1
|
Abstract
To successfully negotiate the developmental transition between youth and adulthood, adolescents must maneuver this often stressful period while acquiring skills necessary for independence. Certain behavioral features, including age-related increases in social behavior and risk-taking/novelty-seeking, are common among adolescents of diverse mammalian species and may aid in this process. Reduced positive incentive values from stimuli may lead adolescents to pursue new appetitive reinforcers through drug use and other risk-taking behaviors, with their relative insensitivity to drugs supporting comparatively greater per occasion use. Pubertal increases in gonadal hormones are a hallmark of adolescence, although there is little evidence for a simple association of these hormones with behavioral change during adolescence. Prominent developmental transformations are seen in prefrontal cortex and limbic brain regions of adolescents across a variety of species, alterations that include an apparent shift in the balance between mesocortical and mesolimbic dopamine systems. Developmental changes in these stressor-sensitive regions, which are critical for attributing incentive salience to drugs and other stimuli, likely contribute to the unique characteristics of adolescence.
Collapse
|
Review |
25 |
3751 |
2
|
Abstract
Brain tissue has a remarkable ability to accumulate glutamate. This ability is due to glutamate transporter proteins present in the plasma membranes of both glial cells and neurons. The transporter proteins represent the only (significant) mechanism for removal of glutamate from the extracellular fluid and their importance for the long-term maintenance of low and non-toxic concentrations of glutamate is now well documented. In addition to this simple, but essential glutamate removal role, the glutamate transporters appear to have more sophisticated functions in the modulation of neurotransmission. They may modify the time course of synaptic events, the extent and pattern of activation and desensitization of receptors outside the synaptic cleft and at neighboring synapses (intersynaptic cross-talk). Further, the glutamate transporters provide glutamate for synthesis of e.g. GABA, glutathione and protein, and for energy production. They also play roles in peripheral organs and tissues (e.g. bone, heart, intestine, kidneys, pancreas and placenta). Glutamate uptake appears to be modulated on virtually all possible levels, i.e. DNA transcription, mRNA splicing and degradation, protein synthesis and targeting, and actual amino acid transport activity and associated ion channel activities. A variety of soluble compounds (e.g. glutamate, cytokines and growth factors) influence glutamate transporter expression and activities. Neither the normal functioning of glutamatergic synapses nor the pathogenesis of major neurological diseases (e.g. cerebral ischemia, hypoglycemia, amyotrophic lateral sclerosis, Alzheimer's disease, traumatic brain injury, epilepsy and schizophrenia) as well as non-neurological diseases (e.g. osteoporosis) can be properly understood unless more is learned about these transporter proteins. Like glutamate itself, glutamate transporters are somehow involved in almost all aspects of normal and abnormal brain activity.
Collapse
|
Review |
24 |
3509 |
3
|
Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA. Cerebral organoids model human brain development and microcephaly. Nature 2013; 501:373-9. [PMID: 23995685 PMCID: PMC3817409 DOI: 10.1038/nature12517] [Citation(s) in RCA: 3459] [Impact Index Per Article: 288.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 08/02/2013] [Indexed: 02/06/2023]
Abstract
The complexity of the human brain has made it difficult to study many brain disorders in model organisms, highlighting the need for an in vitro model of human brain development. Here we have developed a human pluripotent stem cell-derived three-dimensional organoid culture system, termed cerebral organoids, that develop various discrete, although interdependent, brain regions. These include a cerebral cortex containing progenitor populations that organize and produce mature cortical neuron subtypes. Furthermore, cerebral organoids are shown to recapitulate features of human cortical development, namely characteristic progenitor zone organization with abundant outer radial glial stem cells. Finally, we use RNA interference and patient-specific induced pluripotent stem cells to model microcephaly, a disorder that has been difficult to recapitulate in mice. We demonstrate premature neuronal differentiation in patient organoids, a defect that could help to explain the disease phenotype. Together, these data show that three-dimensional organoids can recapitulate development and disease even in this most complex human tissue.
Collapse
|
research-article |
12 |
3459 |
4
|
Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 1999; 2:861-3. [PMID: 10491603 DOI: 10.1038/13158] [Citation(s) in RCA: 3458] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
Clinical Trial |
26 |
3458 |
5
|
Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 1994; 12:529-40. [PMID: 7512349 DOI: 10.1016/0896-6273(94)90210-0] [Citation(s) in RCA: 2675] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An in situ study of mRNAs encoding NMDA receptor subunits in the developing rat CNS revealed that, at all stages, the NR1 gene is expressed in virtually all neurons, whereas the four NR2 transcripts display distinct expression patterns. NR2B and NR2D mRNAs occur prenatally, whereas NR2A and NR2C mRNAs are first detected near birth. All transcripts except NR2D peak around P20. NR2D mRNA, present mainly in midbrain structures, peaks around P7 and thereafter decreases to adult levels. Postnatally, NR2B and NR2C transcript levels change in opposite directions in the cerebellar internal granule cell layer. In the adult hippocampus, NR2A and NR2B mRNAs are prominent in CA1 and CA3 pyramidal cells, but NR2C and NR2D mRNAs occur in different subsets of interneurons. Recombinant binary NR1-NR2 channels show comparable Ca2+ permeabilities, but marked differences in voltage-dependent Mg2+ block and in offset decay time constants. Thus, the distinct expression profiles and functional properties of NR2 subunits provide a basis for NMDA channel heterogeneity in the brain.
Collapse
|
|
31 |
2675 |
6
|
Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. ARCHIVES OF GENERAL PSYCHIATRY 1987; 44:660-9. [PMID: 3606332 DOI: 10.1001/archpsyc.1987.01800190080012] [Citation(s) in RCA: 2387] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent research on schizophrenia has demonstrated that in this disorder the brain is not, strictly speaking, normal. The findings suggest that nonspecific histopathology exists in the limbic system, diencephalon, and prefrontal cortex, that the pathology occurs early in development, and that the causative process is inactive long before the diagnosis is made. If these findings are valid and not epiphenomena, then the pathogenesis of schizophrenia does not appear to fit either traditional metabolic, posttraumatic, or neurodegenerative models of adult mental illness. The data are more consistent with a neurodevelopmental model in which a fixed "lesion" from early in life interacts with normal brain maturational events that occur much later. Based on neuro-ontological principles and insights from animal research about normal brain development, it is proposed that the appearance of diagnostic symptoms is linked to the normal maturation of brain areas affected by the early developmental pathology, particularly the dorsolateral prefrontal cortex. The course of the illness and the importance of stress may be related to normal maturational aspects of dopaminergic neural systems, particularly those innervating prefrontal cortex. Some implications for future research and treatment are considered.
Collapse
|
|
38 |
2387 |
7
|
Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 2006; 9:157-73. [PMID: 16530701 DOI: 10.1016/j.ccr.2006.02.019] [Citation(s) in RCA: 2353] [Impact Index Per Article: 123.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/02/2005] [Accepted: 02/20/2006] [Indexed: 12/12/2022]
Abstract
Previously undescribed prognostic subclasses of high-grade astrocytoma are identified and discovered to resemble stages in neurogenesis. One tumor class displaying neuronal lineage markers shows longer survival, while two tumor classes enriched for neural stem cell markers display equally short survival. Poor prognosis subclasses exhibit markers either of proliferation or of angiogenesis and mesenchyme. Upon recurrence, tumors frequently shift toward the mesenchymal subclass. Chromosomal locations of genes distinguishing tumor subclass parallel DNA copy number differences between subclasses. Functional relevance of tumor subtype molecular signatures is suggested by the ability of cell line signatures to predict neurosphere growth. A robust two-gene prognostic model utilizing PTEN and DLL3 expression suggests that Akt and Notch signaling are hallmarks of poor prognosis versus better prognosis gliomas, respectively.
Collapse
|
Comparative Study |
19 |
2353 |
8
|
Abstract
The peak age of onset for many psychiatric disorders is adolescence, a time of remarkable physical and behavioural changes. The processes in the brain that underlie these behavioural changes have been the subject of recent investigations. What do we know about the maturation of the human brain during adolescence? Do structural changes in the cerebral cortex reflect synaptic pruning? Are increases in white-matter volume driven by myelination? Is the adolescent brain more or less sensitive to reward? Finding answers to these questions might enable us to further our understanding of mental health during adolescence.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
2009 |
9
|
|
|
46 |
1966 |
10
|
|
Review |
33 |
1852 |
11
|
Abstract
Neuronal plasticity is a central theme of modern neurobiology, from cellular and molecular mechanisms of synapse formation in Drosophila to behavioural recovery from strokes in elderly humans. Although the methods used to measure plastic responses differ, the stimuli required to elicit plasticity are thought to be activity-dependent. In this article, we focus on the neuronal changes that occur in response to complex stimulation by an enriched environment. We emphasize the behavioural and neurobiological consequences of specific elements of enrichment, especially exercise and learning.
Collapse
|
Review |
25 |
1746 |
12
|
Dosenbach NUF, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR, Barch DM, Petersen SE, Schlaggar BL. Prediction of individual brain maturity using fMRI. Science 2010; 329:1358-61. [PMID: 20829489 PMCID: PMC3135376 DOI: 10.1126/science.1194144] [Citation(s) in RCA: 1540] [Impact Index Per Article: 102.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Group functional connectivity magnetic resonance imaging (fcMRI) studies have documented reliable changes in human functional brain maturity over development. Here we show that support vector machine-based multivariate pattern analysis extracts sufficient information from fcMRI data to make accurate predictions about individuals' brain maturity across development. The use of only 5 minutes of resting-state fcMRI data from 238 scans of typically developing volunteers (ages 7 to 30 years) allowed prediction of individual brain maturity as a functional connectivity maturation index. The resultant functional maturation curve accounted for 55% of the sample variance and followed a nonlinear asymptotic growth curve shape. The greatest relative contribution to predicting individual brain maturity was made by the weakening of short-range functional connections between the adult brain's major functional networks.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
1540 |
13
|
Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, Sousa AMM, Pletikos M, Meyer KA, Sedmak G, Guennel T, Shin Y, Johnson MB, Krsnik Z, Mayer S, Fertuzinhos S, Umlauf S, Lisgo SN, Vortmeyer A, Weinberger DR, Mane S, Hyde TM, Huttner A, Reimers M, Kleinman JE, Sestan N. Spatio-temporal transcriptome of the human brain. Nature 2011; 478:483-9. [PMID: 22031440 PMCID: PMC3566780 DOI: 10.1038/nature10523] [Citation(s) in RCA: 1519] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 08/30/2011] [Indexed: 12/14/2022]
Abstract
Brain development and function depend on the precise regulation of gene expression. However, our understanding of the complexity and dynamics of the transcriptome of the human brain is incomplete. Here we report the generation and analysis of exon-level transcriptome and associated genotyping data, representing males and females of different ethnicities, from multiple brain regions and neocortical areas of developing and adult post-mortem human brains. We found that 86 per cent of the genes analysed were expressed, and that 90 per cent of these were differentially regulated at the whole-transcript or exon level across brain regions and/or time. The majority of these spatio-temporal differences were detected before birth, with subsequent increases in the similarity among regional transcriptomes. The transcriptome is organized into distinct co-expression networks, and shows sex-biased gene expression and exon usage. We also profiled trajectories of genes associated with neurobiological categories and diseases, and identified associations between single nucleotide polymorphisms and gene expression. This study provides a comprehensive data set on the human brain transcriptome and insights into the transcriptional foundations of human neurodevelopment.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
1519 |
14
|
Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 2013; 106-107:1-16. [PMID: 23583307 PMCID: PMC3737272 DOI: 10.1016/j.pneurobio.2013.04.001] [Citation(s) in RCA: 1497] [Impact Index Per Article: 124.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/03/2013] [Accepted: 04/03/2013] [Indexed: 12/13/2022]
Abstract
Hypoxic-ischemic and traumatic brain injuries are leading causes of long-term mortality and disability in infants and children. Although several preclinical models using rodents of different ages have been developed, species differences in the timing of key brain maturation events can render comparisons of vulnerability and regenerative capacities difficult to interpret. Traditional models of developmental brain injury have utilized rodents at postnatal day 7-10 as being roughly equivalent to a term human infant, based historically on the measurement of post-mortem brain weights during the 1970s. Here we will examine fundamental brain development processes that occur in both rodents and humans, to delineate a comparable time course of postnatal brain development across species. We consider the timing of neurogenesis, synaptogenesis, gliogenesis, oligodendrocyte maturation and age-dependent behaviors that coincide with developmentally regulated molecular and biochemical changes. In general, while the time scale is considerably different, the sequence of key events in brain maturation is largely consistent between humans and rodents. Further, there are distinct parallels in regional vulnerability as well as functional consequences in response to brain injuries. With a focus on developmental hypoxic-ischemic encephalopathy and traumatic brain injury, this review offers guidelines for researchers when considering the most appropriate rodent age for the developmental stage or process of interest to approximate human brain development.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
1497 |
15
|
Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vöckler J, Dikranian K, Tenkova TI, Stefovska V, Turski L, Olney JW. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 1999; 283:70-4. [PMID: 9872743 DOI: 10.1126/science.283.5398.70] [Citation(s) in RCA: 1447] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Programmed cell death (apoptosis) occurs during normal development of the central nervous system. However, the mechanisms that determine which neurons will succumb to apoptosis are poorly understood. Blockade of N-methyl-D-aspartate (NMDA) glutamate receptors for only a few hours during late fetal or early neonatal life triggered widespread apoptotic neurodegeneration in the developing rat brain, suggesting that the excitatory neurotransmitter glutamate, acting at NMDA receptors, controls neuronal survival. These findings may have relevance to human neurodevelopmental disorders involving prenatal (drug-abusing mothers) or postnatal (pediatric anesthesia) exposure to drugs that block NMDA receptors.
Collapse
|
|
26 |
1447 |
16
|
Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 2007; 30:464-72. [PMID: 17765329 DOI: 10.1016/j.tins.2007.06.011] [Citation(s) in RCA: 1433] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 06/20/2007] [Accepted: 06/22/2007] [Indexed: 12/15/2022]
Abstract
Human and other animal studies demonstrate that exercise targets many aspects of brain function and has broad effects on overall brain health. The benefits of exercise have been best defined for learning and memory, protection from neurodegeneration and alleviation of depression, particularly in elderly populations. Exercise increases synaptic plasticity by directly affecting synaptic structure and potentiating synaptic strength, and by strengthening the underlying systems that support plasticity including neurogenesis, metabolism and vascular function. Such exercise-induced structural and functional change has been documented in various brain regions but has been best-studied in the hippocampus - the focus of this review. A key mechanism mediating these broad benefits of exercise on the brain is induction of central and peripheral growth factors and growth factor cascades, which instruct downstream structural and functional change. In addition, exercise reduces peripheral risk factors such as diabetes, hypertension and cardiovascular disease, which converge to cause brain dysfunction and neurodegeneration. A common mechanism underlying the central and peripheral effects of exercise might be related to inflammation, which can impair growth factor signaling both systemically and in the brain. Thus, through regulation of growth factors and reduction of peripheral and central risk factors, exercise ensures successful brain function.
Collapse
|
Review |
18 |
1433 |
17
|
Abstract
Questions about the nature of normative and atypical development in adolescence have taken on special significance in the last few years, as scientists have begun to recast old portraits of adolescent behavior in the light of new knowledge about brain development. Adolescence is often a period of especially heightened vulnerability as a consequence of potential disjunctions between developing brain, behavioral and cognitive systems that mature along different timetables and under the control of both common and independent biological processes. Taken together, these developments reinforce the emerging understanding of adolescence as a critical or sensitive period for a reorganization of regulatory systems, a reorganization that is fraught with both risks and opportunities.
Collapse
|
Review |
20 |
1360 |
18
|
Zecca L, Youdim MBH, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 2004; 5:863-73. [PMID: 15496864 DOI: 10.1038/nrn1537] [Citation(s) in RCA: 1353] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is increasing evidence that iron is involved in the mechanisms that underlie many neurodegenerative diseases. Conditions such as neuroferritinopathy and Friedreich ataxia are associated with mutations in genes that encode proteins that are involved in iron metabolism, and as the brain ages, iron accumulates in regions that are affected by Alzheimer's disease and Parkinson's disease. High concentrations of reactive iron can increase oxidative-stress induced neuronal vulnerability, and iron accumulation might increase the toxicity of environmental or endogenous toxins. By studying the accumulation and cellular distribution of iron during ageing, we should be able to increase our understanding of these neurodegenerative disorders and develop new therapeutic strategies.
Collapse
|
|
21 |
1353 |
19
|
Black MM, Walker SP, Fernald LCH, Andersen CT, DiGirolamo AM, Lu C, McCoy DC, Fink G, Shawar YR, Shiffman J, Devercelli AE, Wodon QT, Vargas-Barón E, Grantham-McGregor S. Early childhood development coming of age: science through the life course. Lancet 2017; 389:77-90. [PMID: 27717614 PMCID: PMC5884058 DOI: 10.1016/s0140-6736(16)31389-7] [Citation(s) in RCA: 1337] [Impact Index Per Article: 167.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 07/07/2016] [Accepted: 08/05/2016] [Indexed: 12/19/2022]
Abstract
Early childhood development programmes vary in coordination and quality, with inadequate and inequitable access, especially for children younger than 3 years. New estimates, based on proxy measures of stunting and poverty, indicate that 250 million children (43%) younger than 5 years in low-income and middle-income countries are at risk of not reaching their developmental potential. There is therefore an urgent need to increase multisectoral coverage of quality programming that incorporates health, nutrition, security and safety, responsive caregiving, and early learning. Equitable early childhood policies and programmes are crucial for meeting Sustainable Development Goals, and for children to develop the intellectual skills, creativity, and wellbeing required to become healthy and productive adults. In this paper, the first in a three part Series on early childhood development, we examine recent scientific progress and global commitments to early childhood development. Research, programmes, and policies have advanced substantially since 2000, with new neuroscientific evidence linking early adversity and nurturing care with brain development and function throughout the life course.
Collapse
|
Review |
8 |
1337 |
20
|
D'Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 1995; 374:719-23. [PMID: 7715726 DOI: 10.1038/374719a0] [Citation(s) in RCA: 1315] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The autosomal recessive mouse mutation reeler leads to impaired motor coordination, tremors and ataxia. Neurons in affected mice fail to reach their correct locations in the developing brain, disrupting the organization of the cerebellar and cerebral cortices and other laminated regions. Here we use a previously characterized reeler allele (rl(tg)) to close a gene, reelin, deleted in two reeler alleles. Normal but not mutant mice express reelin in embryonic and postnatal neurons during periods of neuronal migration. The encoded protein resembles extracellular matrix proteins involved in cell adhesion. The reeler phenotype thus seems to reflect a failure of early events associated with brain lamination which are normally controlled by reelin.
Collapse
|
|
30 |
1315 |
21
|
Abstract
Neurodevelopmental disorders such as autism, attention deficit disorder, mental retardation, and cerebral palsy are common, costly, and can cause lifelong disability. Their causes are mostly unknown. A few industrial chemicals (eg, lead, methylmercury, polychlorinated biphenyls [PCBs], arsenic, and toluene) are recognised causes of neurodevelopmental disorders and subclinical brain dysfunction. Exposure to these chemicals during early fetal development can cause brain injury at doses much lower than those affecting adult brain function. Recognition of these risks has led to evidence-based programmes of prevention, such as elimination of lead additives in petrol. Although these prevention campaigns are highly successful, most were initiated only after substantial delays. Another 200 chemicals are known to cause clinical neurotoxic effects in adults. Despite an absence of systematic testing, many additional chemicals have been shown to be neurotoxic in laboratory models. The toxic effects of such chemicals in the developing human brain are not known and they are not regulated to protect children. The two main impediments to prevention of neurodevelopmental deficits of chemical origin are the great gaps in testing chemicals for developmental neurotoxicity and the high level of proof required for regulation. New, precautionary approaches that recognise the unique vulnerability of the developing brain are needed for testing and control of chemicals.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
1254 |
22
|
Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White CL, Araoz C. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A 1989; 86:7611-5. [PMID: 2529544 PMCID: PMC298116 DOI: 10.1073/pnas.86.19.7611] [Citation(s) in RCA: 1251] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Interleukin 1, an immune response-generated cytokine that stimulates astrocyte proliferation and reactivity (astrogliosis), was present in up to 30 times as many glial cells in tissue sections of brain from patients with Down syndrome and Alzheimer disease compared with age-matched control subjects. Most interleukin 1-immunoreactive glia in Down syndrome and Alzheimer disease were classified as microglia. The number of interleukin 1 immunoreactive neurons did not appear to differ in Down syndrome and Alzheimer disease compared with control brain. Numerous temporal lobe astrocytes in Alzheimer disease and postnatal Down syndrome were intensely interleukin 1-, S-100-, and glial fibrillary acidic protein-immunoreactive and had reactive structure. Interleukin 1 levels in Alzheimer disease temporal lobe homogenates were elevated, as were the levels of S-100 and glial fibrillary acidic protein, two proteins reportedly elevated in reactive astrocytes. These data suggest that increased expression of S-100 in Down syndrome, resulting from duplication of the gene on chromosome 21 that encodes the beta subunit of S-100, may be augmented by elevation of interleukin 1. As a corollary, the astrogliosis in Alzheimer disease may be promoted by elevation of interleukin 1.
Collapse
|
research-article |
36 |
1251 |
23
|
Büeler H, Fischer M, Lang Y, Bluethmann H, Lipp HP, DeArmond SJ, Prusiner SB, Aguet M, Weissmann C. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 1992; 356:577-82. [PMID: 1373228 DOI: 10.1038/356577a0] [Citation(s) in RCA: 1239] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
PrPC is a host protein anchored to the outer surface of neurons and to a lesser extent of lymphocytes and other cells. The transmissible agent (prion) responsible for scrapie is believed to be a modified form of PrPC. Mice homozygous for disrupted PrP genes have been generated. Surprisingly, they develop and behave normally for at least seven months, and no immunological defects are apparent. It is now feasible to determine whether mice devoid of PrPC can propagate prions and are susceptible to scrapie pathogenesis.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
33 |
1239 |
24
|
Abstract
Adolescence is a developmental period characterized by suboptimal decisions and actions that are associated with an increased incidence of unintentional injuries, violence, substance abuse, unintended pregnancy, and sexually transmitted diseases. Traditional neurobiological and cognitive explanations for adolescent behavior have failed to account for the nonlinear changes in behavior observed during adolescence, relative to both childhood and adulthood. This review provides a biologically plausible model of the neural mechanisms underlying these nonlinear changes in behavior. We provide evidence from recent human brain imaging and animal studies that there is a heightened responsiveness to incentives and socioemotional contexts during this time, when impulse control is still relatively immature. These findings suggest differential development of bottom-up limbic systems, implicated in incentive and emotional processing, to top-down control systems during adolescence as compared to childhood and adulthood. This developmental pattern may be exacerbated in those adolescents prone to emotional reactivity, increasing the likelihood of poor outcomes.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
1217 |
25
|
Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, Buckner RL. Disruption of large-scale brain systems in advanced aging. Neuron 2007; 56:924-35. [PMID: 18054866 PMCID: PMC2709284 DOI: 10.1016/j.neuron.2007.10.038] [Citation(s) in RCA: 1210] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 09/01/2007] [Accepted: 10/29/2007] [Indexed: 01/17/2023]
Abstract
Cognitive decline is commonly observed in advanced aging even in the absence of disease. Here we explore the possibility that normal aging is accompanied by disruptive alterations in the coordination of large-scale brain systems that support high-level cognition. In 93 adults aged 18 to 93, we demonstrate that aging is characterized by marked reductions in normally present functional correlations within two higher-order brain systems. Anterior to posterior components within the default network were most severely disrupted with age. Furthermore, correlation reductions were severe in older adults free from Alzheimer's disease (AD) pathology as determined by amyloid imaging, suggesting that functional disruptions were not the result of AD. Instead, reduced correlations were associated with disruptions in white matter integrity and poor cognitive performance across a range of domains. These results suggest that cognitive decline in normal aging arises from functional disruption in the coordination of large-scale brain systems that support cognition.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
1210 |