1
|
Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M, Förster R. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 2000; 192:1545-52. [PMID: 11104797 PMCID: PMC2193094 DOI: 10.1084/jem.192.11.1545] [Citation(s) in RCA: 1136] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chemokines and their receptors have been identified as major regulators controlling the functional organization of secondary lymphoid organs. Here we show that expression of CXC chemokine receptor 5 (CXCR5), a chemokine receptor required for B cell homing to B cell follicles, defines a novel subpopulation of B helper T cells localizing to follicles. In peripheral blood these cells coexpress CD45RO and the T cell homing CC chemokine receptor 7 (CCR7). In secondary lymphoid organs, CD4(+)CXCR5(+) cells lose expression of CCR7, which allows them to localize to B cell follicles and germinal centers where they express high levels of CD40 ligand (CD40L), a costimulatory molecule required for B cell activation and inducible costimulator (ICOS), a recently identified costimulatory molecule of the CD28 family. Thus, when compared with CD4(+)CD45RO(+)CXCR5(-) cells, CD4(+)CD45RO(+)CXCR5(+) tonsillar T cells efficiently support the production of immunoglobulin (Ig)A and IgG. In contrast, analysis of the memory response revealed that long-lasting memory cells are found within the CD4(+)CD45RO(+)CXCR5(-) population, suggesting that CXCR5(+)CD4 cells represent recently activated effector cells. Based on the characteristic localization within secondary lymphoid organs, we suggest to term these cells "follicular B helper T cells" (T(FH)).
Collapse
MESH Headings
- Antibody Formation
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/genetics
- B-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/classification
- CD4-Positive T-Lymphocytes/immunology
- CD40 Ligand/biosynthesis
- Cell Fractionation
- Cytokines/biosynthesis
- Germinal Center/cytology
- Germinal Center/immunology
- Humans
- Immunoglobulin A/biosynthesis
- Immunoglobulin G/biosynthesis
- Immunoglobulin M/biosynthesis
- Immunologic Memory/immunology
- Inducible T-Cell Co-Stimulator Protein
- Leukocytes, Mononuclear/classification
- Leukocytes, Mononuclear/immunology
- Lymphoid Tissue/cytology
- Lymphoid Tissue/immunology
- Receptors, CCR7
- Receptors, CXCR5
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/genetics
- Receptors, Chemokine/immunology
- Receptors, Cytokine/biosynthesis
- Receptors, Cytokine/genetics
- Receptors, Cytokine/immunology
- Receptors, Lymphocyte Homing/biosynthesis
- Receptors, Lymphocyte Homing/genetics
- Receptors, Lymphocyte Homing/immunology
- T-Lymphocytes, Helper-Inducer/classification
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
Collapse
|
research-article |
25 |
1136 |
2
|
Makowski L, Brittingham KC, Reynolds JM, Suttles J, Hotamisligil GS. The fatty acid-binding protein, aP2, coordinates macrophage cholesterol trafficking and inflammatory activity. Macrophage expression of aP2 impacts peroxisome proliferator-activated receptor gamma and IkappaB kinase activities. J Biol Chem 2005; 280:12888-95. [PMID: 15684432 PMCID: PMC3493120 DOI: 10.1074/jbc.m413788200] [Citation(s) in RCA: 322] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fatty acid-binding proteins are cytosolic fatty acid chaperones, and the adipocyte isoform, aP2, plays an important role in obesity and glucose metabolism. Recently, this protein has been detected in macrophages where it strongly contributes to the development of atherosclerosis. Here, we investigated the role of aP2 in macrophage biology and the molecular mechanisms underlying its actions. We demonstrate that aP2-deficient macrophages display defects in cholesterol accumulation and alterations in pro-inflammatory responsiveness. Deficiency of aP2 alters the lipid composition in macrophages and enhances peroxisome proliferator-activated receptor gamma activity, leading to elevated CD36 expression and enhanced uptake of modified low density lipoprotein. The increased peroxisome proliferator-activated receptor gamma activity in aP2-deficient macrophages is also accompanied by a significant stimulation of the liver X receptor alpha-ATP-binding cassette transporter A1-mediated cholesterol efflux pathway. In parallel, aP2-deficient macrophages display reduced IkappaB kinase and NF-kappaB activity, resulting in suppression of inflammatory function including reduced cyclooxygenase-2 and inducible nitric-oxide synthase expression and impaired production of inflammatory cytokines. Our results demonstrate that aP2 regulates two central molecular pathways to coordinate macrophage cholesterol trafficking and inflammatory activity.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
322 |
3
|
Dong C, Temann UA, Flavell RA. Cutting edge: critical role of inducible costimulator in germinal center reactions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:3659-62. [PMID: 11238604 DOI: 10.4049/jimmunol.166.6.3659] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inducible costimulator (ICOS) is a new member of the CD28/CTLA-4 family that is expressed on activated and germinal center (GC) T cells. Recently, we reported that ICOS-deficient mice exhibited profound defects in T cell activation and effector function. Ab responses in a T-dependent primary reaction and in a murine asthma model were also diminished. In the current study, we investigate the mechanism by which ICOS regulates humoral immunity and examine B cell GC reactions in the absence of ICOS. We found that ICOS(-/-) mice, when immunized with SRBC, had smaller GCs. Furthermore, IgG1 class switching in the GCs was impaired. Remarkably, GC formation in response to a secondary recall challenge was completely absent in ICOS knockout mice. These data establish a critical role of ICOS in regulation of humoral immunity.
Collapse
MESH Headings
- Animals
- Antigens/administration & dosage
- Antigens/immunology
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/physiology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- CD40 Ligand/biosynthesis
- Germinal Center/immunology
- Germinal Center/metabolism
- Germinal Center/pathology
- Immunization, Secondary
- Immunoglobulin Class Switching/genetics
- Immunoglobulin G/biosynthesis
- Inducible T-Cell Co-Stimulator Protein
- Lymphocyte Activation/genetics
- Mice
- Mice, Knockout
- Peanut Agglutinin/biosynthesis
- Sheep
- Spleen/immunology
- Spleen/metabolism
- Spleen/pathology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
|
|
24 |
165 |
4
|
May AE, Kälsch T, Massberg S, Herouy Y, Schmidt R, Gawaz M. Engagement of glycoprotein IIb/IIIa (alpha(IIb)beta3) on platelets upregulates CD40L and triggers CD40L-dependent matrix degradation by endothelial cells. Circulation 2002; 106:2111-7. [PMID: 12379582 DOI: 10.1161/01.cir.0000033597.45947.0f] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND CD40L-CD40 interactions induce inflammatory signals in cells of the vascular wall. We evaluated the effects of glycoprotein (GP) IIb/IIIa (alpha(IIb)beta3) engagement that occurs during platelet-endothelium interactions on CD40L surface exposure on platelets and initiation of proteolytic activity in human umbilical vein endothelial cells (HUVECs). METHODS AND RESULTS Transient (60-minute) adhesion of thrombin-prestimulated platelets enhanced HUVEC expression of urokinase-type plasminogen activator receptor and membrane type-1 matrix metalloproteinase (MT1-MMP) (reverse transcriptase-polymerase chain reaction, flow cytometry) and secretion of urokinase-type plasminogen activator, tissue-type plasminogen activator, and MMP-1 (ELISA) and induced proteolytic activity via MMP-2 and MMP-9 (gelatin zymography). These effects were abrogated by hindrance of physical platelet-endothelial contacts using transwell systems or inhibited by GRGDSP, mAbs anti-GP IIb/IIIa (7E3), anti-alpha(v)beta3 (LM609), or anti-CD40L (TRAP1). In addition, MMP-2 and MMP-9 were inhibited by specific GP IIb/IIIa antagonists tirofiban, lamifiban, or integrelin. On endothelial cells, induction of proteolytic activity by activated platelets was mimicked by CD40 engagement using soluble CD40L but not affected by antibody clustering of alpha(v)beta3. On platelets, CD40L and CD62P exposure was enhanced on adhesion to HUVECs or immobilized fibrinogen and was abrogated by GRGDSP or LM609. In suspension, cross-linking of GP IIb/IIIa by fibrinogen plus secondary mAb upregulated CD40L surface exposure. Consistently, bivalent mAb 7E3 upregulated CD40L, whereas ligation of GP IIb/IIIa by soluble fibrinogen alone or monovalent Fab-fragment c7E3 had no effect. CONCLUSIONS Platelet adhesion via GP IIb/IIIa upregulates CD40L and CD62P surface exposure. Proteolytic activity of HUVEC is induced by the concerted action of beta3-integrin-mediated platelet adhesion and subsequent CD40L-induced signals in HUVECs. Effective anti-GP IIb/IIIa or anti-CD40L strategies might, therefore, contribute to plaque stabilization.
Collapse
|
|
23 |
154 |
5
|
Tu W, Chen S, Sharp M, Dekker C, Manganello AM, Tongson EC, Maecker HT, Holmes TH, Wang Z, Kemble G, Adler S, Arvin A, Lewis DB. Persistent and selective deficiency of CD4+ T cell immunity to cytomegalovirus in immunocompetent young children. THE JOURNAL OF IMMUNOLOGY 2004; 172:3260-7. [PMID: 14978134 DOI: 10.4049/jimmunol.172.5.3260] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Healthy young children who acquire CMV have prolonged viral shedding into the urine and saliva, but whether this is attributable to limitations in viral-specific immune responses has not been explored. In this study, we found that otherwise immunocompetent young children after recent primary CMV infection accumulated markedly fewer CMV-specific CD4(+) T cells that produced IFN-gamma than did adults. These differences in CD4(+) T cell function persisted for more than 1 year after viral acquisition, and did not apply to CMV-specific IFN-gamma production by CD8(+) T cells. The IFN-gamma-producing CD4(+) T cells of children or adults that were reactive with CMV Ags were mainly the CCR7(low) cell subset of memory (CD45R0(high)CD45RA(low)) cells. The decreased IFN-gamma response to CMV in children was selective, because their CCR7(low) memory CD4(+) T cells and those of adults produced similar levels of this cytokine after stimulation with staphylococcal enterotoxin B superantigen. CD4(+) T cells from children also had reduced CMV-specific IL-2 and CD154 (CD40 ligand) expression, suggesting an early blockade in the differentiation of viral-specific CD4(+) T cells. Following CMV acquisition, children, but not adults, persistently shed virus in urine, and this was observable for at least 29 mo postinfection. Thus, CD4(+) T cell-mediated immunity to CMV in humans is generated in an age-dependent manner, and may have a substantial role in controlling renal viral replication and urinary shedding.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
145 |
6
|
Ismaili J, Rennesson J, Aksoy E, Vekemans J, Vincart B, Amraoui Z, Van Laethem F, Goldman M, Dubois PM. Monophosphoryl lipid A activates both human dendritic cells and T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:926-32. [PMID: 11777991 DOI: 10.4049/jimmunol.168.2.926] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The induction of dendritic cell (DC) maturation is critical for the induction of Ag-specific T lymphocyte responses and may be essential for the development of human vaccines relying on T cell immunity. In this study, we have investigated the effects of monophosphoryl lipid A (MPL) on human monocyte-derived DC as well as peripheral blood T cells. Calcium mobilization, mitogen-activated protein kinase activation, and the NF-kappaB transcription factor were induced after MPL stimulation of DC and required high doses of MPL (100 microg/ml). Maturation parameters such as production of IL-12 and increases in cell surface expression of HLA-DR, CD80, CD86, CD40, and CD83 were observed following DC treatment with MPL. However, lower levels of IL-12 were induced by MPL when compared with lipopolysaccharide. This is likely to be related to differences in the kinetics of extracellular signal-related kinase 1/2 and p-38 phosphorylation induced by both molecules. Although maturation induced by MPL was weaker when compared with lipopolysaccharide, it appeared to be sufficient to support optimal activation of allogeneic naive CD45RA(+) T cell and anti-tetanus toxoid CD4 T cells. MPL at low doses (5 microg/ml) had no impact on DC maturation, while its addition to DC-T cell cocultures induced full T cell activation. The observed effect was related to the fact that MPL also acts directly on T cells, likely through their Toll-like receptors, by increasing their intracellular calcium and up-regulating their CD40 ligand expression. Together, these data support a model where MPL enhances T cell responses by having an impact on DC and T cells.
Collapse
|
|
23 |
142 |
7
|
Saudemont A, Quesnel B. In a model of tumor dormancy, long-term persistent leukemic cells have increased B7-H1 and B7.1 expression and resist CTL-mediated lysis. Blood 2004; 104:2124-33. [PMID: 15191948 DOI: 10.1182/blood-2004-01-0064] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In tumor dormancy, tumor cells persist in the host over a long period of time but do not grow. We investigated in the DA1-3b mouse model of acute myeloid leukemia how leukemic cells could persist for months in spite of an effective antileukemic immune response. Mice were immunized with irradiated interleukin 12 (IL12)- or CD154-transduced DA1-3b cells, challenged with wild-type DA1-3b cells, and randomly killed during 1-year follow-up. Quantification of residual disease 1 year after challenge showed that persistent leukemic cells represented less than 0.02% of spleen cells in most animals. These residual cells were still able to kill naive hosts, even when isolated after 1 year of persistence. Persistent leukemic cells were more resistant to specific cytotoxic T-cell (CTL)-mediated killing and had enhanced B7-H1 and B7.1 expression proportional to the time they had persisted in the host. Blocking B7-H1 or B7.1/cytotoxic T-lymphocyte-associated antigen (CTLA-4) interaction enhanced CTL-mediated killing of the persistent cells, and blocking B7-H1, B7.1, or CTLA-4 in vivo prolonged survival of naive mice injected with persistent leukemic cells. Thus, escape of leukemic cells from tumor immunity via overexpression of B7-H1 or B7.1 might represent a new mechanism of tumor dormancy in acute leukemia.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
140 |
8
|
Danese S, de la Motte C, Reyes BMR, Sans M, Levine AD, Fiocchi C. Cutting edge: T cells trigger CD40-dependent platelet activation and granular RANTES release: a novel pathway for immune response amplification. THE JOURNAL OF IMMUNOLOGY 2004; 172:2011-5. [PMID: 14764664 DOI: 10.4049/jimmunol.172.4.2011] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Platelets, in addition to exerting hemostatic activity, contribute to immunity and inflammation. The recent report that platelets express CD40 led us to hypothesize that CD40 ligand (CD40L)-positive T cells could bind to platelets, cause their activation, and trigger granular RANTES release, creating a T cell recruitment feedback loop. Platelets were cocultured with resting or activated autologous T cells and their activation was assessed by P-selectin expression. RANTES binding to endothelial cells was assessed by confocal microscopy, and its biological activity was demonstrated by a T cell adhesion assay. CD40L-positive T cells induced platelet activation through a contact-mediated, CD40-dependent pathway resulting in RANTES release, which bound to endothelial cells and mediated T cell recruitment. Soluble CD40L induced the same events via p38, but not extracellular signal-regulated kinase, phosphorylation. These results show the existence of a novel platelet-dependent pathway of immune response amplification which brings these nonimmune cells close to the level of pathogenic relevance traditionally attributed to classical immune cells.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
131 |
9
|
Ponomarev ED, Shriver LP, Dittel BN. CD40 expression by microglial cells is required for their completion of a two-step activation process during central nervous system autoimmune inflammation. THE JOURNAL OF IMMUNOLOGY 2006; 176:1402-10. [PMID: 16424167 DOI: 10.4049/jimmunol.176.3.1402] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Microglial cells are monocytic lineage cells that reside in the CNS and have the capacity to become activated during various pathological conditions. Although it was demonstrated that activation of microglial cells could be achieved in vitro by the engagement of CD40-CD40L interactions in combination with proinflammatory cytokines, the exact factors that mediate activation of microglial cells in vivo during CNS autoimmunity are ill-defined. To investigate the role of CD40 in microglial cell activation during experimental autoimmune encephalomyelitis (EAE), we used bone marrow chimera mice that allowed us to distinguish microglial cells from peripheral macrophages and render microglial cells deficient in CD40. We found that the first step of microglial cell activation was CD40-independent and occurred during EAE onset. The first step of activation consisted of microglial cell proliferation and up-regulation of the activation markers MHC class II, CD40, and CD86. At the peak of disease, microglial cells underwent a second step of activation, which was characterized by a further enhancement in activation marker expression along with a reduction in proliferation. The second step of microglial cell activation was CD40-dependent and the failure of CD40-deficient microglial cells to achieve a full level of activation during EAE was correlated with reduced expansion of encephalitogenic T cells and leukocyte infiltration in the CNS, and amelioration of clinical symptoms. Thus, our findings demonstrate that CD40 expression on microglial cells is necessary to complete their activation process during EAE, which is important for disease progression.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
130 |
10
|
Garlichs CD, John S, Schmeisser A, Eskafi S, Stumpf C, Karl M, Goppelt-Struebe M, Schmieder R, Daniel WG. Upregulation of CD40 and CD40 ligand (CD154) in patients with moderate hypercholesterolemia. Circulation 2001; 104:2395-400. [PMID: 11705814 DOI: 10.1161/hc4501.099312] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypercholesterolemia, a risk factor for cardiovascular disease, is associated with inflammation and hypercoagulability. Both can be mediated by the CD40 system. This study investigated whether the CD40 system is upregulated in patients with moderate hypercholesterolemia and whether it is influenced by therapy with a hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitor. METHODS AND RESULTS Fifteen patients with moderate hypercholesterolemia and 15 healthy control subjects were investigated. CD154 and P-selectin were analyzed on platelets and CD40 was analyzed on monocytes before and under therapy with the statin cerivastatin by double-label flow cytometry. Blood concentrations of soluble CD154 and monocyte chemoattractant protein-1 (MCP-1) were evaluated. Our main findings were as follows. Patients with moderate hypercholesterolemia showed a significant increase of CD154 and P-selectin on platelets and CD40 on monocytes compared with healthy subjects. Soluble CD154 showed a nonsignificant trend for higher plasma levels in patients. A positive correlation was found for total or LDL cholesterol and CD154, but not for CD40 on monocytes. The latter was upregulated in vitro by C-reactive protein, which was found to be significantly elevated in patients with moderate hypercholesterolemia. CD154 on platelets proved to be biologically active because it enhanced the release of MCP-1, which was markedly elevated in an in vitro platelet-endothelial cell coculture model and in the serum of patients. Short-term therapy with a HMG-CoA reductase inhibitor significantly downregulated CD40 on monocytes and serum levels of MCP-1. CONCLUSION Patients with moderate hypercholesterolemia show upregulation of the CD40 system, which may contribute to the known proinflammatory, proatherogenic, and prothrombotic milieu found in these patients.
Collapse
|
Clinical Trial |
24 |
130 |
11
|
Mailliard RB, Egawa S, Cai Q, Kalinska A, Bykovskaya SN, Lotze MT, Kapsenberg ML, Storkus WJ, Kalinski P. Complementary dendritic cell-activating function of CD8+ and CD4+ T cells: helper role of CD8+ T cells in the development of T helper type 1 responses. J Exp Med 2002; 195:473-83. [PMID: 11854360 PMCID: PMC2193623 DOI: 10.1084/jem.20011662] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dendritic cells (DCs) activated by CD40L-expressing CD4+ T cells act as mediators of "T helper (Th)" signals for CD8+ T lymphocytes, inducing their cytotoxic function and supporting their long-term activity. Here, we show that the optimal activation of DCs, their ability to produce high levels of bioactive interleukin (IL)-12p70 and to induce Th1-type CD4+ T cells, is supported by the complementary DC-activating signals from both CD4+ and CD8+ T cells. Cord blood- or peripheral blood-isolated naive CD8+ T cells do not express CD40L, but, in contrast to naive CD4+ T cells, they are efficient producers of IFN-gamma at the earliest stages of the interaction with DCs. Naive CD8+ T cells cooperate with CD40L-expressing naive CD4+ T cells in the induction of IL-12p70 in DCs, promoting the development of primary Th1-type CD4+ T cell responses. Moreover, the recognition of major histocompatibility complex class I-presented epitopes by antigen-specific CD8+ T cells results in the TNF-alpha- and IFN-gamma-dependent increase in the activation level of DCs and in the induction of type-1 polarized mature DCs capable of producing high levels of IL-12p70 upon a subsequent CD40 ligation. The ability of class I-restricted CD8+ T cells to coactivate and polarize DCs may support the induction of Th1-type responses against class I-presented epitopes of intracellular pathogens and contact allergens, and may have therapeutical implications in cancer and chronic infections.
Collapse
|
research-article |
23 |
128 |
12
|
Pignatelli P, Sanguigni V, Lenti L, Ferro D, Finocchi A, Rossi P, Violi F. gp91phox-dependent expression of platelet CD40 ligand. Circulation 2004; 110:1326-9. [PMID: 15249506 DOI: 10.1161/01.cir.0000134963.77201.55] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND CD40 ligand (CD40L) expression on platelets is mediated by agonists, but the underlying mechanism is still unclear. METHODS AND RESULTS CD40L expression was measured in platelets from healthy subjects both with and without the addition of antioxidants or a phospholipase A2 (PLA2) inhibitor and in platelets from 2 patients with an inherited deficiency of gp91phox. Immunoprecipitation analysis was also performed to determine whether normal platelets showed gp91phox expression. Unlike catalase and mannitol, superoxide dismutase inhibited agonist-induced platelet CD40L expression in healthy subjects. Immunoprecipitation analysis also showed that platelets from healthy subjects expressed gp91phox. In 2 male patients with inherited gp91phox deficiency, collagen-, thrombin-, and arachidonic acid-stimulated platelets showed an almost complete absence of superoxide anion (O(2)(-)) and CD40L expression. Incubation of platelets from healthy subjects with a PLA2 inhibitor almost completely prevented agonist-induced O(2)(-) and CD40L expression. CONCLUSIONS These data provide the first evidence that platelet CD40L expression occurs via arachidonic acid-mediated gp91phox activation.
Collapse
|
Journal Article |
21 |
125 |
13
|
Kato A, Truong-Tran AQ, Scott AL, Matsumoto K, Schleimer RP. Airway epithelial cells produce B cell-activating factor of TNF family by an IFN-beta-dependent mechanism. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:7164-72. [PMID: 17082634 PMCID: PMC2804942 DOI: 10.4049/jimmunol.177.10.7164] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Activation of B cells in the airways is now believed to be of great importance in immunity to pathogens, and it participates in the pathogenesis of airway diseases. However, little is known about the mechanisms of local activation of B cells in airway mucosa. We investigated the expression of members of the B cell-activating TNF superfamily (B cell-activating factor of TNF family (BAFF) and a proliferation-inducing ligand (APRIL)) in resting and TLR ligand-treated BEAS-2B cells and primary human bronchial epithelial cells (PBEC). In unstimulated cells, expression of BAFF and APRIL was minimal. However, BAFF mRNA was significantly up-regulated by TLR3 ligand (dsRNA), but not by other TLR ligands, in both BEAS-2B cells (376-fold) and PBEC (224-fold). APRIL mRNA was up-regulated by dsRNA in PBEC (7-fold), but not in BEAS-2B cells. Membrane-bound BAFF protein was detectable after stimulation with dsRNA. Soluble BAFF protein was also induced by dsRNA (> 200 pg/ml). The biological activity of the epithelial cell-produced BAFF was verified using a B cell survival assay. BAFF was also strongly induced by IFN-beta, a cytokine induced by dsRNA. Induction of BAFF by dsRNA was dependent upon protein synthesis and IFN-alphabeta receptor-JAK-STAT signaling, as indicated by studies with cycloheximide, the JAK inhibitor I, and small interfering RNA against STAT1 and IFN-alphabeta receptor 2. These results suggest that BAFF is induced by dsRNA in airway epithelial cells and that the response results via an autocrine pathway involving IFN-beta. The production of BAFF and APRIL by epithelial cells may contribute to local accumulation, activation, class switch recombination, and Ig synthesis by B cells in the airways.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
123 |
14
|
Han R, Tsui S, Smith TJ. Up-regulation of prostaglandin E2 synthesis by interleukin-1beta in human orbital fibroblasts involves coordinate induction of prostaglandin-endoperoxide H synthase-2 and glutathione-dependent prostaglandin E2 synthase expression. J Biol Chem 2002; 277:16355-64. [PMID: 11847219 DOI: 10.1074/jbc.m111246200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Prostaglandin E(2) (PGE(2)) production involves the activity of a multistep biosynthetic pathway. The terminal components of this cascade, two PGE(2) synthases (PGES), have very recently been identified as glutathione-dependent proteins. cPGES is cytoplasmic, apparently identical to the hsp90 chaperone, p23, and associates functionally with prostaglandin-endoperoxide H synthase-1 (PGHS-1), the constitutive cyclooxygenase. A second synthase, designated mPGES, is microsomal and can be regulated. Here we demonstrate that mPGES and PGHS-2 are expressed at very low levels in untreated human orbital fibroblasts. Interleukin (IL)-1beta treatment elicits high levels of PGHS-2 and mPGES expression. The induction of both enzymes occurs at the pretranslational level, is the consequence of enhanced gene promoter activities, and can be blocked by dexamethasone (10 nm). SC58125, a PGHS-2-selective inhibitor, could attenuate the induction of mPGES, suggesting a dependence of this enzyme on PGHS-2 activity. IL-1beta treatment activates p38 and ERK mitogen-activated protein kinases. Induction of both mPGES and PGHS-2 was susceptible to either chemical inhibition or molecular interruption of these pathways with dominant negative constructs. These results indicate that the induction of PGHS-2 and mPGES by IL-1beta underlies robust PGE(2) production in orbital fibroblasts.
Collapse
|
|
23 |
119 |
15
|
Ebner S, Ratzinger G, Krösbacher B, Schmuth M, Weiss A, Reider D, Kroczek RA, Herold M, Heufler C, Fritsch P, Romani N. Production of IL-12 by human monocyte-derived dendritic cells is optimal when the stimulus is given at the onset of maturation, and is further enhanced by IL-4. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:633-41. [PMID: 11123347 DOI: 10.4049/jimmunol.166.1.633] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dendritic cells produce IL-12 both in response to microbial stimuli and to T cells, and can thus skew T cell reactivity toward a Th1 pattern. We investigated the capacity of dendritic cells to elaborate IL-12 with special regard to their state of maturation, different maturation stimuli, and its regulation by Th1/Th2-influencing cytokines. Monocyte-derived dendritic cells were generated with GM-CSF and IL-4 for 7 days, followed by another 3 days +/- monocyte-conditioned media, yielding mature (CD83(+)/dendritic cell-lysosome-associated membrane glycoprotein(+)) and immature (CD83(-)/dendritic cell-lysosome-associated membrane glycoprotein(-)) dendritic cells. These dendritic cells were stimulated for another 48 h, and IL-12 p70 was measured by ELISA. We found the following: 1) Immature dendritic cells stimulated with CD154/CD40 ligand or bacteria (both of which concurrently also induced maturation) secreted always more IL-12 than already mature dendritic cells. Mature CD154-stimulated dendritic cells still made significant levels (up to 4 ng/ml). 2) Terminally mature skin-derived dendritic cells did not make any IL-12 in response to these stimuli. 3) Appropriate maturation stimuli are required for IL-12 production: CD40 ligation and bacteria are sufficient; monocyte-conditioned media are not. 4) Unexpectedly, IL-4 markedly increased the amount of IL-12 produced by both immature and mature dendritic cells, when present during stimulation. 5) IL-10 inhibited the production of IL-12. Our results, employing a cell culture system that is now being widely used in immunotherapy, extend prior data that IL-12 is produced most abundantly by dendritic cells that are beginning to respond to maturation stimuli. Surprisingly, IL-12 is only elicited by select maturation stimuli, but can be markedly enhanced by the addition of the Th2 cytokine, IL-4.
Collapse
|
Comparative Study |
24 |
115 |
16
|
Li D, Liu L, Chen H, Sawamura T, Mehta JL. LOX-1, an oxidized LDL endothelial receptor, induces CD40/CD40L signaling in human coronary artery endothelial cells. Arterioscler Thromb Vasc Biol 2003; 23:816-21. [PMID: 12637341 DOI: 10.1161/01.atv.0000066685.13434.fa] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Despite increasing appreciation that atherogenesis involves participation of inflammatory cells, information on mediators of communication between different constituents of atherosclerotic plaque remain incomplete. We examined the role of LOX-1, a receptor for oxidized (ox) LDL, in the expression of CD40/CD40L in cultured human coronary artery endothelial cells (HCAECs). METHODS AND RESULTS We observed that ox-LDL increased the expression of CD40 and CD40L in a concentration (10 to 80 microg/mL)- and time (1 to 24 hours)- dependent manner. These effects of ox-LDL were mediated by activation of LOX-1, because pretreatment of HCAECs with a blocking antibody to LOX-1 (JTX92) prevented the expression of CD40 and CD40L in response to ox-LDL (P<0.01). In parallel experiments, HCAECs were incubated with the protein kinase C (PKC) inhibitor bisindolylmaleimide I, and the cells were then exposed to ox-LDL. Both LOX-1 antibody and the PKC inhibitor inhibited PKC activation in response to ox-LDL (P<0.01). The PKC inhibitor also blocked the effects of ox-LDL on the expression of CD40 and CD40L (P<0.01). In additional experiments, we found that it is the PKCalpha, but not PKCbeta and PKCgamma, isoform that mediated ox-LDL-induced CD40 and CD40L upregulation. Further experiments showed that upregulation of CD40 mediated induction of proinflammatory genes, because CD40 antibody markedly reduced ox-LDL-induced TNF-alpha generation and P-selectin expression, whereas nonspecific mouse IgG had no effect. CONCLUSIONS These findings indicate that ox-LDL through its receptor LOX-1 triggers the CD40/CD40L signaling pathway that activates the inflammatory reaction in HCAECs. These observations provide novel insight into ox-LDL-mediated inflammation in atherosclerosis.
Collapse
|
Comparative Study |
22 |
106 |
17
|
Hostager BS, Haxhinasto SA, Rowland SL, Bishop GA. Tumor necrosis factor receptor-associated factor 2 (TRAF2)-deficient B lymphocytes reveal novel roles for TRAF2 in CD40 signaling. J Biol Chem 2003; 278:45382-90. [PMID: 12958312 DOI: 10.1074/jbc.m306708200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
CD40 function is initiated by tumor necrosis factor (TNF) receptor-associated factor (TRAF) adapter proteins, which play important roles in signaling by numerous receptors. Characterizing roles of individual TRAFs has been hampered by limitations of available experimental models and the poor viability of most TRAF-deficient mice. Here, B cell lines made deficient in TRAF2 using a novel homologous recombination system reveal new roles for TRAF2. We demonstrate that TRAF2 participates in synergy between CD40 and B cell antigen receptor signals, and in CD40-mediated, TNF-dependent IgM production. We also find that TRAF2 participates in the degradation of TRAF3 associated with CD40 signaling, a role that may limit inhibitory actions of TRAF3. Finally, we show that TRAF2 and TRAF6 have overlapping functions in CD40-mediated NF-kappaB activation and CD80 up-regulation. These findings demonstrate previously unappreciated roles for TRAF2 in signaling by TNF receptor family members, using an approach that facilitates the analysis of genes critical to the viability of whole organisms.
Collapse
|
|
22 |
102 |
18
|
Nakae S, Asano M, Horai R, Sakaguchi N, Iwakura Y. IL-1 enhances T cell-dependent antibody production through induction of CD40 ligand and OX40 on T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:90-7. [PMID: 11418636 DOI: 10.4049/jimmunol.167.1.90] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-1 is a proinflammatory cytokine that plays pleiotropic roles in host defense mechanisms. We investigated the role of IL-1 in the humoral immune response using gene-targeted mice. Ab production against SRBC was significantly reduced in IL-1alpha/beta-deficient (IL-1(-/-)) mice and enhanced in IL-1R antagonist(-/-) mice. The intrinsic functions of T, B, and APCs were normal in IL-1(-/-) mice. However, we showed that IL-1(-/-) APCs did not fully activate DO11.10 T cells, while IL-1R antagonist (-/-) APCs enhanced the reaction, indicating that IL-1 promotes T cell priming through T-APC interaction. The function of IL-1 was CD28-CD80/CD86 independent. We found that CD40 ligand and OX40 expression on T cells was affected by the mutation, and the reduced Ag-specific B cell response in IL-1(-/-) mice was recovered by the treatment with agonistic anti-CD40 mAb both in vitro and in vivo. These observations indicate that IL-1 enhances T cell-dependent Ab production by augmenting CD40 ligand and OX40 expression on T cells.
Collapse
|
|
24 |
98 |
19
|
Mintern JD, Davey GM, Belz GT, Carbone FR, Heath WR. Cutting edge: precursor frequency affects the helper dependence of cytotoxic T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:977-80. [PMID: 11801627 DOI: 10.4049/jimmunol.168.3.977] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Generation of CTL immunity often depends on the availability of CD4 T cell help. In this report, we show that CTL responses induced by cross-priming can be converted from CD4-dependent to CD4-independent by increasing the frequency of CTL precursors. In the absence of CD4 T cells, high numbers of CTL precursors were able to expand in number and become effector CTL. The ability of high frequencies of CD8 T cells to override help was not due to their ability to signal CD40 via expression of CD154. These findings suggest that when precursor frequencies are high, priming of CD8 T cell responses may not require CD4 T cell help.
Collapse
|
|
23 |
88 |
20
|
Ferrer IR, Wagener ME, Song M, Kirk AD, Larsen CP, Ford ML. Antigen-specific induced Foxp3+ regulatory T cells are generated following CD40/CD154 blockade. Proc Natl Acad Sci U S A 2011; 108:20701-6. [PMID: 22143783 PMCID: PMC3251074 DOI: 10.1073/pnas.1105500108] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Blockade of the CD40/CD154 pathway potently attenuates T-cell responses in models of autoimmunity, inflammation, and transplantation. Indeed, CD40 pathway blockade remains one of the most powerful methods of prolonging graft survival in models of transplantation. But despite this effectiveness, the cellular and molecular mechanisms underlying the protective effects of CD40 pathway blockade are incompletely understood. Furthermore, the relative contributions of deletion, anergy, and regulation have not been measured in a model in which donor-reactive CD4(+) and CD8(+) T-cell responses can be assessed simultaneously. To investigate the impact of CD40/CD154 pathway blockade on graft-specific T-cell responses, a transgenic mouse model was used in which recipients containing ovalbumin-specific CD4(+) and CD8(+) TCR transgenic T cells were grafted with skin expressing ovalbumin in the presence or absence of anti-CD154 and donor-specific transfusion. The results indicated that CD154 blockade altered the kinetics of donor-reactive CD8(+) T-cell expansion, delaying differentiation into IFN-γ(+) TNF(+) multifunctional cytokine producers. The eventual differentiation of cytokine-producing effectors in tolerant animals coincided with the emergence of an antigen-specific CD4(+) CD25(hi) Foxp3(+) T-cell population, which did not arise from endogenous natural T(reg) but rather were peripherally generated from naïve Foxp3(-) precursors.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
81 |
21
|
Kasprowicz DJ, Smallwood PS, Tyznik AJ, Ziegler SF. Scurfin (FoxP3) controls T-dependent immune responses in vivo through regulation of CD4+ T cell effector function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1216-23. [PMID: 12874208 DOI: 10.4049/jimmunol.171.3.1216] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Scurfin, the protein product of the FoxP3 gene, is a forkhead-family transcription factor that negatively regulates T cell function. Mice carrying a loss-of-function mutation in FoxP3 (scurfy mice) present with fatal autoimmune-like disease caused by hyperresponsive CD4(+) T cells. Mice that overexpress scurfin (FoxP3 Tg mice) possess fewer mature T cells with reduced functional capabilities compared with normal littermate control mice. We analyzed the ability of CD4(+) T cells and B cells from FoxP3 Tg mice to respond to a T-dependent Ag and found that immunized FoxP3 Tg mice displayed reduced total and Ag-specific serum Ig and disorganized splenic architecture. However, when cultured in vitro, FoxP3 Tg B cells responded normally, suggesting that the poor Ab response was a result of defective T cell help in vivo. When challenged, CD4(+) T cells from FoxP3 Tg mice display reduced up-regulation of CD40 ligand and fewer IFN-gamma-producing cells. Overall, these findings show that overexpression of scurfin reduces T cell responses in vivo such that CD4(+) T cells cannot provide help to B cells during a T cell-dependent Ab response.
Collapse
|
|
22 |
79 |
22
|
Bitmansour AD, Waldrop SL, Pitcher CJ, Khatamzas E, Kern F, Maino VC, Picker LJ. Clonotypic structure of the human CD4+ memory T cell response to cytomegalovirus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:1151-63. [PMID: 11466329 DOI: 10.4049/jimmunol.167.3.1151] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
High steady-state frequencies of CMV-specific CD4(+) memory T cells are maintained in CMV-exposed subjects, and these cells are thought to play a key role in the immunologic control of this permanent infection. However, the essential components of this response are poorly defined. Here, we report the use of a step-wise application of flow cytometric and molecular techniques to determine the number and size of the TCR Vbeta-defined clonotypes within freshly obtained CMV-specific CD4(+) memory T cell populations of four healthy, CMV-exposed human subjects. This analysis revealed a stable clonotypic hierarchy in which 1-3 dominant clonotypes are maintained in concert with more numerous subdominant and minor clonotypes. These dominant clonotypes accounted for 10-50% of the overall CMV response, and comprised from 0.3 to 4.0% of peripheral blood CD4(+) T cells. Two subjects displayed immunodominant responses to single epitopes within the CMV matrix phosphoprotein pp65; these single epitope responses were mediated by a single dominant clonotype in one subject, and by multiple subdominant and minor clonotypes in the other. Thus, the CMV-specific CD4(+) T cell memory repertoire in normal subjects is characterized by striking clonotypic dominance and the potential for epitope focusing, suggesting that primary responsibility for immunosurveillance against CMV reactivation rests with a handful of clones recognizing a limited array of CMV determinants. These data have important implications for the understanding of mechanisms by which a genetically stable chronic viral pathogen such as CMV is controlled, and offer possible insight into the failure of such control for a genetically flexible pathogen like HIV-1.
Collapse
MESH Headings
- Antigens, CD/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/virology
- CD40 Ligand/biosynthesis
- Clone Cells
- Cytokines/biosynthesis
- Cytomegalovirus/immunology
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Female
- Flow Cytometry/methods
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Humans
- Immunodominant Epitopes/biosynthesis
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/immunology
- Immunologic Memory/genetics
- Lectins, C-Type
- Male
- Multigene Family/immunology
- Phosphoproteins/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/virology
- Viral Matrix Proteins/immunology
Collapse
|
|
24 |
77 |
23
|
Porter CM, Clipstone NA. Sustained NFAT signaling promotes a Th1-like pattern of gene expression in primary murine CD4+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4936-45. [PMID: 11994444 DOI: 10.4049/jimmunol.168.10.4936] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell activation is known to be critically regulated by the extent and duration of TCR-induced signaling pathways. The NFAT family of transcription factors is believed to play an important role in coupling these quantitative differences in TCR-induced signaling events into changes in gene expression. In this study we have specifically investigated the effects of sustained NFAT signaling on T cell activation by introducing a constitutively active mutant version of NFATc1 (caNFATc1) into primary murine CD4(+) T cells and examining its effects on gene expression. We now report that ectopic expression of caNFATc1 partially mimics TCR signaling, resulting in enhanced expression of CD25 and CD40 ligand and down-regulation of CD62L. More importantly, we find that expression of caNFATc1 in T cells maintained under either nonpolarizing or Th1-skewing conditions leads to a marked selective increase in the number of cells expressing the prototypical Th1 cytokine, IFN-gamma. Furthermore, when expressed in Th2-skewed cells, caNFATc1 appears to attenuate Th2 differentiation by decreasing production of IL-4 and promoting the expression of IFN-gamma. Finally, we find that caNFATc1 enhances expression of functional P-selectin glycoprotein ligand-1, up-regulates Fas ligand expression, and increases susceptibility to activation-induced cell death, cellular traits that are preferentially associated with Th1 effector cells. Taken together, these results suggest that sustained NFAT signaling, mediated by ectopic expression of caNFATc1, acts to promote a Th1-like pattern of gene expression and thereby serves to highlight the important relationship between the degree of NFAT signaling and the qualitative pattern of gene expression induced during T cell activation.
Collapse
|
|
23 |
77 |
24
|
Lesley R, Kelly LM, Xu Y, Cyster JG. Naive CD4 T cells constitutively express CD40L and augment autoreactive B cell survival. Proc Natl Acad Sci U S A 2006; 103:10717-22. [PMID: 16815973 PMCID: PMC1484418 DOI: 10.1073/pnas.0601539103] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Indexed: 11/18/2022] Open
Abstract
Chronic engagement of the B cell receptor by soluble autoantigen leads to reduced B cell survival. Using the Ig and hen egg lysozyme double transgenic mouse model, we demonstrate that the survival of soluble autoantigen-engaged B cells is further reduced in mice lacking CD4 T cells or deficient in CD40. Mixed bone marrow chimera experiments reveal that, under homeostatic conditions, the CD40L-CD40 pathway can augment autoreactive B cell survival in a non-cell-autonomous manner. Naive CD4 T cells are shown to constitutively express CD40L mRNA and protein, although cell surface CD40L abundance is low because of engagement with CD40 on other cells. These observations indicate that the CD40L-CD40 pathway can augment the survival of autoantigen-engaged B cells in the absence of T cell activation. We propose that constitutive CD40L expression by naive CD4 T cells influences the composition of the B cell repertoire and may also affect the homeostasis of other cell types such as regulatory T cells in lymphoid organs.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
76 |
25
|
Waters B, Lillicrap D. The molecular mechanisms of immunomodulation and tolerance induction to factor VIII. J Thromb Haemost 2009; 7:1446-56. [PMID: 19583822 DOI: 10.1111/j.1538-7836.2009.03538.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Successful factor (F) VIII replacement therapy in hemophilia A patients is confounded by the generation of inhibitory anti-FVIII antibodies (Ab) in 25-30% of treated patients. These antibodies, termed 'inhibitors', significantly increase morbidity within the hemophilia population and lower the quality of life for these patients. For the past 30 years, immune tolerance induction (ITI) has been the standard therapy to elicit immunological tolerance to FVIII in the clinic. ITI works well in approximately 75% of patients, but it is expensive, can take years to show effect and is in many cases practically challenging. Therefore, new immunological tolerance induction strategies are now being designed and tested in hemophilia A animal models. This review attempts to provide a comprehensive description, at both the cellular and molecular levels, of these novel advances in tolerance induction and immunomodulation of FVIII. We begin by briefly reviewing why and how the immune system generates a protective response against exogenous FVIII. This leads to a discussion of the latest advances in FVIII tolerance/immunomodulation technology. These advances include interesting methodologies to induce B cell specific tolerance in FVIII primed humans and animals, as well as newer T cell-specific therapies that modify and/or block co-stimulation. We also discuss methods to manipulate FVIII loading of antigen-presenting cells.
Collapse
|
Review |
16 |
75 |