1
|
Roesler K, Shintani D, Savage L, Boddupalli S, Ohlrogge J. Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. PLANT PHYSIOLOGY 1997; 113:75-81. [PMID: 9008389 PMCID: PMC158117 DOI: 10.1104/pp.113.1.75] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Acetyl-coenzyme A carboxylase (ACCase) occurs in at least two forms in rapeseed (Brassica napus): a homomeric (HO) and presumably cytosolic isozyme and a heteromeric, plastidial isozyme. We investigated whether the HO-ACCase of Arabidopsis can be targeted to plastids of B. napus seeds. A chloroplast transit peptide and the napin promoter were fused to the Arabidopsis ACC1 gene and transformed into B. napus, with the following results. (a) The small subunit transit peptide was sufficient to provide import of this very large protein into developing seed plastids. (b) HO-ACCase in isolated plastids was found to be biotinylated at a level comparable to extraplastidial HO-ACCase. (c) In vitro assays of HO-ACCase in isolated plastids from developing seeds indicate that it occurs as an enzymatically active form in the plastidial compartment. (d) ACCase activity in mature B. napus seeds is normally very low; however, plants expressing the SSU/ACC1 gene had 10- to 20-fold higher ACCase activity in mature seeds, suggesting that plastid localization prevents the turnover of HO-ACCase. (e) ACCase over-expression altered seed fatty acid composition, with the largest effect being an increase approximately 5% by the expression of HO-ACCase in plastids.
Collapse
|
research-article |
28 |
173 |
2
|
Pyee J, Yu H, Kolattukudy PE. Identification of a lipid transfer protein as the major protein in the surface wax of broccoli (Brassica oleracea) leaves. Arch Biochem Biophys 1994; 311:460-8. [PMID: 8203911 DOI: 10.1006/abbi.1994.1263] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Presence of proteins in the surface wax of plants has been noted but no protein has been identified heretofore. A 9-kDa protein was purified as the major protein from the surface wax of broccoli (Brassica oleracea var. italica) leaves and the N-terminal amino acid sequence was determined. A cDNA corresponding to the wax-associated protein, designated WAX9, was sequenced revealing an open reading frame that codes for an 11.9-kDa polypeptide of 118 amino acids including a 25-amino acid leader peptide. The amino acid sequence showed 40 to 50% identity with nonspecific lipid transfer proteins isolated from various plants. Northern blots showed that a wax9 transcript of 650 nucleotides was highly expressed in leaves, stems, and flower buds and only at a reduced level in open flowers and not in roots. The transcript level decreased as the leaf fully expanded. The results suggest that the wax9 gene is expressed at the highest level at the time of maximal synthesis of the surface wax. Immunogold labeling studies showed that the WAX9 protein was present mainly in the cell wall of the epidermis and mesophyll tissues as well as in the phloem. However, immunological measurements showed that 50 and 4% of the total WAX9 was in the surface wax in the young and old leaves, respectively. Since immunogold labeling method would involve the loss of the surface wax, it would not detect the WAX9 protein in the wax. Thus, the present results reveal for the first time that a major portion of lipid transfer protein is in the surface wax.
Collapse
|
Comparative Study |
31 |
145 |
3
|
Kandasamy MK, Paolillo DJ, Faraday CD, Nasrallah JB, Nasrallah ME. The S-locus specific glycoproteins of Brassica accumulate in the cell wall of developing stigma papillae. Dev Biol 1989; 134:462-72. [PMID: 2472986 DOI: 10.1016/0012-1606(89)90119-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Self-incompatibility in Brassica oleracea is now viewed as a cellular interaction between pollen and the papillar cells of the stigma surface. In this species, the inhibition of self-pollen occurs at the stigma surface under the influence of S-locus specific glycoproteins (SLSG). We used antibodies specific for a protein epitope of SLSG to study the subcellular distribution of these molecules in the stigmatic papillae. The antibodies have uncovered an interesting epitope polymorphism in SLSG encoded by subsets of S-alleles, thus providing us with useful genetic controls to directly verify the specificity of the immunolocalization data. Examination of thin sections of Brassica stigmas following indirect immunogold labeling showed that SLSG accumulate in the papillar cell wall, at the site where inhibition of self-pollen tube development has been shown to occur. In addition, the absence of gold particles over the papillar cell walls in the immature stigmas of very young buds, and the intense labeling of these walls in the stigmas of mature buds and open flowers, correlates well with the acquisition of the self-incompatibility response by the developing stigma.
Collapse
|
|
36 |
129 |
4
|
Beauchemin C, Boutet N, Laliberté JF. Visualization of the interaction between the precursors of VPg, the viral protein linked to the genome of turnip mosaic virus, and the translation eukaryotic initiation factor iso 4E in Planta. J Virol 2007; 81:775-82. [PMID: 17079311 PMCID: PMC1797466 DOI: 10.1128/jvi.01277-06] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2006] [Accepted: 10/20/2006] [Indexed: 01/20/2023] Open
Abstract
The RNA genome of Turnip mosaic virus is covalently linked at its 5' end to a viral protein known as VPg. This protein binds to the translation eukaryotic initiation factor iso 4E [eIF(iso)4E]. This interaction has been shown to be important for virus infection, although its exact biological function(s) has not been elucidated. In this study, we investigated the subcellular site of the VPg-eIF(iso)4E interaction using bimolecular fluorescence complementation (BiFC). As a first step, eIF(iso)4E, 6K-VPg-Pro, and VPg-Pro were expressed as full-length green fluorescent protein (GFP) fusions in Nicotiana benthamiana, and their subcellular localizations were visualized by confocal microscopy. eIF(iso)4E was predominantly associated with the endoplasmic reticulum (ER), and VPg-Pro was observed in the nucleus and possibly the nucleolus, while 6K-VPg-Pro-GFP induced the formation of cytoplasmic vesicles budding from the ER. In BiFC experiments, reconstituted green fluorescence was observed throughout the nucleus, with a preferential accumulation in subnuclear structures when the GFP split fragments were fused to VPg-Pro and eIF(iso)4E. On the other hand, the interaction of 6K-VPg-Pro with eIF(iso)4E was observed in cytoplasmic vesicles embedded in the ER. These data suggest that the association of VPg with the translation factor might be needed for two different functions, depending of the VPg precursor involved in the interaction. VPg-Pro interaction with eIF(iso)4E may be involved in perturbing normal cellular functions, while 6K-VPg-Pro interaction with the translation factor may be needed for viral RNA translation and/or replication.
Collapse
|
research-article |
18 |
126 |
5
|
Yu P. Application of advanced synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy to animal nutrition and feed science: a novel approach. Br J Nutr 2007; 92:869-85. [PMID: 15613249 DOI: 10.1079/bjn20041298] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Synchrotron radiation-based Fourier transform IR (SR-FTIR) microspectroscopy has been developed as a rapid, direct, non-destructive and bioanalytical technique. This technique, taking advantage of synchrotron light brightness and a small effective source size, is capable of exploring the molecular chemistry within the microstructures of a biological tissue without the destruction of inherent structures at ultraspatial resolutions within cellular dimensions. This is in contrast to traditional ‘wet’ chemical methods, which, during processing for analysis, often result in the destruction of the intrinsic structures of feeds. To date there has been very little application of this technique to the study of feed materials in relation to animal nutrient utilisation. The present article reviews four applications of the SR-FTIR bioanalytical technique as a novel approach in animal nutrition and feed science research. Application 1 showed that using the SR-FTIR technique, intensities and the distribution of the biological components (such as lignin, protein, lipid, structural and non-structural carbohydrates and their ratios) in the microstructure of plant tissue within cellular dimensions could be imaged. The implication from this study is that we can chemically define the intrinsic feed structure and compare feed tissues according to spectroscopic characteristics, functional groups, spatial distribution and chemical intensity. Application 2 showed that the ultrastructural–chemical makeup and density of yellow- and brown-seeded Brassica rape could be explored. This structural–chemical information could be used for the prediction of rapeseed quality and nutritive value for man and animals and for rapeseed breeding programmes for selecting superior varieties for special purposes. More research is required to define the extent of differences that exist between the yellow- and brown-seeded Brassica rape. Application 3 showed with the SR-FTIR technique that chemical differences in the ultrastructural matrix of endosperm tissue between Harrington (malting-type) and Valier (feed-type) barley in relation to rumen degradation characteristics could be identified. The results indicated that the greater association of the protein matrix with the starch granules in the endosperm tissue of Valier barley may limit the access of ruminal micro-organisms to the starch granules and thus reduce the rate and extent of rumen degradation relative to that of Harrington barley. It is the first time that the microstructural matrix in the endosperm of barley has been revealed by using the SR-FTIR technique, which makes it possible to link feed intrinsic structures to nutrient utilisation and digestive behaviour in ruminants. Application 4 showed with the SR-FTIR technique that the chemical features of various feed protein (amide I) secondary structures (such as feather, wheat, oats and barley) could be quantified. With a multi-component fitting program (Lorentz function), the results showed feather containing about 88% β-sheet and 4% α-helix, barley containing about 17% β-sheet and 71% α-helix; oats containing about 2% β-sheet and 92% α-helix; and wheat containing about 42% β-sheet and 50% α-helix. The relative percentage of the two may influence protein value. A high percentage of β-sheet may reduce the access of gastrointestinal digestive enzymes to the protein structure. Further study is required on feed protein secondary structures in relation to enzyme accessibility and digestibility. In conclusion, the SR-FTIR technique can be used for feed science and animal nutrition research. However, the main disadvantage of this technique is the requirement for a special light source; a synchrotron beam.
Collapse
|
|
18 |
89 |
6
|
Blackman LM, Harper JD, Overall RL. Localization of a centrin-like protein to higher plant plasmodesmata. Eur J Cell Biol 1999; 78:297-304. [PMID: 10384980 DOI: 10.1016/s0171-9335(99)80063-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Antibodies against centrin, the ubiquitous calcium-binding contractile protein, recognized a 17 kDa protein in extracts of onion root tips and cauliflower florets. Using immunofluorescence microscopy, anti-centrin antibodies were localized to the developing cell plate of onion and cauliflower root tip cells. In cauliflower florets, these antibodies localized to the walls in a punctate manner, consistent with the distribution of plasmodesmata as shown by colocalization with callose. Anti-centrin antibodies were localized to plasmodesmata of onion root tips and cauliflower florets with immunogold electron microscopy. Furthermore, this label was concentrated around the necks of plasmodesmata. In contrast, an antibody against calmodulin, which is a closely related calcium-binding protein, did not label plasmodesmata. We propose that centrin is a component of calcium-sensitive contractile nanofilaments in the neck region of plasmodesmata and facilitates the calcium-induced regulation of intercellular transport.
Collapse
|
|
26 |
76 |
7
|
Prod'homme D, Le Panse S, Drugeon G, Jupin I. Detection and subcellular localization of the turnip yellow mosaic virus 66K replication protein in infected cells. Virology 2001; 281:88-101. [PMID: 11222099 DOI: 10.1006/viro.2000.0769] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Turnip yellow mosaic virus (TYMV) encodes a 206-kDa (206K) polyprotein with domains of methyltransferase, proteinase, NTPase/helicase, and RNA-dependent RNA polymerase (RdRp). In vitro, the 206K protein has been shown to undergo proteolytic processing, giving rise to the synthesis of 140-kDa (140K) and 66-kDa (66K) proteins, the latter comprising the RdRp protein domain. Antibodies were raised against the 66K protein and were used to detect the corresponding viral protein in infected cells; both leaf tissues and protoplasts were examined. The antiserum specifically recognized a protein of approximately 66 kDa, indicating that the cleavage observed in vitro is also functional in vivo. The 66K protein accumulates transiently during protoplast infection and localizes to cellular membrane fractions. Indirect immunofluorescence assays and electron microscopy of immunogold-decorated ultrathin sections of infected leaf tissue using anti-66K-specific antibody revealed labeling of membrane vesicles located at the chloroplast envelope.
Collapse
|
|
24 |
74 |
8
|
Mao Y, Wu F, Yu X, Bai J, Zhong W, He Y. MicroRNA319a-targeted Brassica rapa ssp. pekinensis TCP genes modulate head shape in chinese cabbage by differential cell division arrest in leaf regions. PLANT PHYSIOLOGY 2014; 164:710-20. [PMID: 24351684 PMCID: PMC3912100 DOI: 10.1104/pp.113.228007] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/17/2013] [Indexed: 05/18/2023]
Abstract
Leafy heads of cabbage (Brassica oleracea), Chinese cabbage (Brassica rapa), and lettuce (Lactuca sativa) are composed of extremely incurved leaves. The shape of these heads often dictates the quality, and thus the commercial value, of these crops. Using quantitative trait locus mapping of head traits within a population of 150 recombinant inbred lines of Chinese cabbage, we investigated the relationship between expression levels of microRNA-targeted Brassica rapa ssp. pekinensis TEOSINTE BRANCHED1, cycloidea, and PCF transcription factor4 (BrpTCP4) genes and head shape. Here, we demonstrate that a cylindrical head shape is associated with relatively low BrpTCP4-1 expression, whereas a round head shape is associated with high BrpTCP4-1 expression. In the round-type Chinese cabbage, microRNA319 (miR319) accumulation and BrpTCP4-1 expression decrease from the apical to central regions of leaves. Overexpression of BrpMIR319a2 reduced the expression levels of BrpTCP4 and resulted in an even distribution of BrpTCP4 transcripts within all leaf regions. Changes in temporal and spatial patterns of BrpTCP4 expression appear to be associated with excess growth of both apical and interveinal regions, straightened leaf tips, and a transition from the round to the cylindrical head shape. These results suggest that the miR319a-targeted BrpTCP gene regulates the round shape of leafy heads via differential cell division arrest in leaf regions. Therefore, the manipulation of miR319a and BrpTCP4 genes is a potentially important tool for use in the genetic improvement of head shape in these crops.
Collapse
|
research-article |
11 |
71 |
9
|
Abstract
The microtubules of root hairs of Raphanus sativus, Lepidium sativum, Equisetum hyemale, Limnobium stoloniferum, Ceratopteris thalictroides, Allium sativum and Urtica dioica were investigated using immunofluorescence and electron microscopy. Arrays of cortical microtubules were observed in all hairs. The microtubules in the hairs show net axial orientations, but in Allium and Urtica helical microtubule patterns are also present. Numerical parameters of microtubules in Raphanus, Equisetum and Limnobium were determined from dry-cleave preparations. The results are discussed with respect to cell wall deposition and cell morphogenesis.
Collapse
|
|
40 |
63 |
10
|
Sjolund RD, Shih CY. Freeze-fracture analysis of phloem structure in plant tissue cultures. I. The sieve element reticulum. JOURNAL OF ULTRASTRUCTURE RESEARCH 1983; 82:111-21. [PMID: 6848770 DOI: 10.1016/s0022-5320(83)90101-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
During the differentiation of phloem sieve elements, the endoplasmic reticulum undergoes unique modifications to form the sieve element reticulum (SER) which persists in mature, functioning sieve tubes. Cisternae of the SER lack ribosomes and are restricted to the periphery of the sieve element at late stages of development. Some of the SER is seen as single cisternae that are in close contact with the sieve element plasma membrane. Thin sections and freeze-fracture images of sieve elements formed in tissue cultures demonstrate that the SER consists of both single cisternae and regions of stacked cisternae at some stages of maturity. The unstacked regions of the SER are continuous with the cisternae of the stacked regions. In freeze-fracture images the single cisternae adjacent to the plasma membrane are seen to be fenestrated and the openings allow continuity between the plasma membrane and the cell lumen. It is concluded that the interface between the SER and the plasma membrane of the sieve element serves to allow membrane functions such as proton efflux, proton-sucrose cotransport and compensating movements of ions to occur in a microenvironment that is separated from the moving translocation stream in the sieve element lumen. Passage of water and translocated solutes from the plasma membrane or the SER/PM interface to the interior of the cell is enhanced by the openings in the fenestrated regions of the SER. It is suggested tha the SER may also play a role in channeling ATP from mitochondria associated with the SER to the proton-pumping ATPase in the plasma membrane and that the SER may function in the uptake and release of potassium ions in the sieve element.
Collapse
|
|
42 |
60 |
11
|
Marshall AT, Haverkamp RG, Davies CE, Parsons JG, Gardea-Torresdey JL, van Agterveld D. Accumulation of gold nanoparticles in Brassic juncea. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2007; 9:197-206. [PMID: 18246768 DOI: 10.1080/15226510701376026] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Enzymatic digestion is proposed as a method for concentrating gold nanoparticles produced in plants. The mild conditions of digestion are used in order to avoid an increase in the gold particle size, which would occur with a high-temperature process, so that material suitable for catalysis may be produced. Gold nanoparticles of a 5-50-nm diameter, as revealed by transmission electron microscopy (TEM), at concentrations 760 and 1120 ppm Au, were produced within Brassica juncea grown on soil with 22-48 mg Au kg(-1). X-ray absorption near edge spectroscopy (XANES) reveals that the plant contained approximately equal quantities of Au in the metallic (Au0) and oxidized (Au+1) states. Enzymatic digestion dissolved 55-60 wt% of the plant matter. Due to the loss of the soluble gold fraction, no significant increase in the total concentration of gold in the samples was observed. However, it is likely that the concentration of the gold nanoparticles increased by a factor of two. To obtain a gold concentration suitable for catalytic reactions, around 95 wt% of the starting dry biomass would need to be solubilized or removed, which has not yet been achieved.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
58 |
12
|
Qing X, Zhao X, Hu C, Wang P, Zhang Y, Zhang X, Wang P, Shi H, Jia F, Qu C. Selenium alleviates chromium toxicity by preventing oxidative stress in cabbage (Brassica campestris L. ssp. Pekinensis) leaves. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:179-89. [PMID: 25638524 DOI: 10.1016/j.ecoenv.2015.01.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 05/11/2023]
Abstract
The beneficial role of selenium (Se) in alleviation of chromium (Cr)-induced oxidative stress is well established. However, little is known about the underlying mechanism. The impacts of exogenous Se (0.1mg/L) on Cr(1mg/L)-induced oxidative stress and antioxidant systems in leaves of cabbage (Brassica campestris L. ssp. Pekinensis) were investigated by using cellular and biochemical approaches. The results showed that supplementation of the medium with Se was effective in reducing Cr-induced increased levels of lipid peroxides and superoxide free radicals (O(-)2(·)), as well as increasing activities of superoxide dismutase (SOD) and peroxidase (POD). Meanwhile, 1mg/L Cr induced loss of plasma membrane integrity, growth inhibition, as well as ultrastructural changes of leaves were significantly reversed due to Se supplementation in the medium. In addition, Se application significantly altered the subcellular distribution of Cr which transported from mitochondria, nucleus and the cell-wall material to the soluble fraction and chloroplasts. However, Se application did no significant alteration of Cr effects on osmotic adjustment accumulating products. The study suggested that Se is able to protect leaves of cabbage against Cr toxicity by alleviation of Cr induced oxidative stress, and re-distribution of Cr in the subcellular of the leaf. Furthermore, free radicals, lipid peroxides, activity of SOD and POD, and subcellular distribution of Cr can be considered the efficient biomarkers to indicate the efficiency of Se to detoxification Cr.
Collapse
|
|
10 |
58 |
13
|
Sarmiento C, Ross JH, Herman E, Murphy DJ. Expression and subcellular targeting of a soybean oleosin in transgenic rapeseed. Implications for the mechanism of oil-body formation in seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1997; 11:783-96. [PMID: 9161036 DOI: 10.1046/j.1365-313x.1997.11040783.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Two genomic clones, encoding isoforms A and B of the 24 kDa soybean oleosin and containing 5 kbp and 1 kbp, respectively, of promoter sequence, were inserted separately into rapeseed plants. T2 seeds from five independent transgenic lines, three expressing isoform A and two expressing isoform B, each containing one or two copies of the transgene, were analysed in detail. In all five lines, the soybean transgenes exhibited the same patterns of mRNA and protein accumulation as the resident rapeseed oleosins, i.e. their expression was absolutely seed-specific and peaked at the mid-late stages of cotyledon development. The 24 kDa soybean oleosin was targeted to and stably integrated into oil bodies, despite the absence of a soybean partner isoform. The soybean protein accumulated in young embryos mainly as a 23 kDa polypeptide, whereas a 24 kDa protein predominated later in development. The ratio of rapeseed:soybean oleosin in the transgenic plants was about 5:1 to 6:1, as determined by SDS-PAGE and densitometry. Accumulation of these relatively high levels of soybean oleosin protein did not affect the amount of endogenous rapeseed oleosin. Immunoblotting studies showed that about 95% of the recombinant soybean 24 kDa oleosin (and the endogenous 19 kDa rapeseed oleosin) was targeted to oil bodies, with the remainder associated with the microsomal fraction. Sucrose density-gradient centrifugation showed that the oleosins were associated with a membrane fraction of buoyant density 1.10-1.14 g ml-1, which partially overlapped with several endoplasmic reticulum (ER) markers. Unlike oleosins associated with oil bodies, none of the membrane-associated oleosins could be immunoprecipitated in the presence of protein A-Sepharose, indicating a possible conformational difference between the two pools of oleosin. Complementary electron microscopy-immunocytochemical studies of transgenic rapeseed revealed that all oil bodies examined could be labelled with both the soybean or rapeseed anti-oleosin antibodies, indicating that each oil body contained a mixed population of soybean and rapeseed oleosins. A small but significant proportion of both soybean and rapeseed oleosins was located on ER membranes in the vicinity of oil bodies, but none were detected on the bulk ER cisternae. This is the first report of apparent targeting of oleosins via ER to oil bodies in vivo and of possible associated conformational/processing changes in the protein. Although oil-body formation per se can occur independently of oleosins, it is proposed that the relative net amounts of oleosin and oil accumulated during the course of seed development are a major determinant of oil-body size in desiccation-tolerant seeds.
Collapse
|
|
28 |
57 |
14
|
Hsieh K, Huang AHC. Lipid-rich tapetosomes in Brassica tapetum are composed of oleosin-coated oil droplets and vesicles, both assembled in and then detached from the endoplasmic reticulum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:889-99. [PMID: 16146527 DOI: 10.1111/j.1365-313x.2005.02502.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tapetosomes are abundant organelles in tapetum cells of floral anthers in Brassicaceae species. They contain triacylglycerols (TAGs), the amphipathic protein oleosins and putative vesicles and play a predominant role in pollen-coat formation. Here we report the biogenesis and structures of tapetosomes in Brassica. Immunofluorescence confocal microscopy revealed that during early anther development, the endoplasmic reticulum (ER) luminal protein calreticulin existed as a network in tapetum cells, which contained no oleosins. Subsequently, oleosins appeared together with calreticulin in the ER network, which possessed centers with a higher ratio of oleosin to calreticulin. Finally, the ER network largely disappeared, and solitary tapetosomes containing oleosins and calreticulin became abundant. Transmission electron microscopy also revealed a close association between a maturing tapetosome and numerous ER cisternae. Mature, solitary tapetosomes were isolated and found to contain oleosins, calreticulin and the ER luminal binding protein (BiP). Isolated tapetosomes were treated with sodium carbonate and subfractionated by centrifugation. Two morphologically distinct constituents were isolated: low-density oil droplets, which contained oleosins and TAGs, and relatively high-density cisternae-like vesicles, which possessed calreticulin and BiP. Thus, tapetosomes are composed of oleosin-coated oil droplets and vesicles, both of which are assembled in and then detached from the ER. The structure and biogenesis of tapetosomes are unique among eukaryotic organelles. After tapetum cells lyzed, oleosins but not calreticulin and BiP of tapetosomes were transferred to the pollen surface.
Collapse
|
|
20 |
57 |
15
|
Waltz F, Soufari H, Bochler A, Giegé P, Hashem Y. Cryo-EM structure of the RNA-rich plant mitochondrial ribosome. NATURE PLANTS 2020; 6:377-383. [PMID: 32251374 DOI: 10.1038/s41477-020-0631-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/02/2020] [Indexed: 05/25/2023]
Abstract
The vast majority of eukaryotic cells contain mitochondria, essential powerhouses and metabolic hubs1. These organelles have a bacterial origin and were acquired during an early endosymbiosis event2. Mitochondria possess specialized gene expression systems composed of various molecular machines, including the mitochondrial ribosomes (mitoribosomes). Mitoribosomes are in charge of translating the few essential mRNAs still encoded by mitochondrial genomes3. While chloroplast ribosomes strongly resemble those of bacteria4,5, mitoribosomes have diverged significantly during evolution and present strikingly different structures across eukaryotic species6-10. In contrast to animals and trypanosomatids, plant mitoribosomes have unusually expanded ribosomal RNAs and have conserved the short 5S rRNA, which is usually missing in mitoribosomes11. We have previously characterized the composition of the plant mitoribosome6, revealing a dozen plant-specific proteins in addition to the common conserved mitoribosomal proteins. In spite of the tremendous recent advances in the field, plant mitoribosomes remained elusive to high-resolution structural investigations and the plant-specific ribosomal features of unknown structures. Here, we present a cryo-electron microscopy study of the plant 78S mitoribosome from cauliflower at near-atomic resolution. We show that most of the plant-specific ribosomal proteins are pentatricopeptide repeat proteins (PPRs) that deeply interact with the plant-specific rRNA expansion segments. These additional rRNA segments and proteins reshape the overall structure of the plant mitochondrial ribosome, and we discuss their involvement in the membrane association and mRNA recruitment prior to translation initiation. Finally, our structure unveils an rRNA-constructive phase of mitoribosome evolution across eukaryotes.
Collapse
|
|
5 |
55 |
16
|
Davis AR, Pylatuik JD, Paradis JC, Low NH. Nectar-carbohydrate production and composition vary in relation to nectary anatomy and location within individual flowers of several species of Brassicaceae. PLANTA 1998; 205:305-18. [PMID: 9637073 DOI: 10.1007/s004250050325] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nectar-carbohydrate production and composition were investigated by high-performance liquid chromatography and enzymology in nine species from five tribes of the Brassicaceae. In six species (Arabidopsis thaliana (L.) Heynh., Brassica napus L., B. rapa L., Lobularia maritima (L.) Desv., Raphanus sativus L., Sinapis arvensis L.) that produced nectar from both lateral nectaries (associated with the short stamens) and median nectaries (outside the long stamens), on average 95% of the total nectar carbohydrate was collected from the lateral ones. Nectar from these glands possessed a higher glucose/fructose ratio (usually 1.0-1.2) than that from the median nectaries (0.2-0.9) within the same flower. Comparatively little sucrose was detected in any nectar samples except from Matthiola bicornus (Sibth. et Sm.) DC., which possessed lateral nectaries only and produced a sucrose-dominant exudate. The anatomy of the nectarial tissue in nectar-secreting flowers of six species, Hesperis matronalis L., L. maritima, M. bicornus, R. sativus, S. arvensis, and Sisymbrium loeselii L., was studied by light and scanning-electron microscopy. Phloem alone supplied the nectaries. However, in accordance with their overall nectar-carbohydrate production, the lateral glands received relatively rich quantities of phloem that penetrated far into the glandular tissue, whereas median glands were supplied with phloem that often barely innervated them. All nectarial tissue possessed modified stomata (with the exception of the median glands of S. loeselii, which did not produce nectar); further evidence was gathered to indicate that these structures do not regulate nectar flow by guard-cell movements. The numbers of modified stomata per gland showed no relation to nectar-carbohydrate production. Taken together, the data on nectar biochemistry and nectary anatomy indicate the existence of two distinct nectary types in those Brassicacean species that possess both lateral and median nectaries, regardless of whether nectarial tissue is united around the entire receptacle or not. It is proposed that the term "nectarium" be used to represent collectively the multiple nectaries that can be found in individual flowers.
Collapse
|
|
27 |
54 |
17
|
Wu Z, McGrouther K, Chen D, Wu W, Wang H. Subcellular distribution of metals within Brassica chinensis L. in response to elevated lead and Chromium Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4715-22. [PMID: 23621278 DOI: 10.1021/jf4005725] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Differential centrifugation and synchrotron radiation X-ray fluorescence spectroscopy (SRXRF) microprobe were used to study the distribution of the elements in tissue cross sections of pakchoi ( Brassica chinensis L.) under stress of elevated Pb and Cr. Subcellular fractionation of the different tissues grown in a nutrient solution containing 200 mg L(-1) Pb or 5 mg L(-1) Cr showed that 86.7 and 76.3% of the Pb that accumulated in the roots and shoots, respectively, was contained in the cell wall and vacuoles in those areas. Whereas 75.0% of the Cr that accumulated in the root was contained in the cell wall, 63.1% of the Cr that accumulated in the shoot was found in the vacuoles and cell wall. SRXRF analysis revealed that, when pakchoi seedlings were placed under excess Pb stress, the Pb, Ca, Cu, and Zn were concentrated in the cortex and vascular bundle of the root and mixed Fe-Mn plaques were seen on the surface of the pakchoi root. In the Cr treatment group, Cr, Ca, Mn, and Zn were mainly located in the cortex of the root, whereas in the stem, only Ca, Cu, and Zn were detected at higher levels in the cortex area. Thus, this study provides evidence that, in response to Pb and Cr stress, pakchoi uses cell walls and vacuoles to reduce the transport of these heavy metals through the plant, as well as restrict transport from the root to the stem.
Collapse
|
|
12 |
53 |
18
|
Ells TC, Truelstrup Hansen L. Strain and growth temperature influence Listeria spp. attachment to intact and cut cabbage. Int J Food Microbiol 2006; 111:34-42. [PMID: 16824634 DOI: 10.1016/j.ijfoodmicro.2006.04.033] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 02/28/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
Twenty four Listeria strains representing three different species and two serotypes of L. monocytogenes were investigated for their ability to attach to and colonize cabbage tissue. All strains exhibited a preference to attach to cut tissues compared to the intact leaf surfaces. Most strains attached to cut surfaces at levels 1.0 to 1.2 log CFU/cm(2) above numbers on intact tissue. Although all strains demonstrated the ability to colonize both intact and cut surfaces, some strains consistently exhibited higher levels of attachment. This attribute was independent of species or serotype. Scanning electron microscopy (SEM) revealed the presence of increased cell numbers on the cut edges with numerous cells located within folds and crevices. The distribution of cells found on the intact surfaces appeared to be randomly distributed with no apparent affinity for specialized surface structures such as stomata. SEM analysis also revealed the increased presence of large clusters of cells on leaf surfaces after 4 and 24 h. These cell aggregates appeared to be in the early stages of biofilm development. L. moncytogenes strain Scott A was used to examine the effect of prior growth temperature on attachment at 10 degrees C. Cells attached to intact cabbage surfaces within 5 min of exposure, with numbers reaching 4.3 log CFU/cm(2) for cells grown at 22 degrees C and 37 degrees C, and 3.8 log CFU/cm(2) for 10 degrees C cultures. The culture growth temperature was shown to significantly (P<0.05) affect the strength of attachment (S(R) values) during the first 4 h of exposure to intact surfaces, as cells cultivated at 37 degrees C were more easily removed from leaf surfaces than those cultivated at 10 degrees C or 22 degrees C. However, after 24 h binding was not significantly different between temperatures (P>0.05) where more than 80% of cells, regardless of cultivation temperature, remained attached to the leaf surfaces following successive washes. Irrespectively of prior growth temperature, increasing exposure time to the cabbage resulted in increased attached cell numbers as well as increased binding strength. The increase in development of cell clusters and early biofilm structures may explain the decreased efficiency over time in removal of cells from the cabbage surfaces. The information presented in this study may have important implications for produce handling practices and the implementation of wash regimes intended to remove microorganisms from edible plant surfaces.
Collapse
|
|
19 |
53 |
19
|
Ivanov R, Gaude T. Endocytosis and endosomal regulation of the S-receptor kinase during the self-incompatibility response in Brassica oleracea. THE PLANT CELL 2009; 21:2107-17. [PMID: 19622804 PMCID: PMC2729615 DOI: 10.1105/tpc.108.063479] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 07/06/2009] [Accepted: 07/10/2009] [Indexed: 05/17/2023]
Abstract
Intracellular trafficking of plant receptor kinases (PRKs) is a key step in regulation of cellular signaling. Our current knowledge in this field is based on systems that address signaling pathways affecting the whole cell. There are, however, signaling phenomena that add a further layer of complexity. In the Brassica self-incompatibility response, a single cell can adequately respond to two opposite stimuli: accepting cross-pollen and rejecting self-pollen simultaneously. To understand how PRK signaling can influence the coexistence of two seemingly exclusive states of the cell, we investigated the subcellular localization and internalization of the S-receptor kinase (SRK) involved in the self-incompatibility response of Brassica oleracea. Here, we describe the unusual subcellular distribution of SRK3, which localizes predominantly to intracellular compartments and to a much lesser extent to the plasma membrane. Using an anti-SRK antibody that fully substitutes for the natural ligand, we demonstrate that the interaction with the receptor takes place at the plasma membrane and is followed by SRK internalization in endosomes that are enriched in the SRK negative regulator Thioredoxin-h-like1.
Collapse
|
research-article |
16 |
49 |
20
|
Weng HX, Hong CL, Yan AL, Pan LH, Qin YC, Bao LT, Xie LL. Mechanism of iodine uptake by cabbage: effects of iodine species and where it is stored. Biol Trace Elem Res 2008; 125:59-71. [PMID: 18521548 DOI: 10.1007/s12011-008-8155-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Accepted: 04/23/2008] [Indexed: 11/26/2022]
Abstract
Iodine-enhanced vegetable has been proven to be an effective way to reduce iodine deficiency disorders in many regions. However, the knowledge about what mechanisms control plant uptake of iodine and where iodine is stored in plants is still very limited. A series of controlled experiments, including solution culture, pot planting, and field experiments were carried out to investigate the uptake mechanism of iodine in different forms. A new methodology for observing the iodine distribution within the plant tissues, based on AgI precipitation reaction and transmission electron microscope techniques, has been developed and successfully applied to Chinese cabbage. Results show that iodine uptake by Chinese cabbage was more effective when iodine was in the form of IO(3) (-) than in the form of I(-) if the concentration was low (<0.5 mg L(-1)), but the trend was opposite if iodine concentration was 0.5 mg L(-1) or higher. The uptake was more sensitive to metabolism inhibitor in lower concentration of iodine, which implies that the uptake mechanism transits from active to passive as the iodine concentration increases, especially when the iodine is in the form of IO(3) (-). The inorganic iodine fertilizer provided a quicker supply for plant uptake, but the higher level of iodine was toxic to plant growth. The organic iodine fertilizer (seaweed composite) provided a more sustainable iodine supply for plants. Most of the iodine uptake by the cabbage is intercepted and stored in the fibrins in the root while the iodine that is transported to the above-ground portion (shoots and leaves) is selectively stored in the chloroplasts.
Collapse
|
|
17 |
42 |
21
|
Carr SM, Irish VF. Floral homeotic gene expression defines developmental arrest stages in Brassica oleracea L. vars. botrytis and italica. PLANTA 1997; 201:179-88. [PMID: 9084216 DOI: 10.1007/bf01007702] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Brassica oleracea L. vars, italica (broccoli) and botrytis (cauliflower) both undergo developmental arrests which result in heading phenotypes. We characterized these arrested tissues at the morphological and molecular levels, and defined the developmental changes that ensure after arrest has been broken. We found that the order of floral organ initiation and the positions of resulting floral organ primordia in this species in some respects from that of Arabidopsis, which is a member of the same family, Brassicaceae. We also cloned homologs of the Arabidopsis floral homeotic genes APETALA1 (AP1) and APETALA3 (AP3) from B. oleracea and characterized their expression patterns. We found that the AP1 homolog was expressed in some of the meristems of arrest-stage cauliflower, providing evidence that this tissue is florally determined. In broccoli, both the AP1 and AP3 homologs were expressed. However, the spatial pattern of expression of the broccoli AP1 homolog differed from that of Arabidopsis. In addition we identified a homolog of the CAULIFLOWER (CAL) gene, BoiCAL, from broccoli. The predicted amino acid sequence indicated that the BoiCAL gene product does not contain the mutation thought to be responsible for the early arrest exhibited in cauliflower (Kempin et al. 1995), but contains other changes that might play a role in the broccoli heading phenotype.
Collapse
|
|
28 |
38 |
22
|
Neuhaus HE, Batz O, Thom E, Scheibe R. Purification of highly intact plastids from various heterotrophic plant tissues: analysis of enzymic equipment and precursor dependency for starch biosynthesis. Biochem J 1993; 296 ( Pt 2):395-401. [PMID: 8257430 PMCID: PMC1137709 DOI: 10.1042/bj2960395] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Starting with a protocol originally developed for the purification of intact plastids from cauliflower buds [Journet and Douce (1985) Plant Physiol. 79, 458-467] we have modified this method to obtain intact heterotrophic plastids from etiolated barley leaves (Hordeum vulgare) and pea (Pisum sativum) and maize (Zea mays) endosperm. Two subsequent centrifugation steps on Percoll gradients were performed, the first as an isopycnic, the second as zonal, centrifugation step in a swing-out rotor. Percoll density and centrifugation time were adjusted for the various tissues. The obtained plastid preparations are characterized by a low degree of contamination with other cellular components and an intactness of at least 90%. In isolated maize endosperm amyloplasts, starch synthesis is driven by exogenously applied hexose phosphates (glucose 6-phosphate and glucose 1-phosphate) rather than by dihydroxyacetone phosphate. The hexose-phosphate-dependent starch synthesis is strictly dependent upon the intactness of the plastids and is increased up to 9-fold when ATP and 3-phosphoglyceric acid are added to the incubation medium. The occurrence of fructose-1,6-bisphosphatase and malate dehydrogenases in some plastid types is discussed in relation to their possible role in starch synthesis.
Collapse
|
research-article |
32 |
35 |
23
|
Kuang A, Xiao Y, McClure G, Musgrave ME. Influence of microgravity on ultrastructure and storage reserves in seeds of Brassica rapa L. ANNALS OF BOTANY 2000; 85:851-859. [PMID: 11543312 DOI: 10.1006/anbo.2000.1153] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Successful plant reproduction under spaceflight conditions has been problematic in the past. During a 122 d opportunity on the Mir space station, full life cycles of Brassica rapa L. were completed in microgravity in a series of three experiments in the Svet greenhouse. Ultrastructural and cytochemical analyses of storage reserves in mature dry seeds produced in these experiments were compared with those of seeds produced during a high-fidelity ground control. Additional analyses were performed on developing Brassica embryos, 15 d post pollination, which were produced during a separate experiment on the Shuttle (STS-87). Seeds produced on Mir had less than 20% of the cotyledon cell number found in seeds harvested from the ground control. Cytochemical localization of storage reserves in mature cotyledons showed that starch was retained in the spaceflight material, whereas protein and lipid were the primary storage reserves in ground control seeds. Protein bodies in mature cotyledons produced in space were 44% smaller than those in the ground control seeds. Fifteen days after pollination, cotyledon cells from mature embryos formed in space had large numbers of starch grains, and protein bodies were absent, while in developing ground control seeds at the same stage, protein bodies had already formed and fewer starch grains were evident. These data suggest that both the late stage of seed development and maturation are changed in Brassica by growth in a microgravity environment. While gravity is not absolutely required for any step in the plant life cycle, seed quality in Brassica is compromised by development in microgravity.
Collapse
|
|
25 |
33 |
24
|
Fernandez DE, Turner FR, Crouch ML. In situ localization of storage protein mRNAs in developing meristems of Brassica napus embryos. Development 1991; 111:299-313. [PMID: 1893865 DOI: 10.1242/dev.111.2.299] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Probes derived from cDNA clones of napin and cruciferin, the major storage proteins of Brassica napus, and in situ hybridization techniques were used to examine changes in the spatial and temporal distribution of storage protein messages during the course of embryogeny, with a special emphasis on the developing apical meristems. Napin mRNAs begin to accumulate in the cortex of the axis during late heart stage, in the outer faces of the cotyledons during torpedo stage and in the inner faces of the cotyledons during cotyledon stage. Cruciferin mRNAs accumulate in a similar pattern but approximately 5 days later. Cells in the apical regions where root and shoot meristems develop do not accumulate storage protein messages during early stages of embryogeny. In the upper axis, the boundary between these apical cells and immediately adjacent cells that accumulate napin and cruciferin mRNAs is particularly distinct. Our analysis indicates that this boundary is not related to differences in tissue or cell type, but appears instead to be coincident with the site of a particular set of early cell divisions. A major change in the mRNA accumulation patterns occurs halfway through embryogeny, as the embryos enter maturation stage and start drying down. Final maturation of the shoot apical meristem is associated with the development of leaf primordia and the accumulation of napin mRNAs in the meristem, associated leaf primordia and vascular tissue. Cruciferin mRNAs accumulate only in certain zones of the shoot apical meristem and on the flanks of leaf primordia. Neither type of mRNA accumulates in the root apical meristem at any stage.
Collapse
|
|
34 |
31 |
25
|
Testillano PS, Coronado MJ, Seguí JM, Domenech J, González-Melendi P, Raska I, Risueño MC. Defined nuclear changes accompany the reprogramming of the microspore to embryogenesis. J Struct Biol 2000; 129:223-32. [PMID: 10806072 DOI: 10.1006/jsbi.2000.4249] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The switch of the gametophytic developmental program toward pollen embryogenesis to form a haploid plant represents an important alternative for plant breeding. In the present study, the switch of the gametophytic developmental program toward a sporophytic pathway, "embryogenesis," has been studied in three different plant species, Brassica, tobacco, and pepper. The switch has been induced by stress (heat shock) at the very responsive stage of the microspore, which is the vacuolate period. As a result, the cell nucleus undergoes striking structural changes with regard to late gametophytic development, including alterations of biosynthetic activities and proliferative activity. An enrichment in HSP70 heat-shock protein and in the presence of Ntf6-MAP kinase was observed after inductive treatment in the nuclei during early embryogenesis. This apparently reflected the possible roles of these proteins, specifically the protective role of HSP70 for the nuclear machinery, and signal transduction of Ntf6-MAPK for the entry of cells into proliferation. Importantly, the observed nuclear changes were similar in the three species investigated and represented convenient markers for early monitoring of embryogenesis and selection purposes for obtaining double-haploid plants in plant breeding.
Collapse
|
|
25 |
31 |