1
|
Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, MacDonald AS, Allen JE. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 2011; 332:1284-8. [PMID: 21566158 PMCID: PMC3128495 DOI: 10.1126/science.1204351] [Citation(s) in RCA: 1060] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A defining feature of inflammation is the accumulation of innate immune cells in the tissue that are thought to be recruited from the blood. We reveal that a distinct process exists in which tissue macrophages undergo rapid in situ proliferation in order to increase population density. This inflammatory mechanism occurred during T helper 2 (T(H)2)-related pathologies under the control of the archetypal T(H)2 cytokine interleukin-4 (IL-4) and was a fundamental component of T(H)2 inflammation because exogenous IL-4 was sufficient to drive accumulation of tissue macrophages through self-renewal. Thus, expansion of innate cells necessary for pathogen control or wound repair can occur without recruitment of potentially tissue-destructive inflammatory cells.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
1060 |
2
|
Loke P, Nair MG, Parkinson J, Guiliano D, Blaxter M, Allen JE. IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype. BMC Immunol 2002; 3:7. [PMID: 12098359 PMCID: PMC117781 DOI: 10.1186/1471-2172-3-7] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2002] [Accepted: 07/04/2002] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND "Alternatively-activated" macrophages are found in Th2-mediated inflammatory settings such as nematode infection and allergic pulmonary inflammation. Due in part to a lack of markers, these cells have not been well characterized in vivo and their function remains unknown. RESULTS We have used murine macrophages elicited by nematode infection (NeM(phi)) as a source of in vivo derived alternatively activated macrophages. Using three distinct yet complementary molecular approaches we have established a gene expression profile of alternatively activated macrophages and identified macrophage genes that are regulated in vivo by IL-4. First, genes abundantly expressed were identified by an expressed sequence tag strategy. Second, an array of 1176 known mouse genes was screened for differential expression between NeM(phi) from wild type or IL-4 deficient mice. Third, a subtractive library was screened to identify novel IL-4 dependent macrophage genes. Differential expression was confirmed by real time RT-PCR analysis. CONCLUSIONS Our data demonstrate that alternatively activated macrophages generated in vivo have a gene expression profile distinct from any macrophage population described to date. Several of the genes we identified, including those most abundantly expressed, have not previously been associated with macrophages and thus this study provides unique new information regarding the phenotype of macrophages found in Th2-mediated, chronic inflammatory settings. Our data also provide additional in vivo evidence for parallels between the inflammatory processes involved in nematode infection and allergy.
Collapse
|
research-article |
23 |
267 |
3
|
Loke P, Gallagher I, Nair MG, Zang X, Brombacher F, Mohrs M, Allison JP, Allen JE. Alternative activation is an innate response to injury that requires CD4+ T cells to be sustained during chronic infection. THE JOURNAL OF IMMUNOLOGY 2007; 179:3926-36. [PMID: 17785830 DOI: 10.4049/jimmunol.179.6.3926] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alternatively activated macrophages (AAMPhi) are found in abundance during chronic Th2 inflammatory responses to metazoan parasites. Important roles for these macrophages are being defined, particularly in the context of Th2-mediated pathology and fibrosis. However, a full understanding of the requirements for alternative activation, particularly at the innate level, is lacking. We present evidence that alternative activation by the Th2 cytokines IL-4 and IL-13 is an innate and rapid response to tissue injury that takes place even in the absence of an infectious agent. This early response does not require CD4+ Th2 cells because it occurred in RAG-deficient mice. However, class II-restricted CD4+ T cell help is essential to maintain AAMPhi in response to infection, because AAMPhi were absent in RAG-deficient and MHC class II-deficient, but not B cell-deficient mice after chronic exposure to the nematode parasite, Brugia malayi. The absence of AAMPhi was associated with increased neutrophilia and reduced eosinophilia, suggesting that AAMPhi are involved in the clearance of neutrophils as well as the recruitment of eosinophils. Consistent with this hypothesis, AAMPhi show enhanced phagocytosis of apoptotic neutrophils, but not latex beads. Our data demonstrate that alternative activation by type 2 cytokines is an innate response to injury that can occur in the absence of an adaptive response. However, analogous to classical activation by microbial pathogens, Th2 cells are required for maintenance and full activation during the ongoing response to metazoan parasites.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
215 |
4
|
King CL, Mahanty S, Kumaraswami V, Abrams JS, Regunathan J, Jayaraman K, Ottesen EA, Nutman TB. Cytokine control of parasite-specific anergy in human lymphatic filariasis. Preferential induction of a regulatory T helper type 2 lymphocyte subset. J Clin Invest 1993; 92:1667-73. [PMID: 8408619 PMCID: PMC288325 DOI: 10.1172/jci116752] [Citation(s) in RCA: 206] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The immunological mechanisms involved in maintenance of an asymptomatic microfilaremic state (MF) in patients with lymphatic filariasis remain undefined. MF patients have impaired filarial antigen (Ag)-specific lymphocyte proliferation and decreased frequencies (Fo) of Ag-specific T cells, and yet elevated serum IgE and antifilarial IgG4. To investigate the mechanism of Ag-specific anergy in MF patients in contrast to amicrofilaremic individuals with chronic lymphatic obstruction (CP), the Fo of Ag-specific lymphocytes from peripheral blood mononuclear cells secreting either IL-4 or IFN-gamma were assessed by filter spot enzyme-linked immunosorbent assay, and IL-10 and transforming growth factor-beta (TGF-beta) mRNA transcript levels were assessed by a semiquantitative reverse transcriptase polymerase chain reaction technique. The Fo of filaria-specific IL-4-secreting lymphocytes were equivalent in both MF (geometric mean [GM] = 1:11,700) and CP (GM = 1:29,300 P = 0.08), whereas the Fo of IFN-gamma-secreting lymphocytes were lower in MF (GM = 1:39,300) than in CP (GM = 1:4,200, P < 0.01). When the ratio of IL-4/IFN-gamma (T helper type 2 [Th2]/Th1)-secreting cells was examined, MF subjects showed a predominant Th2 response (8:1) compared with a Th1 response in CP individuals (1:4). mRNA transcript levels of IL-10 were also significantly elevated in MF compared with CP individuals (P < 0.01). Further, IL-10 and TGF-beta were shown to have a role in modulating the Ag-specific anergy among MF subjects, in that neutralizing anti-IL-10 or anti-TGF-beta significantly enhanced lymphocyte proliferation response (by 220-1,300%) to filarial Ags in MF individuals. These findings demonstrate that MF subjects respond to parasite antigen by producing a set of suppressive cytokines that may facilitate persistence of the parasite within humans while producing little clinical disease.
Collapse
|
research-article |
32 |
206 |
5
|
Babu S, Blauvelt CP, Kumaraswami V, Nutman TB. Regulatory networks induced by live parasites impair both Th1 and Th2 pathways in patent lymphatic filariasis: implications for parasite persistence. THE JOURNAL OF IMMUNOLOGY 2006; 176:3248-56. [PMID: 16493086 DOI: 10.4049/jimmunol.176.5.3248] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Patent lymphatic filariasis is characterized by a profound down-regulation of immune responses with both parasite Ag-specific tolerance and bystander suppression. Although this down-regulation is confined to the Th1 arm of the immune system in response to parasite Ag, we hypothesized a more generalized suppression in response to live parasites. Indeed, when we examined the cytokine profile of a cohort of filaria-infected (n = 10) and uninfected (n = 10) individuals in response to live infective-stage larvae or microfilariae of Brugia malayi, we found significant impairment of both Th1 and Th2 cytokines characterized by diminished production of IFN-gamma, TNF-alpha, IL-4, IL-5, and IL-10 in infected patients. The molecular basis of this impaired Th1/Th2 response was examined, and we identified three major networks of immunoregulation and tolerance. First, impaired induction of T-bet and GATA-3 mRNA underlies the Th1/Th2 deficiency in infected individuals. Second, regulatory networks, as evidenced by significantly increased expression of Foxp3 (natural regulatory T cell marker) and regulatory effectors such as TGF-beta, CTLA-4, PD-1, ICOS, and indoleamine 2,3-dioxygenase play an important role in immunosuppression. Third, the compromise of effector T cell function is mediated by the enhanced induction of anergy-inducing factors cbl-b, c-cbl (cbl is abbreviation for Casitas B lymphoma), Itch, and Nedd4. Indeed, blocking CTLA-4 or neutralizing TGF-beta restored the ability to mount Th1/Th2 responses to live parasites and reversed the induction of anergy-inducing factors. Hence, we conclude that a profound impairment of live parasite-specific Th1 and Th2 immune responses occurs in lymphatic filariasis that is governed at the transcriptional level by a complex interplay of inhibitory mediators.
Collapse
|
Research Support, N.I.H., Intramural |
19 |
191 |
6
|
Manoury B, Gregory WF, Maizels RM, Watts C. Bm-CPI-2, a cystatin homolog secreted by the filarial parasite Brugia malayi, inhibits class II MHC-restricted antigen processing. Curr Biol 2001; 11:447-51. [PMID: 11301256 DOI: 10.1016/s0960-9822(01)00118-x] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While interference with the class I MHC pathway by pathogen-encoded gene products, especially those of viruses, has been well documented, few examples of specific interference with the MHC class II pathway have been reported. Potential targets for such interference are the proteases that remove the invariant chain chaperone and generate antigenic peptides. Indeed, recent studies indicate that immature dendritic cells express cystatin C to modulate cysteine protease activity and the expression of class II MHC molecules [1]. Here, we show that Bm-CPI-2, a recently discovered cystatin homolog produced by the filarial nematode parasite Brugia malayi (W. F. Gregory et al., submitted), inhibits multiple cysteine protease activities found in the endosomes/lysosomes of human B lymphocyte lines. CPI-2 blocked the hydrolysis of synthetic substrates favored by two different families of lysosomal cysteine proteases and blocked the in vitro processing of the tetanus toxin antigen by purified lysosome fractions. Moreover, CPI-2 substantially inhibited the presentation of selected T cell epitopes from tetanus toxin by living antigen-presenting cells. Our studies provide the first example of a product from a eukaryotic parasite that can directly interfere with antigen presentation, which, in turn, may suggest how filarial parasites might inactivate the host immune response to a helminth invader.
Collapse
|
|
24 |
174 |
7
|
Nair MG, Cochrane DW, Allen JE. Macrophages in chronic type 2 inflammation have a novel phenotype characterized by the abundant expression of Ym1 and Fizz1 that can be partly replicated in vitro. Immunol Lett 2003; 85:173-80. [PMID: 12527225 DOI: 10.1016/s0165-2478(02)00225-0] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Using a murine model of nematode infection, we have discovered macrophages that display a novel phenotype that may be characteristic of macrophages in chronic type 2 inflammation. These nematode-elicited macrophages (NeMphi) are characterized by two unique features: the ability to actively suppress proliferation of a broad range of cell types and the high level expression of two novel macrophage genes, Ym1 and Fizz1. NeMphi also show some similarities with in vitro-derived 'alternatively activated macrophages' such as the downregulation of inflammatory cytokines. We therefore investigated how much of the phenotype discovered in vivo could be replicated by activation with Th2 cytokines in vitro. Fizz1 and Ym1 were upregulated by IL-4 and IL-13 in vitro but at a considerably lower level than in NeMphi. In vitro treatment with IL-4 could also partly replicate the ability of NeMphi to block cellular proliferation. As well as the quantitative differences in gene expression and suppressive phenotype, we also observed phenotypic differences in the cell morphology between macrophages activated in vivo and in vitro. Although this study illustrated that macrophages activated in chronic inflammation have distinct features that cannot be readily reproduced in vitro it also demonstrated that some features of the complex NeMphi phenotype can be replicated by treatment of cultured macrophages with Th2 cytokines. In future, we hope to use in vitro analysis to help define the pathways that lead to this distinctive in vivo macrophage phenotype.
Collapse
|
|
22 |
173 |
8
|
Gregory WF, Atmadja AK, Allen JE, Maizels RM. The abundant larval transcript-1 and -2 genes of Brugia malayi encode stage-specific candidate vaccine antigens for filariasis. Infect Immun 2000; 68:4174-9. [PMID: 10858234 PMCID: PMC101719 DOI: 10.1128/iai.68.7.4174-4179.2000] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lymphatic filariasis is a major tropical disease caused by the mosquito-borne nematodes Brugia and Wuchereria. About 120 million people are infected and at risk of lymphatic pathology such as acute lymphangitis and elephantiasis. Vaccines against filariasis must generate immunity to the infective mosquito-derived third-stage larva (L3) without accentuating immunopathogenic responses to lymphatic-dwelling adult parasites. We have identified two highly expressed genes, designated abundant larval transcript-1 and -2 (alt-1 and alt-2), from each of which mRNAs account for >1% of L3 cDNAs. ALT-1 and ALT-2 share 79% amino acid identity across 125 residues, including a putative signal sequence and a prominent acidic tract. Expression of alt-1 and alt-2 is initiated midway through development in the mosquito, peaking in the infective larva and declining sharply following entry into the host. Humans exposed to Brugia malayi show a high frequency of immunoglobulin G1 (IgG1) and IgG3 antibodies to ALT-1 and -2, distinguishing them from adult-stage antigens, which are targeted by the IgG4 isotype. Immunization of susceptible rodents (jirds) with ALT-1 elicited a 76% reduction in parasite survival, the highest reported for a single antigen from any filarial parasite. ALT-1 and the closely related ALT-2 are therefore strong candidates for a future vaccine against human filariasis.
Collapse
|
research-article |
25 |
139 |
9
|
Maizels RM, Gomez-Escobar N, Gregory WF, Murray J, Zang X. Immune evasion genes from filarial nematodes. Int J Parasitol 2001; 31:889-98. [PMID: 11406138 DOI: 10.1016/s0020-7519(01)00213-2] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Helminth parasites have large genomes (approximately 10(8) bp) which are likely to encode a spectrum of products able to block or divert the host immune response. We have employed three parallel approaches to identify the first generation of 'immune evasion genes' from parasites such as the filarial nematode Brugia malayi. The first strategy is a conventional route to characterise prominent surface or secreted antigens. In this way we have identified a 15-kDa protein, which is located on the surface of both L3 and adult B. malayi, and secreted by these parasites in vitro, as a member of the cystatin (cysteine protease inhibitor) family. This product, Bm-CPI-2, blocks conventional cysteine proteases such as papain, but also the aspariginyl endopeptidase involved in the Class II antigen processing pathway in human B cells. In parallel, we identified the major T cell-stimulating antigen from the microfilarial stage as a serpin (serine protease inhibitor), Bm-SPN-2. Microfilariae secrete this product which blocks two key proteases of the neutrophil, a key mediator of inflammation and innate immunity. The second route involves a priori hypotheses that helminth parasites encode homologues of mammalian cytokines such as TGF-beta which are members of broad, ancient metazoan gene families. We have identified two TGF-beta homologues in B. malayi, and shown that one form (Bm-TGH-2) is both secreted by adult parasites in vitro and able to bind to host TGF-beta receptors. Likewise, B. malayi expresses homologues of mammalian MIF, which are remarkably similar in both structure and function to the host protein, even though amino acid identity is only 28%. Finally, we deployed a third method of selecting critical genes, using an expression-based criterion to select abundant mRNAs taken from key points in parasite life histories. By this means, we have shown that the major transcript present in mosquito-borne infective larvae, Bm-ALT, is a credible vaccine candidate for use against lymphatic filariasis, while a second abundantly-expressed gene, Bm-VAL-1, is similar to a likely vaccine antigen being developed against hookworm parasites.
Collapse
|
Review |
24 |
128 |
10
|
Tawill S, Le Goff L, Ali F, Blaxter M, Allen JE. Both free-living and parasitic nematodes induce a characteristic Th2 response that is dependent on the presence of intact glycans. Infect Immun 2004; 72:398-407. [PMID: 14688121 PMCID: PMC343992 DOI: 10.1128/iai.72.1.398-407.2004] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with parasitic nematodes is characterized by the induction of a profound type 2 immune response. We have studied the role of glycans in the induction of the skewed type 2 response by antigens of the parasitic nematode Brugia malayi as well as the free-living nematode Caenorhabditis elegans. Lymph node cells from BALB/c mice immunized with soluble extracts of the two nematodes showed distinct antigen-specific proliferation and cytokine production; however, both nematodes induced antigen-specific interleukin 4 (IL-4) production, demonstrating that the induction of a biased type 2 response is not unique to parasitic nematodes. Sodium periodate-treated soluble extracts of both nematodes consistently induced significantly less IL-4 production than the respective mock-treated extracts, indicating that glycans play a critical role in the induction of the Th2 immune response by these nematodes. The glycan-dependent induction of the Th2-potentiating cytokine IL-4 occurs by 72 h postinoculation. Our data suggest that glycan determinants common to nematodes act as ligands, displaying distinct molecular patterns that trigger the immune system to launch a biased Th2 immune response upon exposure to these organisms or their products. Further, the similarity of our findings to those for Schistosoma mansoni egg antigen is striking considering the enormous phylogenetic distance between nematodes and trematodes. These data thus have important implications for how the mammalian host responds to widely divergent metazoan invaders and suggest that the powerful C. elegans model system can be used to address these questions.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
98 |
11
|
Babu S, Blauvelt CP, Kumaraswami V, Nutman TB. Diminished Expression and Function of TLR in Lymphatic Filariasis: A Novel Mechanism of Immune Dysregulation. THE JOURNAL OF IMMUNOLOGY 2005; 175:1170-6. [PMID: 16002719 DOI: 10.4049/jimmunol.175.2.1170] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lymphatic filariasis is a disease characterized by immune dysregulation involving APC and T cell populations. To assess the contribution of TLR in mediating this dysregulation, we examined the expression of TLR1, TLR2, TLR4, and TLR9 on B cells and monocytes of filaria-infected and uninfected individuals. Baseline expression of TLR was significantly lower in B cells but not in monocytes of the filaria-infected group compared with the uninfected group. Upon stimulation with filarial Ag, a diminished up-regulation of TLR was observed in both B cells and monocytes of infected individuals. Finally, stimulation of B cells and monocytes with TLR ligands resulted in decreased B cell and monocyte activation/cytokine production, indicating a state of immune tolerance. This dysregulation is associated with diminished CD4(+) T cell production of IFN-gamma and IL-5. The diminished expression and function of TLR is thus a likely consequence of chronic Ag stimulation and could serve as a novel mechanism underlying the dysfunctional immune response in filariasis.
Collapse
|
|
20 |
95 |
12
|
Rajan TV, Porte P, Yates JA, Keefer L, Shultz LD. Role of nitric oxide in host defense against an extracellular, metazoan parasite, Brugia malayi. Infect Immun 1996; 64:3351-3. [PMID: 8757874 PMCID: PMC174228 DOI: 10.1128/iai.64.8.3351-3353.1996] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mechanisms by which mammalian hosts eliminate microparasites such as bacteria and viruses are well established. In viral infections, these mechanisms include the interferons, neutralizing and opsonizing antibodies, and cytotoxic T lymphocytes. In bacterial infections, polymorphonuclear leukocytes and macrophages, often facilitated by opsonizing antibodies, ingest the infectious agent and mediate host defense. In addition, complement, in the presence of specific antibodies directed against surface antigens, can lyse certain bacterial pathogens. In contrast, our understanding of the host defenses against metazoan, extracellular parasites is less well grounded. We obtained data by two different approaches to document the role of nitric oxide (NO) as a mediator of host defense against a human nematode parasite. First, treatment of immunocompetent, nonpermissive mice with an inhibitor of NO synthase abrogated resistance to Brugia malayi, one of the causative agents of human lymphatic filariasis. Second, treatment of permissive, immunodeficient mice with a compound that releases NO conferred resistance to infection. These data reinforce studies by James and her coworkers (I. P. Oswald, T. A. Wynn, A. Sher, and S. L. James, Comp. Biochem. Physiol. Pharmacol. Toxicol. Endocrinol. 108:11-18, 1994) on the role of NO in defense against trematode parasites and of Kanazawa et al. (T. Kanazawa, H. Asahi, H. Hata; K. Machida, N. Kagei, and M. J. Stadecker, Parasite Immunol. 15: 619-623, 1993) on cestode parasites.
Collapse
|
research-article |
29 |
92 |
13
|
Allen JE, Lawrence RA, Maizels RM. APC from mice harbouring the filarial nematode, Brugia malayi, prevent cellular proliferation but not cytokine production. Int Immunol 1996; 8:143-51. [PMID: 8671598 DOI: 10.1093/intimm/8.1.143] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Specific T cell hyporesponsiveness and depressed antibody production is a key feature of human infection with the filarial nematodes, Brugia malayi and Wuchereria bancrofti. Despite this immune suppression, responses indicative of Th2 subset activation are present, including unusually high levels of specific IgG4. We tested the possibility that infection with filarial nematodes causes a reduction in the co-stimulatory or antigen-presenting capacity of macrophages resulting in a failure to activate specific T cells. Adherent peritoneal exudate cells (PEC) from mice implanted with adult B. Malayi were used to present antigen to the conalbumin-specific T cell clone, D10.G4. Proliferation of the D10 cells at even background levels was completely blocked by the presence of implant-derived adherent PEC. However, cytokine production by these cells in response to antigen was intact, and thus PEC from implanted mice are capable of functionally processing and presenting antigen. The elicitation of a suppressive cell population was specific for live adults as cells from mice implanted with dead adult parasites effectively stimulated D10 proliferation. The block in cellular proliferation is not due to the production of factors typically associated with macrophage suppression such as nitric oxide, prostaglandins or catalase. These observations are consistent with the T cell hyporesponsiveness seen in human cases of patent Brugia infection and may provide a murine model for the immune suppression seen in lymphatic filariasis.
Collapse
|
|
29 |
90 |
14
|
Hise AG, Daehnel K, Gillette-Ferguson I, Cho E, McGarry HF, Taylor MJ, Golenbock DT, Fitzgerald KA, Kazura JW, Pearlman E. Innate Immune Responses to EndosymbioticWolbachiaBacteria inBrugia malayiandOnchocerca volvulusAre Dependent on TLR2, TLR6, MyD88, and Mal, but Not TLR4, TRIF, or TRAM. THE JOURNAL OF IMMUNOLOGY 2007; 178:1068-76. [PMID: 17202370 DOI: 10.4049/jimmunol.178.2.1068] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The discovery that endosymbiotic Wolbachia bacteria play an important role in the pathophysiology of diseases caused by filarial nematodes, including lymphatic filariasis and onchocerciasis (river blindness) has transformed our approach to these disabling diseases. Because these parasites infect hundreds of millions of individuals worldwide, understanding host factors involved in the pathogenesis of filarial-induced diseases is paramount. However, the role of early innate responses to filarial and Wolbachia ligands in the development of filarial diseases has not been fully elucidated. To determine the role of TLRs, we used cell lines transfected with human TLRs and macrophages from TLR and adaptor molecule-deficient mice and evaluated macrophage recruitment in vivo. Extracts of Brugia malayi and Onchocerca volvulus, which contain Wolbachia, directly stimulated human embryonic kidney cells expressing TLR2, but not TLR3 or TLR4. Wolbachia containing filarial extracts stimulated cytokine production in macrophages from C57BL/6 and TLR4(-/-) mice, but not from TLR2(-/-) or TLR6(-/-) mice. Similarly, macrophages from mice deficient in adaptor molecules Toll/IL-1R domain-containing adaptor-inducing IFN-beta and Toll/IL-1R domain-containing adaptor-inducing IFN-beta-related adaptor molecule produced equivalent cytokines as wild-type cells, whereas responses were absent in macrophages from MyD88(-/-) and Toll/IL-1R domain-containing adaptor protein (TIRAP)/MyD88 adaptor-like (Mal) deficient mice. Isolated Wolbachia bacteria demonstrated similar TLR and adaptor molecule requirements. In vivo, macrophage migration to the cornea in response to filarial extracts containing Wolbachia was dependent on TLR2 but not TLR4. These results establish that the innate inflammatory pathways activated by endosymbiotic Wolbachia in B. malayi and O. volvulus filaria are dependent on TLR2-TLR6 interactions and are mediated by adaptor molecules MyD88 and TIRAP/Mal.
Collapse
|
|
18 |
88 |
15
|
Semnani RT, Liu AY, Sabzevari H, Kubofcik J, Zhou J, Gilden JK, Nutman TB. Brugia malayi microfilariae induce cell death in human dendritic cells, inhibit their ability to make IL-12 and IL-10, and reduce their capacity to activate CD4+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1950-60. [PMID: 12902498 DOI: 10.4049/jimmunol.171.4.1950] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Parasite Ag-specific T cell unresponsiveness and diminished IFN-gamma production are immunologic hallmarks of patent infection with lymph-dwelling filarial nematodes. Although this diminished responsiveness is directed primarily against the intravascular microfilarial (MF) parasite stage and mediated in part by reduced APC function, the mechanisms involved are not fully understood. In this report, we demonstrate that human dendritic cells (DC) exposed to live MF up-regulate both the cell surface and gene expression of CD54 (ICAM-1). Moreover, live MF result in a 3-fold increase in DC death compared with MF-unexposed DC, primarily due to apoptosis. Notably, microarray and real-time RT-PCR data indicate that live MF concurrently up-regulate mRNA expression of proinflammatory molecules such as IL-8, RANTES, IL-1alpha, TNF-alpha, and IL-beta in DC, the presence of which is also detected at the protein level, while inhibiting the production of IL-12 (p40 and p70) and IL-10. Soluble excretory-secretory products from live MF diminished IL-12 and IL-10 production and induced DC death, although to a lesser degree. Moreover, exposure of DC to live MF resulted in a decrease in the ability of DC to promote CD4(+) T cell production of IFN-gamma and IL-5. Our findings clearly suggest that the interaction between live MF and DC is complex but contributes to the hyporesponsiveness and parasite persistence associated with the MF(+) state in the infected human. These data further suggest that MF induce an orchestrated response in APC that leads to a diminished capacity to function appropriately, which in turn has significant consequences for CD4(+) T cells.
Collapse
|
|
22 |
88 |
16
|
Maizels RM, Blaxter ML, Scott AL. Immunological genomics of Brugia malayi: filarial genes implicated in immune evasion and protective immunity. Parasite Immunol 2001; 23:327-44. [PMID: 11472553 DOI: 10.1046/j.1365-3024.2001.00397.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Filarial nematodes are metazoan parasites with genome sizes of> 100 million base pairs, probably encoding 15 000-20 000 genes. Within this considerable gene complement, it seems likely that filariae have evolved a spectrum of immune evasion products which underpin their ability to live for many years within the human host. Moreover, no suitable vaccine currently exists for human filarial diseases, and few markers have yet been established for diagnostic use. In this review, we bring together biochemical and immunological data on prominent filarial proteins with the exciting new information provided by the Filarial Genome Project's expressed sequence tag (EST) database. In this discussion, we focus on those genes with the highest immunological profile, such as inhibitors of host enzymes, cytokine homologues and stage-specific surface proteins, as well as products associated with the mosquito-borne infective larva which offer the best opportunity for an anti-filarial vaccine. These gene products provide a fascinating glimpse of the molecular repertoire which helminth parasites have evolved to manipulate and evade the mammalian immune response.
Collapse
|
Review |
24 |
86 |
17
|
Mitre E, Taylor RT, Kubofcik J, Nutman TB. Parasite antigen-driven basophils are a major source of IL-4 in human filarial infections. THE JOURNAL OF IMMUNOLOGY 2004; 172:2439-45. [PMID: 14764715 DOI: 10.4049/jimmunol.172.4.2439] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Basophil contribution to the IL-4 pool in filarial infections was assessed using PBMC from 20 patients with active filarial infections and from 9 uninfected subjects. Patient basophils released histamine in response to Brugia malayi Ag (BmAg). They also released IL-4 within 2 h after exposure to BmAg, as assessed by intracellular cytokine flow cytometry. This IL-4 induction was Ag specific, as IL-4 was not detected in BmAg-exposed basophils obtained from uninfected subjects. Although there were, on average, 64 times more CD4(+) T cells than basophils in the peripheral circulation of filaria-infected patients, the absolute numbers of basophils and CD4(+) T cells producing IL-4 per 100000 PBMC were equivalent (geometric mean: 16 IL-4-producing basophils/100000 PBMC vs 22 IL-4-producing CD4(+) T cells/100000 PBMC). Basophils also released IL-4 in response to both low and high concentrations of BmAg, whereas CD4(+) T cells released IL-4 only after incubation with a high concentration of BmAg, raising the possibility that basophils, due to their lower threshold for activation, may actually release IL-4 more frequently than CD4(+) T cells in vivo. Furthermore, IL-4 production in vitro by Ag-stimulated purified basophils or CD4(+) T cells provided evidence that basophils release greater quantities of IL-4 per cell than CD4(+) T cells in response to BmAg. These results suggest that, when Ag-specific IgE is present in a filaria-infected individual, basophils function to amplify the ongoing Th2 response by releasing IL-4 in greater amounts and possibly more frequently than CD4(+) T cells in response to filarial Ag.
Collapse
|
Journal Article |
21 |
85 |
18
|
Taylor MJ, Cross HF, Ford L, Makunde WH, Prasad GB, Bilo K. Wolbachia bacteria in filarial immunity and disease. Parasite Immunol 2001; 23:401-9. [PMID: 11472559 DOI: 10.1046/j.1365-3024.2001.00400.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lymphatic filarial nematodes are infected with endosymbiotic Wolbachia bacteria. Lipopolysaccharide from these bacteria is the major activator of innate inflammatory responses induced directly by the parasite. Here, we propose a mechanism by which Wolbachia initiates acute inflammatory responses associated with death of parasites, leading to acute filarial lymphangitis and adverse reactions to antifilarial chemotherapy. We also speculate that repeated exposure to acute inflammatory responses and the chronic release of bacteria, results in damage to infected lymphatics and desensitization of the innate immune system. These events will result in an increased susceptibility to opportunistic infections, which cause acute dermatolymphangitis associated with lymphoedema and elephantiasis. The recognition of the contribution of endosymbiotic bacteria to filarial disease could be exploited for clinical intervention by the targeting of bacteria with antibiotics in an attempt to reduce the development of filarial pathology.
Collapse
|
Review |
24 |
84 |
19
|
Murray J, Gregory WF, Gomez-Escobar N, Atmadja AK, Maizels RM. Expression and immune recognition of Brugia malayi VAL-1, a homologue of vespid venom allergens and Ancylostoma secreted proteins. Mol Biochem Parasitol 2001; 118:89-96. [PMID: 11704277 DOI: 10.1016/s0166-6851(01)00374-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several important nematode parasites have been found to express members of a gene family variously termed as venom allergen antigen homologue (vah) or Ancylostoma secreted protein (asp). In some cases these products are secreted by infective larval stages and have been suggested to be effective vaccine immunogens. We isolated the corresponding gene from the human filarial nematode, Brugia malayi, by first searching the expressed sequence tag (EST) dataset generated by the Filarial Genome Project and then using gene-specific nondegenerate primers matching the selected gene for PCR, from B. malayi cDNA libraries. We report here the full-length gene sequence, which we have designated as Bm-val-1, for vah/asp-like. The corresponding protein (Bm-VAL-1) contains 232 amino acids in a single homology unit, unlike products from some other species in which there is a tandem repeat. A putative signal sequence is present at the 5' end and there are two potential N-glycosylation sites. Murine antibodies to recombinant Bm-VAL-1 react with a 28 kDa protein in L3 extracts and recombinant Bm-VAL-1 is recognised by murine T cells primed with soluble L3 proteins. Of 82 ESTs corresponding to Bm-val-1, 72 are recorded from the infective larval (L3) stage. However, PCR on the first-strand cDNA from later mammalian stages revealed some expression at most subsequent time points. Over 95% (20/21) of microfilaraemic human filariasis patients are seropositive for antibodies to Bm-VAL-1, with particularly high levels of IgG3 and IgG4 isotypes. The IgG4 subclass may indicate stimulation by adult and/or microfilarial-derived immunogens. The association of Bm-VAL-1 with the infective stage and its recognition by humans exposed to filariasis suggests that further evaluation of this antigen as a vaccine candidate should be performed.
Collapse
|
|
24 |
81 |
20
|
Gnanasekar M, Rao KVN, He YX, Mishra PK, Nutman TB, Kaliraj P, Ramaswamy K. Novel phage display-based subtractive screening to identify vaccine candidates of Brugia malayi. Infect Immun 2004; 72:4707-15. [PMID: 15271932 PMCID: PMC470678 DOI: 10.1128/iai.72.8.4707-4715.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study describes a novel phage display method based on an iterative subtraction strategy to identify candidate vaccine antigens of Brugia malayi. A cDNA library of the infective larval stage of B. malayi expressed on the surface of T7 phage was sequentially screened with sera samples from human subjects showing different manifestations of the disease. Antigens that selectively and specifically bind to immune sera were then enriched using a multi-step panning procedure. This strategy identified five antigens, four of which were previously reported (ALT-2, TPX-2, VAH and COX-2) and the other one was a novel cuticular collagen (Col-4). Sera from immune individuals specifically recognized all the five antigens. However, ALT-2 appeared to be the most predominantly recognized antigen by the immune sera. Therefore, it was decided to evaluate the vaccine potential of recombinant ALT-2 (rALT-2) in a mouse and jird model. The results presented show that immunization with rALT-2 conferred over 73% protection against a challenge infection in the jird model and over 64% protection in the mouse model. The present study suggests that phage display-based cDNA screening may be a powerful tool to identify candidate vaccine antigens of infectious agents.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
80 |
21
|
Steel C, Nutman TB. CTLA-4 in filarial infections: implications for a role in diminished T cell reactivity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1930-8. [PMID: 12574361 DOI: 10.4049/jimmunol.170.4.1930] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To determine the role that CTLA-4 might play in mediating the diminished parasite Ag-specific T cell responsiveness that is characteristically seen in filaria-infected patients, several study populations and methods were used. First, quantitative assessment of mRNA expression determined that PBMC from uninfected adolescents exposed in utero to microfilarial (Mf) Ag demonstrated a strong up-regulation of CTLA-4 to the Mf stage of the parasite in contrast to that observed in cells from children born of uninfected mothers (p = 0.005). Next, the frequency of CTLA-4 expression was examined using flow cytometry in cells from filaria-infected and -uninfected individuals ex vivo. Individuals born in filarial endemic regions of the world (with long-standing infections) had greater percentages of CD4(+)CTLA-4(+) cells than did expatriate infected or uninfected individuals (p = 0.005 and 0.05, respectively); in addition, Mf(+) patients demonstrated higher frequencies of CD4(+)CTLA-4(+) and CD8(+)CTLA-4(+) cells (p = 0.027 and 0.037, respectively) than did Mf(-) infected individuals. Of interest, the greatest intensity of CTLA-4 expression occurred in CD4(+)CD25(+) cells, a population purported to include suppressor cells. Finally, in vitro blocking of CTLA-4 expression in PBMC from filaria-infected individuals induced a mean increase of 44% in IL-5 production to Mf Ag, whereas there was a concurrent mean decrease of 42% in IFN-gamma production, suggesting that CTLA-4 also acts to alter the Th1/Th2 balance in filaria-infected individuals. Together, these data indicate a significant role for CTLA-4 in regulating the host response to filarial infections and that factors such as length of exposure and patency are important codeterminants.
Collapse
|
|
22 |
79 |
22
|
Palanivel V, Posey C, Horauf AM, Solbach W, Piessens WF, Harn DA. B-cell outgrowth and ligand-specific production of IL-10 correlate with Th2 dominance in certain parasitic diseases. Exp Parasitol 1996; 84:168-77. [PMID: 8932766 DOI: 10.1006/expr.1996.0102] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In many parasitic infections, dominant T helper cell (Th) type-2 CD4+ T cell responses exacerbate the disease. We have previously demonstrated that lacto-N-fucopentaose-III (LNFPIII), a sugar found on soluble egg antigens (SEA) of Schistosoma mansoni, stimulates splenic B cells from parasite-infected mice to proliferate and produce IL-10, a cytokine that promotes the generation of Th2 immune responses. In the present study, we extend our observations on ligand-specific activation of IL-10 producing B cells to leishmaniasis and lymphatic filariasis. We report here that infection with Leishmania major increases the splenic B220+ B cell subset in BALB/c mice, but not BALB/c. xid (lacking B-1 cells and carrying defective B-2 cells). In addition, these B cells secrete large amounts of IL-10 in vitro in response to stimulation with soluble leishmanial extract (LSE), LNFPIII, or SO4-Lewis(x). We also observed that injection of LSE increased the level of peritoneal exudate (PeC) B-1 cells (CD5+B220+) in BALB/c mice, but not C57BL/6, as compared to buffer-injected controls. Further, LSE elicited PeC B cells secreted IL-10 in response to LSE as well as to the sugars tested. A similar differential secretion of IL-10 by splenic B cells from BALB/c and BALB/c.xid was seen after S. mansoni infection. Likewise, injection of soluble microfilarial extract (MFX) resulted in an increase in percentage of PeC B-1 cells in BALB/c mice, but not C57BL/6, and these cells secreted IL-10 in response to stimulation with MFX or phosphorylcholine (PC). Collectively, these results suggest a correlation between expansion of ligand-specific IL-10 producing B and B-1 cells with dominance of Th2-type T cells in mice with the susceptible phenotype for these diseases.
Collapse
|
|
29 |
77 |
23
|
Babu S, Kumaraswami V, Nutman TB. Alternatively activated and immunoregulatory monocytes in human filarial infections. J Infect Dis 2009; 199:1827-37. [PMID: 19456233 PMCID: PMC3440875 DOI: 10.1086/599090] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Monocytes/macrophages from filaria-infected animals exhibit an alternatively activated phenotype; however, very little is known about the alternative activation phenotype of monocytes in human filarial infection. METHODS To elucidate the activation and cytokine profile of monocytes in human filarial infection, we examined the expression patterns of genes encoding arginase, nitric oxide synthase 2, alternative activation markers, and cytokines in monocytes from individuals with asymptomatic filarial infection and individuals without filarial infection, ex vivo and in response to filarial antigen (Brugia malayi antigen [BmA]). RESULTS Monocytes from patients with asymptomatic filarial infection exhibited significantly diminished expression of NOS2 and significantly enhanced expression of ARG1. These changes were associated with significantly increased expression of the genes encoding resistin, mannose receptor C type 1 (MRC1), macrophage galactose type C lectin (MGL), and chemokine ligand 18 (CCL18). In response to BmA, purified monocytes from infected individuals also expressed significantly lower levels of interleukin (IL)-12 and IL-18 but, in contrast, expressed significantly higher levels of transforming growth factor beta, IL-10, and suppressor of cytokine signaling 1 mRNA. Inhibition of arginase-1 resulted in significantly diminished expression of the genes encoding resistin, MRC1, MGL, and CCL18, as well as significantly enhanced expression of NOS2 and the genes encoding IL-12 and IL-18. CONCLUSION Patent human filarial infection is associated with the presence of monocytes characterized by an alternatively activated immunoregulatory phenotype.
Collapse
|
Research Support, N.I.H., Intramural |
16 |
77 |
24
|
Rao KV, Eswaran M, Ravi V, Gnanasekhar B, Narayanan RB, Kaliraj P, Jayaraman K, Marson A, Raghavan N, Scott AL. The Wuchereria bancrofti orthologue of Brugia malayi SXP1 and the diagnosis of bancroftian filariasis. Mol Biochem Parasitol 2000; 107:71-80. [PMID: 10717303 DOI: 10.1016/s0166-6851(99)00231-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gene encoding the Wuchereria bancrofti orthologue of the Brugia malayi-derived diagnostic antigen SXP1 was identified from a W. bancrofti L3 cDNA library and characterized. The Wb-sxp-1 cDNA encoded a basic protein with a calculated molecular mass of 20.8 kDa. Wb-SXP-1 was 85% identical to the SXP1 protein described from B. malayi (Bm-SXP-1). The Wb-SXP-1 sequence also showed significant identity with proteins described from B. pahangi, Onchocerca volvulus, Acanthochilonema vitea, Ascaris suum, Loa loa, Litomosoides sigmodontis and Caenorhabditis elegans. The presence of a number of invariant and conserved residues in all of these nematode-derived molecules suggests that Wb-SXP-1 is a member of a new protein family. A recombinant form of Wb-SXP-1 was produced and it was determined that the anti-Wb-SXP-1 antibody response in patients with W. bancrofti infections was restricted to the IgG4 subclass. An anti-Wb-SXP-1 IgG4 ELISA was developed and this assay was found to be 100% sensitive for patients with patent W. bancrofti infection. Sera from individuals experiencing chronic pathology, endemic normals or patients with non-filarial nematode infections had no detectable IgG4 against Wb-SXP-1. While patients with patent Onchocerca volvulus infections were uniformly negative in the Wb-SXP-1 assay, 40% of sera from patent Loa loa infections were positive. When Bm-SXP-1 was used as the antigen under identical conditions, the assay was 88% specific for patent W. bancrofti infections and the antigen was recognized by antibodies from both O. volvulus and L. loa infections. The results strongly suggested that, for certain diagnostic filarial antigens, the use of same-species molecules can enhance the specificity of diagnostic tests.
Collapse
|
|
25 |
74 |
25
|
Loke P, MacDonald AS, Allen JE. Antigen-presenting cells recruited by Brugia malayi induce Th2 differentiation of naïve CD4(+) T cells. Eur J Immunol 2000; 30:1127-35. [PMID: 10760802 DOI: 10.1002/(sici)1521-4141(200004)30:4<1127::aid-immu1127>3.0.co;2-#] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A key feature of nematode infection is a bias towards a type 2 immune response. To investigate the role that antigen-presenting cells (APC) may play in promoting this bias, we used adherent peritoneal exudate cells (PEC) recruited in response to the filarial nematode Brugia malayi, to stimulate naïve T cells from pigeon cytochrome c (PCC)-specific TCR transgenic (PCC-tg) mice. Although the proliferation of PCC-tg T cells was inhibited by parasite- induced PEC during primary stimulation, they proliferated normally upon secondary stimulation and were not rendered anergic. However, PCC-tg T cells primed by suppressive APC differentiated into IL-4-producing Th2 cells upon secondary stimulation instead of IFN-gamma-producing Th1 cells, as has been previously described. Studies with carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled cells indicated that Th2 differentiation was associated with the inhibition of (or failure to stimulate) IFN-gamma production during primary stimulation. Interestingly, blocking antibodies against TGF-beta (but not IL-10) restored the differentiation of IFN-gamma-producing Th1 cells. Identical results with CFSE-labeled cells were obtained using purified IL-4-dependent F4/80(+) macrophages. These data indicate that T cells exposed to parasite-induced alternatively activated macrophages are driven towards Th2 differentiation. This may be an important factor in the Th2 bias that accompanies nematode infection.
Collapse
|
|
25 |
73 |