1
|
Abstract
PURPOSE OF REVIEW Bone fracture healing is a complex physiological process relying on numerous cell types and signals. Inflammatory factors secreted by immune cells help to control recruitment, proliferation, differentiation, and activation of hematopoietic and mesenchymal cells. Within this review we will discuss the functional role of immune cells as it pertains to bone fracture healing. In doing so, we will outline the cytokines secreted and their effects within the healing fracture callus. RECENT FINDINGS Macrophages have been found to play an important role in fracture healing. These immune cells signal to other cells of the fracture callus, modulating bone healing. Cytokines and cellular signals within fracture healing continue to be studied. The findings from this work have helped to reinforce the importance of osteoimmunity in bone fracture healing. Owing to these efforts, immunomodulation is emerging as a potential therapeutic target to improve bone fracture healing.
Collapse
|
Review |
7 |
173 |
2
|
Abstract
PURPOSE OF REVIEW This review summarizes research on the physiological changes that occur with aging and the resulting effects on fracture healing. RECENT FINDINGS Aging affects the inflammatory response during fracture healing through senescence of the immune response and increased systemic pro-inflammatory status. Important cells of the inflammatory response, macrophages, T cells, mesenchymal stem cells, have demonstrated intrinsic age-related changes that could impact fracture healing. Additionally, vascularization and angiogenesis are impaired in fracture healing of the elderly. Finally, osteochondral cells and their progenitors demonstrate decreased activity and quantity within the callus. Age-related changes affect many of the biologic processes involved in fracture healing. However, the contributions of such changes do not fully explain the poorer healing outcomes and increased morbidity reported in elderly patients. Future research should address this gap in understanding in order to provide improved and more directed treatment options for the elderly population.
Collapse
|
Review |
8 |
173 |
3
|
Könnecke I, Serra A, El Khassawna T, Schlundt C, Schell H, Hauser A, Ellinghaus A, Volk HD, Radbruch A, Duda GN, Schmidt-Bleek K. T and B cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion. Bone 2014; 64:155-65. [PMID: 24721700 DOI: 10.1016/j.bone.2014.03.052] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/22/2014] [Accepted: 03/30/2014] [Indexed: 12/12/2022]
Abstract
Fracture healing is a regenerative process in which bone is restored without scar tissue formation. The healing cascade initiates with a cycle of inflammation, cell migration, proliferation and differentiation. Immune cells invade the fracture site immediately upon bone damage and contribute to the initial phase of the healing process by recruiting accessory cells to the injury site. However, little is known about the role of the immune system in the later stages of fracture repair, in particular, whether lymphocytes participate in soft and hard callus formation. In order to answer this question, we analyzed femoral fracture healing in mice by confocal microscopy. Surprisingly, after the initial inflammatory phase, when soft callus developed, T and B cells withdrew from the fracture site and were detectable predominantly at the femoral neck and knee. Thereafter lymphocytes massively infiltrated the callus region (around day 14 after injury), during callus mineralization. Interestingly, lymphocytes were not found within cartilaginous areas of the callus but only nearby the newly forming bone. During healing B cell numbers seemed to exceed those of T cells and B cells progressively underwent effector maturation. Both, osteoblasts and osteoclasts were found to have direct cell-cell contact with lymphocytes, strongly suggesting a regulatory role of the immune cells specifically in the later stages of fracture healing.
Collapse
|
|
11 |
142 |
4
|
Clark D, Brazina S, Yang F, Hu D, Hsieh CL, Niemi EC, Miclau T, Nakamura MC, Marcucio R. Age-related changes to macrophages are detrimental to fracture healing in mice. Aging Cell 2020; 19:e13112. [PMID: 32096907 PMCID: PMC7059136 DOI: 10.1111/acel.13112] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/05/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
The elderly population suffers from higher rates of complications during fracture healing that result in increased morbidity and mortality. Inflammatory dysregulation is associated with increased age and is a contributing factor to the myriad of age-related diseases. Therefore, we investigated age-related changes to an important cellular regulator of inflammation, the macrophage, and the impact on fracture healing outcomes. We demonstrated that old mice (24 months) have delayed fracture healing with significantly less bone and more cartilage compared to young mice (3 months). The quantity of infiltrating macrophages into the fracture callus was similar in old and young mice. However, RNA-seq analysis demonstrated distinct differences in the transcriptomes of macrophages derived from the fracture callus of old and young mice, with an up-regulation of M1/pro-inflammatory genes in macrophages from old mice as well as dysregulation of other immune-related genes. Preventing infiltration of the fracture site by macrophages in old mice improved healing outcomes, with significantly more bone in the calluses of treated mice compared to age-matched controls. After preventing infiltration by macrophages, the macrophages remaining within the fracture callus were collected and examined via RNA-seq analysis, and their transcriptome resembled macrophages from young calluses. Taken together, infiltrating macrophages from old mice demonstrate detrimental age-related changes, and depleting infiltrating macrophages can improve fracture healing in old mice.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
89 |
5
|
Muire PJ, Mangum LH, Wenke JC. Time Course of Immune Response and Immunomodulation During Normal and Delayed Healing of Musculoskeletal Wounds. Front Immunol 2020; 11:1056. [PMID: 32582170 PMCID: PMC7287024 DOI: 10.3389/fimmu.2020.01056] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022] Open
Abstract
Single trauma injuries or isolated fractures are often manageable and generally heal without complications. In contrast, high-energy trauma results in multi/poly-trauma injury patterns presenting imbalanced pro- and anti- inflammatory responses often leading to immune dysfunction. These injuries often exhibit delayed healing, leading to fibrosis of injury sites and delayed healing of fractures depending on the intensity of the compounding traumas. Immune dysfunction is accompanied by a temporal shift in the innate and adaptive immune cells distribution, triggered by the overwhelming release of an arsenal of inflammatory mediators such as complements, cytokines and damage associated molecular patterns (DAMPs) from necrotic cells. Recent studies have implicated this dysregulated inflammation in the poor prognosis of polytraumatic injuries, however, interventions focusing on immunomodulating inflammatory cellular composition and activation, if administered incorrectly, can result in immune suppression and unintended outcomes. Immunomodulation therapy is promising but should be conducted with consideration for the spatial and temporal distribution of the immune cells during impaired healing. This review describes the current state of knowledge in the spatiotemporal distribution patterns of immune cells at various stages during musculoskeletal wound healing, with a focus on recent advances in the field of Osteoimmunology, a study of the interface between the immune and skeletal systems, in long bone fractures. The goals of this review are to (1) discuss wound and fracture healing processes of normal and delayed healing in skeletal muscles and long bones; (2) provide a balanced perspective on temporal distributions of immune cells and skeletal cells during healing; and (3) highlight recent therapeutic interventions used to improve fracture healing. This review is intended to promote an understanding of the importance of inflammation during normal and delayed wound and fracture healing. Knowledge gained will be instrumental in developing novel immunomodulatory approaches for impaired healing.
Collapse
|
Review |
5 |
64 |
6
|
Ehrnthaller C, Huber-Lang M, Nilsson P, Bindl R, Redeker S, Recknagel S, Rapp A, Mollnes T, Amling M, Gebhard F, Ignatius A. Complement C3 and C5 deficiency affects fracture healing. PLoS One 2013; 8:e81341. [PMID: 24260573 PMCID: PMC3832439 DOI: 10.1371/journal.pone.0081341] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/19/2013] [Indexed: 12/16/2022] Open
Abstract
There is increasing evidence that complement may play a role in bone development. Our previous studies demonstrated that the key complement receptor C5aR was strongly expressed in the fracture callus not only by immune cells but also by bone cells and chondroblasts, indicating a function in bone repair. To further elucidate the role of complement in bone healing, this study investigated fracture healing in mice in the absence of the key complement molecules C3 and C5. C3-/- and C5-/- as well as the corresponding wildtype mice received a standardized femur osteotomy, which was stabilized using an external fixator. Fracture healing was investigated after 7 and 21 days using histological, micro-computed tomography and biomechanical measurements. In the early phase of fracture healing, reduced callus area (C3-/-: -25%, p=0.02; C5-/-: -20% p=0.052) and newly formed bone (C3-/-: -38%, p=0.01; C5-/-: -52%, p=0.009) was found in both C3- and C5-deficient mice. After 21 days, healing was successful in the absence of C3, whereas in C5-deficient mice fracture repair was significantly reduced, which was confirmed by a reduced bending stiffness (-45%; p=0.029) and a smaller callus volume (-17%; p=0.039). We further demonstrated that C5a was activated in C3-/- mice, suggesting cleavage via extrinsic pathways. Our results suggest that the activation of the terminal complement cascade in particular may be crucial for successful fracture healing.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
42 |
7
|
Turgut A, Göktürk E, Köse N, Kaçmaz M, Oztürk HS, Seber S, Acar S. Oxidant status increased during fracture healing in rats. ACTA ORTHOPAEDICA SCANDINAVICA 1999; 70:487-90. [PMID: 10622483 DOI: 10.3109/17453679909000986] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We evaluated oxidant status during bone healing in 50 rats. In 40 rats, the right tibia was fractured and fixed intramedullarly (study leg) and the left tibia was pinned but not fractured (control leg). Rats were killed on days 1, 3, 7, 14, 28 and malondialdehyde (MDA) levels were determined in tibial bone tissue. The MDA levels of study and control legs were compared with basal MDA levels in bone in 10 rats. There was no apparent difference between the basal level and control legs, but the study legs showed a statistically significant increase in MDA levels on days 7 and 14. We conclude that no oxidative stress injury occurs during the ischemic period of fracture healing, but it may be significant during inflammation and the formation of callus.
Collapse
|
|
26 |
26 |
8
|
Stafford H, Oni OO, Hay J, Gregg PJ. An investigation of the contribution of the extraosseous tissues to the diaphyseal fracture callus using a rabbit tibial fracture model and in situ immunocytochemical localisation of osteocalcin. J Orthop Trauma 1992; 6:190-4. [PMID: 1602340 DOI: 10.1097/00005131-199206000-00010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The extraosseous tissue contribution to diaphyseal fracture callus has been investigated using a rabbit tibial fracture model and osteocalcin immunocytochemistry. The extraosseous tissues were isolated for study by reaming and nailing an osteotomy and excising 2 cm of periosteum on either side of the osteotomy. Specimens obtained from the healing fractures at 1 and 2 weeks after operation, respectively, were decalcified and stained for osteocalcin, a bone-specific protein, using an indirect immunoperoxidase method. The positively stained osteogenic cells appeared to be derived exclusively from the remnant of the periosteum.
Collapse
|
|
33 |
16 |
9
|
Kirkeby OJ, Nordsletten L, Skjeldal S. Healing of cortical bone grafts in athymic rats. ACTA ORTHOPAEDICA SCANDINAVICA 1992; 63:318-22. [PMID: 1609599 DOI: 10.3109/17453679209154791] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We studied healing of allogeneic and syngeneic cortical tibial segment grafts in athymic and normal rats. After 3, 6, and 12 weeks, the weight, circulation, and mineralization rate of the healing segment, and mechanical strength and stiffness of the healing tibia were measured. There were no differences between allogeneic and syngeneic grafts in athymic and normal animals at 3 or 6 weeks. After 12 weeks, the vascularization and mineralization of the grafts, but not of the surrounding callus, were smaller in the allogeneic grafts in the normal recipients than in the other groups. Also after 12 weeks, the stiffness of the healing tibiae was less in allogeneic grafts in normal recipients than in the other groups. The strength of the allogeneic grafts was less than the strength of the syngeneic grafts in both athymic and normal recipients. This suggests that T-cell-mediated rejection is responsible for decreased vascularization and mineralization of allogeneic bone and that the difference in strength between allogeneic and syngeneic grafts is not due to T-lymphocyte graft rejection.
Collapse
|
Comparative Study |
33 |
16 |
10
|
Gabl M, Pechlaner S, Lutz M, Bodner G, Piza H, Margreiter R. Bilateral hand transplantation: bone healing under immunosuppression with tacrolimus, mycophenolate mofetil, and prednisolone. J Hand Surg Am 2004; 29:1020-7. [PMID: 15576210 DOI: 10.1016/j.jhsa.2004.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Accepted: 05/04/2004] [Indexed: 02/02/2023]
Abstract
PURPOSE Little is known about bone healing after composite tissue transplantation that requires pharmacologic immunosuppression. Bone integration and callus development were assessed in bilateral hand transplantation. METHODS In this study the course of callus development and callus maturation were assessed by color Doppler sonography and radiography in a double hand transplant and compared with forearm replantation. RESULTS After hand transplantation, ingrowth of small vessels at the bone junction was observed at week 3, calcified callus became visible at month 4, and bone union was completed at month 11. A similar time course of bone integration was observed after replantation. Plating offered sufficient stability. A recipient periostal flap is thought to have improved blood supply and favored development and induction of callus. CONCLUSIONS Bone healing after hand transplantation under immunosuppression with tacrolimus, mycophenolate mofetil, and prednisolone is identical to that after forearm replantation.
Collapse
|
Case Reports |
21 |
14 |
11
|
Qutaishat SS, Kumar V, Beutner EH, Jablonska S. A distinct stratum corneum antigen in psoriasis and its reactions with stratum corneum autoantibodies. APMIS 1992; 100:341-6. [PMID: 1581042 DOI: 10.1111/j.1699-0463.1992.tb00881.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stratum corneum antibodies are ubiquitous and can be detected by various immunological methods. Of these, the ones detected by hemagglutination undergo changes in antibody titers and have been implicated in psoriasis. The purpose of our study was to examine if differences exist in the activities of the antigens isolated from psoriatic scales in comparison to normal callus. Stratum corneum antigens were prepared by trypsin-phenol-water extraction. The water phase, which contains the stratum corneum antigen, was used to sensitize the red blood cells in the hemagglutination assay. The antibody activity in human sera was determined before and after absorption with antigens isolated from callus, psoriatic scales, and cell envelopes. We found notable differences in the antigens obtained from callus and psoriatic scales. These include higher antibody titers to the antigens of the scales, the presence of unique antigenic determinants on psoriatic scales and the localization of the antigen on cell envelopes. These immunological differences were corroborated by the marked biochemical differences of certain amino acids, most notably glycine and proline, and these differences were unique to psoriatic scales as they were not shared with other hyperproliferative disorders.
Collapse
|
|
33 |
4 |
12
|
Molitoris KH, Huang M, Baht GS. Osteoimmunology of Fracture Healing. Curr Osteoporos Rep 2024; 22:330-339. [PMID: 38616228 PMCID: PMC11186872 DOI: 10.1007/s11914-024-00869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize what is known in the literature about the role inflammation plays during bone fracture healing. Bone fracture healing progresses through four distinct yet overlapping phases: formation of the hematoma, development of the cartilaginous callus, development of the bony callus, and finally remodeling of the fracture callus. Throughout this process, inflammation plays a critical role in robust bone fracture healing. RECENT FINDINGS At the onset of injury, vessel and matrix disruption lead to the generation of an inflammatory response: inflammatory cells are recruited to the injury site where they differentiate, activate, and/or polarize to secrete cytokines for the purposes of cell signaling and cell recruitment. This process is altered by age and by sex. Bone fracture healing is heavily influenced by the presence of inflammatory cells and cytokines within the healing tissue.
Collapse
|
Review |
1 |
|
13
|
Wu T, Wang L, Jian C, Zhang Z, Zeng R, Mi B, Liu G, Zhang Y, Shi C. A distinct "repair" role of regulatory T cells in fracture healing. Front Med 2024; 18:516-537. [PMID: 38491211 DOI: 10.1007/s11684-023-1024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/20/2023] [Indexed: 03/18/2024]
Abstract
Regulatory T cells (Tregs) suppress immune responses and inflammation. Here, we described the distinct nonimmunological role of Tregs in fracture healing. The recruitment from the circulation pool, peripheral induction, and local expansion rapidly enriched Tregs in the injured bone. The Tregs in the injured bone displayed superiority in direct osteogenesis over Tregs from lymphoid organs. Punctual depletion of Tregs compromised the fracture healing process, which leads to increased bone nonunion. In addition, bone callus Tregs showed unique T-cell receptor repertoires. Amphiregulin was the most overexpressed protein in bone callus Tregs, and it can directly facilitate the proliferation and differentiation of osteogenic precursor cells by activation of phosphatidylinositol 3-kinase/protein kinase B signaling pathways. The results of loss- and gain-function studies further evidenced that amphiregulin can reverse the compromised healing caused by Treg dysfunction. Tregs also enriched in patient bone callus and amphiregulin can promote the osteogenesis of human pre-osteoblastic cells. Our findings indicate the distinct and nonredundant role of Tregs in fracture healing, which will provide a new therapeutic target and strategy in the clinical treatment of fractures.
Collapse
|
|
1 |
|