study suggests that the capacity of oxygen delivery is set to a level just sufficient to meet maximum oxygen demand between the average highs and lows of environmental temperatures. At more extreme temperatures only time limited passive survival is supported by anaerobic metabolism or the protection of molecular functions by heat shock proteins and antioxidative defence. As a corollary, the first line of thermal sensitivity is due to capacity limitations at a high level of organisational complexity, i.e. the integrated function of the oxygen delivery system, before individual, molecular or membrane functions become disturbed. These interpretations are in line with the more general consideration that, as a result of the high level of complexity of metazoan organisms compared with simple eukaryotes and then prokaryotes, thermal tolerance is reduced in metazoans. A similar sequence of sensitivities prevails within the metazoan organism, with the highest sensitivity at the organismic level and wider tolerance windows at lower levels of complexity. However, the situation is different in that loss in aerobic scope and progressive hypoxia at the organismic level define the onset of thermal limitation which then transfers to lower hierarchical levels and causes cellular and molecular disturbances. Oxygen limitation contributes to oxidative stress and, finally, denaturation or malfunction of molecular repair, e.g. during suspension of protein synthesis. The sequence of thermal tolerance limits turns into a hierarchy, ranging from systemic to cellular to molecular levels.
Collapse
|
Review |
23 |
746 |
8
|
Patapoutian A, Peier AM, Story GM, Viswanath V. ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat Rev Neurosci 2003; 4:529-39. [PMID: 12838328 DOI: 10.1038/nrn1141] [Citation(s) in RCA: 580] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
Review |
22 |
580 |
9
|
Abstract
Dyslipidemia and insulin resistance are commonly associated with catabolic or lipodystrophic conditions (such as cancer and sepsis) and with pathological states of nutritional overload (such as obesity-related type 2 diabetes). Two common features of these metabolic disorders are adipose tissue dysfunction and elevated levels of tumour necrosis factor-alpha (TNF-alpha). Herein, we review the multiple actions of this pro-inflammatory adipokine on adipose tissue biology. These include inhibition of carbohydrate metabolism, lipogenesis, adipogenesis and thermogenesis and stimulation of lipolysis. TNF-alpha can also impact the endocrine functions of adipose tissue. Taken together, TNF-alpha contributes to metabolic dysregulation by impairing both adipose tissue function and its ability to store excess fuel. The molecular mechanisms that underlie these actions are discussed.
Collapse
|
Review |
17 |
571 |
10
|
Abstract
The thermoregulatory control of human skin blood flow is vital to the maintenance of normal body temperatures during challenges to thermal homeostasis. Sympathetic neural control of skin blood flow includes the noradrenergic vasoconstrictor system and a sympathetic active vasodilator system, the latter of which is responsible for 80% to 90% of the substantial cutaneous vasodilation that occurs with whole body heat stress. With body heating, the magnitude of skin vasodilation is striking: skin blood flow can reach 6 to 8 L/min during hyperthermia. Cutaneous sympathetic vasoconstrictor and vasodilator systems also participate in baroreflex control of blood pressure; this is particularly important during heat stress, when such a large percentage of cardiac output is directed to the skin. Local thermal control of cutaneous blood vessels also contributes importantly--local warming of the skin can cause maximal vasodilation in healthy humans and includes roles for both local sensory nerves and nitric oxide. Local cooling of the skin can decrease skin blood flow to minimal levels. During menopause, changes in reproductive hormone levels substantially alter thermoregulatory control of skin blood flow. This altered control might contribute to the occurrence of hot flashes. In type 2 diabetes mellitus, the ability of skin blood vessels to dilate is impaired. This impaired vasodilation likely contributes to the increased risk of heat illness in this patient population during exposure to elevated ambient temperatures. Raynaud phenomenon and erythromelalgia represent cutaneous microvascular disorders whose pathophysiology appears to relate to disorders of local and/or reflex thermoregulatory control of the skin circulation.
Collapse
|
Review |
22 |
547 |
11
|
Gong DW, He Y, Karas M, Reitman M. Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin. J Biol Chem 1997; 272:24129-32. [PMID: 9305858 DOI: 10.1074/jbc.272.39.24129] [Citation(s) in RCA: 538] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial uncoupling proteins (UCPs) are transporters that are important for thermogenesis. The net result of their activity is the exothermic movement of protons through the inner mitochondrial membrane, uncoupled from ATP synthesis. We have cloned a third member of the UCP family, UCP3. UCP3 is expressed at high levels in muscle and rodent brown adipose tissue. Overexpression in yeast reduced the mitochondrial membrane potential, showing that UCP3 is a functional uncoupling protein. UCP3 RNA levels are regulated by hormonal and dietary manipulations. In contrast, levels of UCP2, a widely expressed UCP family member, showed little hormonal regulation. In particular, muscle UCP3 levels were decreased 3-fold in hypothyroid rats and increased 6-fold in hyperthyroid rats. Thus UCP3 is a strong candidate to explain the effects of thyroid hormone on thermogenesis. White adipose UCP3 levels were greatly increased by treatment with the beta3-adrenergic agonist, CL214613, suggesting another pathway for increasing thermogenesis. UCP3 mRNA levels were also regulated by dexamethasone, leptin, and starvation, albeit differently in muscle and brown adipose tissue. Starvation caused increased muscle and decreased BAT UCP3, suggesting that muscle assumes a larger role in thermoregulation during starvation. The UCP3 gene is located close to that encoding UCP2, in a chromosomal region implicated in previous linkage studies as contributing to obesity.
Collapse
|
|
28 |
538 |
12
|
Cajochen C, Münch M, Kobialka S, Kräuchi K, Steiner R, Oelhafen P, Orgül S, Wirz-Justice A. High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. J Clin Endocrinol Metab 2005; 90:1311-6. [PMID: 15585546 DOI: 10.1210/jc.2004-0957] [Citation(s) in RCA: 507] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Light can elicit acute physiological and alerting responses in humans, the magnitude of which depends on the timing, intensity, and duration of light exposure. Here, we report that the alerting response of light as well as its effects on thermoregulation and heart rate are also wavelength dependent. Exposure to 2 h of monochromatic light at 460 nm in the late evening induced a significantly greater melatonin suppression than occurred with 550-nm monochromatic light, concomitant with a significantly greater alerting response and increased core body temperature and heart rate ( approximately 2.8 x 10(13) photons/cm(2)/sec for each light treatment). Light diminished the distal-proximal skin temperature gradient, a measure of the degree of vasoconstriction, independent of wavelength. Nonclassical ocular photoreceptors with peak sensitivity around 460 nm have been found to regulate circadian rhythm function as measured by melatonin suppression and phase shifting. Our findings-that the sensitivity of the human alerting response to light and its thermoregulatory sequelae are blue-shifted relative to the three-cone visual photopic system-indicate an additional role for these novel photoreceptors in modifying human alertness, thermophysiology, and heart rate.
Collapse
|
|
20 |
507 |
13
|
Huey RB, Hertz PE, Sinervo B. Behavioral drive versus behavioral inertia in evolution: a null model approach. Am Nat 2003; 161:357-66. [PMID: 12699218 DOI: 10.1086/346135] [Citation(s) in RCA: 506] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Some biologists embrace the classical view that changes in behavior inevitably initiate or drive evolutionary changes in other traits, yet others note that behavior sometimes inhibits evolutionary changes. Here we develop a null model that quantifies the impact of regulatory behaviors (specifically, thermoregulatory behaviors) on body temperature and on performance of ectotherms. We apply the model to data on a lizard (Anolis cristatellus) and show that thermoregulatory behaviors likely inhibit selection for evolutionary shifts in thermal physiology with altitude. Because behavioral adjustments are commonly used by ectotherms to regulate physiological performance, regulatory behaviors should generally constrain rather than drive evolution, a phenomenon we call the "Bogert effect." We briefly review a few other examples that contradict the classical view of behavior as the inevitable driving force in evolution. Overall, our analysis and brief review challenge the classical view that behavior is invariably the driving force in evolution, and instead our work supports the alternative view that behavior has diverse--and sometimes conflicting--effects on the directions and rates at which other traits evolve.
Collapse
|
|
22 |
506 |
14
|
Abstract
This paper reviews the literature on the circadian rhythm of body temperature (CRT). The review starts with a brief discussion of methodological procedures followed by the description of known patterns of oscillation in body temperature, including ultradian and infradian rhythms. Special sections are devoted to issues of species differences, development and aging, and the relationships between the CRT and the circadian rhythm of locomotor activity, between the CRT and the thermoregulatory system, and between the CRT and states of disease. A section on the nervous control of the CRT is followed by summary and conclusions.
Collapse
|
Review |
33 |
464 |
15
|
Nielsen B, Hales JR, Strange S, Christensen NJ, Warberg J, Saltin B. Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. J Physiol 1993; 460:467-85. [PMID: 8487204 PMCID: PMC1175224 DOI: 10.1113/jphysiol.1993.sp019482] [Citation(s) in RCA: 456] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. Heat acclimation was induced in eight subjects by asking them to exercise until exhaustion at 60% of maximum oxygen consumption rate (VO2) for 9-12 consecutive days at an ambient temperature of 40 degrees C, with 10% relative humidity (RH). Five control subjects exercised similarly in a cool environment, 20 degrees C, for 90 min for 9-12 days; of these, three were exposed to exercise at 40 degrees C on the first and last day. 2. Acclimation had occurred as seen by the increased average endurance from 48 min to 80 min, the lower rate of rise in the heart rate (HR) and core temperature and the increased sweating. 3. Cardiac output increased significantly from the first to the final heat exposure from 19.6 to 21.4 l min-1; this was possibly due to an increased plasma volume and stroke volume. 4. The mechanism for the increased plasma volume may be an isosmotic volume expansion caused by influx of protein to the vascular compartment, and a sodium retention induced by a significant increase in aldosterone. 5. The exhaustion coincided with, or was elicited when, core temperature reached 39.7 +/- 0.15 degrees C; with progressing acclimation processes it took progressively longer to reach this level. However, at this point we found no reduction in cardiac output, muscle (leg) blood flow, no changes in substrate utilization or availability, and no recognized accumulated 'fatigue' substances. 6. It is concluded that the high core temperature per se, and not circulatory failure, is the critical factor for the exhaustion during exercise in heat stress.
Collapse
|
research-article |
32 |
456 |
16
|
Abstract
The circadian rhythm of pineal melatonin is the best marker of internal time under low ambient light levels. The endogenous melatonin rhythm exhibits a close association with the endogenous circadian component of the sleep propensity rhythm. This has led to the idea that melatonin is an internal sleep "facilitator" in humans, and therefore useful in the treatment of insomnia and the readjustment of circadian rhythms. There is evidence that administration of melatonin is able: (i) to induce sleep when the homeostatic drive to sleep is insufficient; (ii) to inhibit the drive for wakefulness emanating from the circadian pacemaker; and (iii) induce phase shifts in the circadian clock such that the circadian phase of increased sleep propensity occurs at a new, desired time. Therefore, exogenous melatonin can act as soporific agent, a chronohypnotic, and/or a chronobiotic. We describe the role of melatonin in the regulation of sleep, and the use of exogenous melatonin to treat sleep or circadian rhythm disorders.
Collapse
|
Review |
22 |
452 |
17
|
Abstract
Central neural circuits orchestrate a homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the functional organization of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for heat loss, the brown adipose tissue, skeletal muscle and heart for thermogenesis and species-dependent mechanisms (sweating, panting and saliva spreading) for evaporative heat loss. These effectors are regulated by parallel but distinct, effector-specific neural pathways that share a common peripheral thermal sensory input. The thermal afferent circuits include cutaneous thermal receptors, spinal dorsal horn neurons and lateral parabrachial nucleus neurons projecting to the preoptic area to influence warm-sensitive, inhibitory output neurons which control thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus neurons controlling cutaneous vasoconstriction.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
442 |
18
|
Abstract
Most clinically available thermometers accurately report the temperature of whatever tissue is being measured. The difficulty is that no reliably core-temperature-measuring sites are completely noninvasive and easy to use-especially in patients not undergoing general anesthesia. Nonetheless, temperature can be reliably measured in most patients. Body temperature should be measured in patients undergoing general anesthesia exceeding 30 min in duration and in patients undergoing major operations during neuraxial anesthesia. Core body temperature is normally tightly regulated. All general anesthetics produce a profound dose-dependent reduction in the core temperature, triggering cold defenses, including arteriovenous shunt vasoconstriction and shivering. Anesthetic-induced impairment of normal thermoregulatory control, with the resulting core-to-peripheral redistribution of body heat, is the primary cause of hypothermia in most patients. Neuraxial anesthesia also impairs thermoregulatory control, although to a lesser extent than does general anesthesia. Prolonged epidural analgesia is associated with hyperthermia whose cause remains unknown.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
441 |
19
|
Montain SJ, Coyle EF. Influence of graded dehydration on hyperthermia and cardiovascular drift during exercise. J Appl Physiol (1985) 1992; 73:1340-50. [PMID: 1447078 DOI: 10.1152/jappl.1992.73.4.1340] [Citation(s) in RCA: 436] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This investigation determined the effect of different rates of dehydration, induced by ingesting different volumes of fluid during prolonged exercise, on hyperthermia, heart rate (HR), and stroke volume (SV). On four different occasions, eight endurance-trained cyclists [age 23 +/- 3 (SD) yr, body wt 71.9 +/- 11.6 kg, maximal O2 consumption 4.72 +/- 0.33 l/min] cycled at a power output equal to 62-67% maximal O2 consumption for 2 h in a warm environment (33 degrees C dry bulb, 50% relative humidity, wind speed 2.5 m/s). During exercise, they randomly received no fluid (NF) or ingested a small (SF), moderate (MF), or large (LF) volume of fluid that replaced 20 +/- 1, 48 +/- 1, and 81 +/- 2%, respectively, of the fluid lost in sweat during exercise. The protocol resulted in graded magnitudes of dehydration as body weight declined 4.2 +/- 0.1, 3.4 +/- 0.1, 2.3 +/- 0.1, and 1.1 +/- 0.1%, respectively, during NF, SF, MF, and LF. After 2 h of exercise, esophageal temperature (Tes), HR, and SV were significantly different among the four trials (P < 0.05), with the exception of NF and SF. The magnitude of dehydration accrued after 2 h of exercise in the four trials was linearly related with the increase in Tes (r = 0.98, P < 0.02), the increase in HR (r = 0.99, P < 0.01), and the decline in SV (r = 0.99, P < 0.01). LF attenuated hyperthermia, apparently because of higher skin blood flow, inasmuch as forearm blood flow was 20-22% higher than during SF and NF at 105 min (P < 0.05). There were no differences in sweat rate among the four trials. In each subject, the increase in Tes from 20 to 120 min of exercise was highly correlated to the increase in serum osmolality (r = 0.81-0.98, P < 0.02-0.19) and the increase in serum sodium concentration (r = 0.87-0.99, P < 0.01-0.13) from 5 to 120 min of exercise. In summary, the magnitude of increase in core temperature and HR and the decline in SV are graded in proportion to the amount of dehydration accrued during exercise.
Collapse
|
Clinical Trial |
33 |
436 |
20
|
Romanovsky AA. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am J Physiol Regul Integr Comp Physiol 2007; 292:R37-46. [PMID: 17008453 DOI: 10.1152/ajpregu.00668.2006] [Citation(s) in RCA: 435] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
While summarizing the current understanding of how body temperature (Tb) is regulated, this review discusses the recent progress in the following areas: central and peripheral thermosensitivity and temperature-activated transient receptor potential (TRP) channels; afferent neuronal pathways from peripheral thermosensors; and efferent thermoeffector pathways. It is proposed that activation of temperature-sensitive TRP channels is a mechanism of peripheral thermosensitivity. Special attention is paid to the functional architecture of the thermoregulatory system. The notion that deep Tb is regulated by a unified system with a single controller is rejected. It is proposed that Tb is regulated by independent thermoeffector loops, each having its own afferent and efferent branches. The activity of each thermoeffector is triggered by a unique combination of shell and core Tbs. Temperature-dependent phase transitions in thermosensory neurons cause sequential activation of all neurons of the corresponding thermoeffector loop and eventually a thermoeffector response. No computation of an integrated Tb or its comparison with an obvious or hidden set point of a unified system is necessary. Coordination between thermoeffectors is achieved through their common controlled variable, Tb. The described model incorporates Kobayashi’s views, but Kobayashi’s proposal to eliminate the term sensor is rejected. A case against the term set point is also made. Because this term is historically associated with a unified control system, it is more misleading than informative. The term balance point is proposed to designate the regulated level of Tb and to attract attention to the multiple feedback, feedforward, and open-loop components that contribute to thermal balance.
Collapse
|
|
18 |
435 |
21
|
Galloway SD, Maughan RJ. Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc 1997; 29:1240-9. [PMID: 9309637 DOI: 10.1097/00005768-199709000-00018] [Citation(s) in RCA: 422] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Eight healthy males performed four rides to exhaustion at approximately 70% of their VO2max obtained in a neutral environment. Subjects cycled at ambient temperatures (Ta) of 3.6 +/- 0.3 (SD), 10.5 +/- 0.5, 20.6 +/- 0.2, and 30.5 +/- 0.2 degrees C with a relative humidity of 70 +/- 2% and an air velocity of approximately 0.7 m.s-1. Weighted mean skin temperature (Tsk), rectal temperature (Tre), and heart rate (HR) were recorded at rest, during exercise and at exhaustion. Venous samples were drawn before and during exercise and at exhaustion for determination of hemoglobin, hematocrit, blood metabolites, and serum electrolytes and osmolality. Expired air was collected for calculation of VO2 and R which were used to estimate rates of fuel oxidation. Ratings of perceived exertion (RPE) were also obtained. Time to exhaustion was significantly influenced by Ta (P = 0.001): exercise duration was shortest at 30.5 degrees C (51.6 +/- 3.7 min) and longest at 10.5 degrees C (93.5 +/- 6.2 min). Significant effects of Ta were also observed on VE, VO2, R, estimated fuel oxidation, HR, Tre, Tsk, sweat rate, and RPE. This study demonstrates that there is a clear effect of temperature on exercise capacity which appears to follow an inverted U relationship.
Collapse
|
|
28 |
422 |
22
|
Tempany CMC, Stewart EA, McDannold N, Quade BJ, Jolesz FA, Hynynen K. MR imaging-guided focused ultrasound surgery of uterine leiomyomas: a feasibility study. Radiology 2003; 226:897-905. [PMID: 12616023 DOI: 10.1148/radiol.2271020395] [Citation(s) in RCA: 419] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The feasibility and safety of magnetic resonance (MR) imaging-guided focused ultrasound surgery for uterine leiomyomas is reported. Sequential sonications were delivered to nine targets. Temperature-sensitive phase-difference MR imaging monitored the location of the focus and measured tissue temperature elevations, ensuring therapeutic dose. MR images and hysterectomy specimens were evaluated. Six leiomyomas received full therapeutic doses, and 98.5% of the sonications were visualized. MR thermometry was successful in all sonications and cases. Focal necrotic lesions were seen in all cases at MR, and five were pathologically confirmed. MR imaging-guided focused ultrasound causes thermocoagulation and necrosis in uterine leiomyomas and is feasible and safe, without serious consequences.
Collapse
|
Clinical Trial |
22 |
419 |
23
|
Hynynen K, Pomeroy O, Smith DN, Huber PE, McDannold NJ, Kettenbach J, Baum J, Singer S, Jolesz FA. MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study. Radiology 2001; 219:176-85. [PMID: 11274554 DOI: 10.1148/radiology.219.1.r01ap02176] [Citation(s) in RCA: 414] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To test the feasibility of noninvasive magnetic resonance (MR) imaging-guided focused ultrasound surgery (FUS) of benign fibroadenomas in the breast. MATERIALS AND METHODS Eleven fibroadenomas in nine patients under local anesthesia were treated with MR imaging-guided FUS. Based on a T2-weighted definition of target volumes, sequential sonications were delivered to treat the entire target. Temperature-sensitive phase-difference-based MR imaging was performed during each sonication to monitor focus localization and tissue temperature changes. After the procedure, T2-weighted and contrast material-enhanced T1-weighted MR imaging were performed to evaluate immediate and long-term effects. RESULTS Thermal imaging sequences were improved over the treatment period, with 82% (279 of 342) of the hot spots visible in the last seven treatments. The MR imager was used to measure temperature elevation (12.8 degrees -49.9 degrees C) from these treatments. Eight of the 11 lesions treated demonstrated complete or partial lack of contrast material uptake on posttherapy T1-weighted images. Three lesions showed no marked decrease of contrast material uptake. This lack of effective treatment was most likely due to a lower acoustic power and/or patient movement that caused misregistration. No adverse effects were detected, except for one case of transient edema in the pectoralis muscle 2 days after therapy. CONCLUSION MR imaging-guided FUS can be performed to noninvasively coagulate benign breast fibroadenomas.
Collapse
|
Clinical Trial |
24 |
414 |
24
|
Abstract
The purpose of this paper is to thoroughly review the literature and present a data base of the basic thermoregulatory parameters of the laboratory rat. This review surveys the pertinent papers dealing with various aspects of the thermal biology of the laboratory rat, including: metabolism, thermoneutrality, core and brain temperature, thermal tolerance, thermal conductance and insulation, thermoregulatory effectors (i.e., thermogenesis, peripheral vasomotor tone, evaporation, and behavior), thermal acclimation, growth and reproduction, ontogeny, aging, motor activity and exercise, circadian rhythm and sleep, gender differences, and other parameters. It is shown that many facets of the thermoregulatory system of the laboratory rat are typical to that of most homeothermic species. However, is several instances the rat exhibits unique thermoregulatory responses which are not comparable to other species.
Collapse
|
Review |
35 |
409 |
25
|
|
Review |
57 |
398 |