1
|
Smith MT, Guyton KZ, Gibbons CF, Fritz JM, Portier CJ, Rusyn I, DeMarini DM, Caldwell JC, Kavlock RJ, Lambert PF, Hecht SS, Bucher JR, Stewart BW, Baan RA, Cogliano VJ, Straif K. Key Characteristics of Carcinogens as a Basis for Organizing Data on Mechanisms of Carcinogenesis. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:713-21. [PMID: 26600562 PMCID: PMC4892922 DOI: 10.1289/ehp.1509912] [Citation(s) in RCA: 421] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 11/13/2015] [Indexed: 05/10/2023]
Abstract
BACKGROUND A recent review by the International Agency for Research on Cancer (IARC) updated the assessments of the > 100 agents classified as Group 1, carcinogenic to humans (IARC Monographs Volume 100, parts A-F). This exercise was complicated by the absence of a broadly accepted, systematic method for evaluating mechanistic data to support conclusions regarding human hazard from exposure to carcinogens. OBJECTIVES AND METHODS IARC therefore convened two workshops in which an international Working Group of experts identified 10 key characteristics, one or more of which are commonly exhibited by established human carcinogens. DISCUSSION These characteristics provide the basis for an objective approach to identifying and organizing results from pertinent mechanistic studies. The 10 characteristics are the abilities of an agent to 1) act as an electrophile either directly or after metabolic activation; 2) be genotoxic; 3) alter DNA repair or cause genomic instability; 4) induce epigenetic alterations; 5) induce oxidative stress; 6) induce chronic inflammation; 7) be immunosuppressive; 8) modulate receptor-mediated effects; 9) cause immortalization; and 10) alter cell proliferation, cell death, or nutrient supply. CONCLUSION We describe the use of the 10 key characteristics to conduct a systematic literature search focused on relevant end points and construct a graphical representation of the identified mechanistic information. Next, we use benzene and polychlorinated biphenyls as examples to illustrate how this approach may work in practice. The approach described is similar in many respects to those currently being implemented by the U.S. EPA's Integrated Risk Information System Program and the U.S. National Toxicology Program. CITATION Smith MT, Guyton KZ, Gibbons CF, Fritz JM, Portier CJ, Rusyn I, DeMarini DM, Caldwell JC, Kavlock RJ, Lambert P, Hecht SS, Bucher JR, Stewart BW, Baan R, Cogliano VJ, Straif K. 2016. Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environ Health Perspect 124:713-721; http://dx.doi.org/10.1289/ehp.1509912.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
421 |
2
|
Abstract
The administration of chemicals at the maximum tolerated dose (MTD) in standard animal cancer tests is postulated to increase cell division (mitogenesis), which in turn increases rates of mutagenesis and thus carcinogenesis. The animal data are consistent with this mechanism, because a high proportion--about half--of all chemicals tested (whether natural or synthetic) are indeed rodent carcinogens. We conclude that at the low doses of most human exposures, where cell killing does not occur, the hazards to humans of rodent carcinogens may be much lower than is commonly assumed.
Collapse
|
research-article |
35 |
332 |
3
|
Kari G, Rodeck U, Dicker AP. Zebrafish: an emerging model system for human disease and drug discovery. Clin Pharmacol Ther 2007; 82:70-80. [PMID: 17495877 DOI: 10.1038/sj.clpt.6100223] [Citation(s) in RCA: 309] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In vivo studies represent an essential step in drug development and currently rely largely on mice, yet limitations of mammalian models motivated the search for complementary vertebrate model systems. This review focuses on zebrafish, Danio rerio, as a facile model system to study human disease and drug responses. Zebrafish are particularly suited for this purpose because they represent a vertebrate species, their genome is sequenced, and a large number of synchronously developing, transparent embryos can be produced. Zebrafish embryos are permeable to drugs and can easily be manipulated using well-established genetic and molecular approaches. Here, we summarize recent work on drug discovery and toxicity in zebrafish embryos. In addition, we provide a synopsis of current efforts to establish disease models in zebrafish focusing on neoplasia. The results of these studies highlight the potential of zebrafish as a viable addition to established animal models by offering medium and, potentially, high throughput capabilities.
Collapse
|
Review |
18 |
309 |
4
|
Chou J, Lin YC, Kim J, You L, Xu Z, He B, Jablons DM. Nasopharyngeal carcinoma--review of the molecular mechanisms of tumorigenesis. Head Neck 2008; 30:946-63. [PMID: 18446839 PMCID: PMC3046044 DOI: 10.1002/hed.20833] [Citation(s) in RCA: 240] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck cancer rare throughout most of the world but common in certain geographic areas, such as southern Asia. While environmental factors and genetic susceptibility play important roles in NPC pathogenesis, the Epstein-Barr virus in particular has been implicated in the molecular abnormalities leading to NPC. There is upregulation of cellular proliferation pathways such as the Akt pathway, mitogen-activated protein kinases, and the Wnt pathway. Cell adhesion is compromised due to abnormal E-cadherin and beta-catenin function. Aberrations in cell cycle are due to dysregulation of factors such as p16, cyclin D1, and cyclin E. Anti-apoptotic mechanisms are also upregulated. There are multiple abnormalities unique to NPC that are potential targets for novel treatments.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
240 |
5
|
Atienzar FA, Jha AN. The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutat Res 2006; 613:76-102. [PMID: 16979375 DOI: 10.1016/j.mrrev.2006.06.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 06/12/2006] [Accepted: 06/12/2006] [Indexed: 01/01/2023]
Abstract
More than 9000 papers using the random amplified polymorphic DNA (RAPD) or related techniques (e.g. the arbitrarily primed polymerase chain reaction (AP-PCR)) have been published from 1990 to 2005. The RAPD method has been initially used to detect polymorphism in genetic mapping, taxonomy and phylogenetic studies and later in genotoxicity and carcinogenesis studies. Despite their extensive use, these techniques have also attracted some criticisms, mainly for lack of reproducibility. In the light of their widespread applications, the objectives of this review are to (1) identify the potential factors affecting the optimisation of the RAPD and AP-PCR assays, (2) critically describe and analyse these techniques in genotoxicity and carcinogenesis studies, (3) compare the RAPD assay with other well used methodologies, (4) further elucidate the impact of DNA damage and mutations on the RAPD profiles, and finally (5) provide some recommendations/guidelines to further improve the applications of the assays and to help the identification of the factors responsible for the RAPD changes. It is suggested that after proper optimisation, the RAPD is a reliable, sensitive and reproducible assay, has the potential to detect a wide range of DNA damage (e.g. DNA adducts, DNA breakage) as well as mutations (point mutations and large rearrangements) and therefore can be applied to genotoxicity and carcinogenesis studies. Nevertheless, the interpretation of the changes in RAPD profiles is difficult since many factors can affect the generation of RAPD profiles. It is therefore important that these factors are identified and taken into account while using these assays. On the other hand, further analyses of the relevant bands generated in RAPD profile allow not only to identify some of the molecular events implicated in the genomic instability but also to discover genes playing key roles, particularly in the initiation and development of malignancy. Finally, to elucidate the potential genotoxic effects of environmental contaminants, a powerful strategy could be firstly to use the RAPD assay as a screening method and secondly to apply more specific methods measuring for instance DNA adducts, gene mutations or cytogenetic effects. It is also envisaged that these assays (i.e. RAPD and related techniques), which reflect effects at whole genome level, would continue to complement the use of emerging technologies (e.g. microarrays which aim to quantify expression of individual genes).
Collapse
|
Review |
19 |
165 |
6
|
Kirkland D, Reeve L, Gatehouse D, Vanparys P. A core in vitro genotoxicity battery comprising the Ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins. Mutat Res 2011; 721:27-73. [PMID: 21238603 DOI: 10.1016/j.mrgentox.2010.12.015] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/12/2010] [Accepted: 12/15/2010] [Indexed: 01/27/2023]
Abstract
In vitro genotoxicity testing needs to include tests in both bacterial and mammalian cells, and be able to detect gene mutations, chromosomal damage and aneuploidy. This may be achieved by a combination of the Ames test (detects gene mutations) and the in vitro micronucleus test (MNvit), since the latter detects both chromosomal aberrations and aneuploidy. In this paper we therefore present an analysis of an existing database of rodent carcinogens and a new database of in vivo genotoxins in terms of the in vitro genotoxicity tests needed to detect their in vivo activity. Published in vitro data from at least one test system (most were from the Ames test) were available for 557 carcinogens and 405 in vivo genotoxins. Because there are fewer publications on the MNvit than for other mammalian cell tests, and because the concordance between the MNvit and the in vitro chromosomal aberration (CAvit) test is so high for clastogenic activity, positive results in the CAvit test were taken as indicative of a positive result in the MNvit where there were no, or only inadequate data for the latter. Also, because Hprt and Tk loci both detect gene-mutation activity, a positive Hprt test was taken as indicative of a mouse-lymphoma Tk assay (MLA)-positive, where there were no data for the latter. Almost all of the 962 rodent carcinogens and in vivo genotoxins were detected by an in vitro battery comprising Ames+MNvit. An additional 11 carcinogens and six in vivo genotoxins would apparently be detected by the MLA, but many of these had not been tested in the MNvit or CAvit tests. Only four chemicals emerge as potentially being more readily detected in MLA than in Ames+MNvit--benzyl acetate, toluene, morphine and thiabendazole--and none of these are convincing cases to argue for the inclusion of the MLA in addition to Ames+MNvit. Thus, there is no convincing evidence that any genotoxic rodent carcinogens or in vivo genotoxins would remain undetected in an in vitro test battery consisting of Ames+MNvit.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
156 |
7
|
Tennant RW, French JE, Spalding JW. Identifying chemical carcinogens and assessing potential risk in short-term bioassays using transgenic mouse models. ENVIRONMENTAL HEALTH PERSPECTIVES 1995; 103:942-50. [PMID: 8529591 PMCID: PMC1519166 DOI: 10.1289/ehp.95103942] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cancer is a worldwide public health concern. Identifying carcinogens and limiting their exposure is one approach to the problem of reducing risk. Currently, epidemiology and rodent bioassays are the means by which putative human carcinogens are identified. Both methods have intrinsic limitations: they are slow and expensive processes with many uncertainties. The development of methods to modify specific genes in the mammalian genome has provided promising new tools for identifying carcinogens and characterizing risk. Transgenic mice may provide advantages in shortening the time required for bioassays and improving the accuracy of carcinogen identification; transgenic mice might now be included in the testing armamentarium without abandoning the two-year bioassay, the current standard. We show that mutagenic carcinogens can be identified with increased sensitivity and specificity using hemizygous p53 mice in which one allele of the p53 gene has been inactivated. Furthermore, the TG.AC transgenic model, carrying a v-Ha-ras construct, has developed papillomas and malignant tumors in response to a number of mutagenic and nonmutagenic carcinogens and tumor promoters, but not to noncarcinogens. We present a decision-tree approach that permits, at modest extra cost, the testing of more chemicals with improved ability to extrapolate from rodents to humans.
Collapse
|
research-article |
30 |
145 |
8
|
Natarajan AT, Darroudi F. Use of human hepatoma cells for in vitro metabolic activation of chemical mutagens/carcinogens. Mutagenesis 1991; 6:399-403. [PMID: 1665540 DOI: 10.1093/mutage/6.5.399] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
An established human hepatoma cell strain (Hep G2) was used in micronuclei (MN) and sister chromatid exchange (SCE) assays to evaluate the clastogenic potential of several indirectly-acting mutagenic carcinogens. Benzo[a]pyrene, cyclophosphamide, dimethyl nitrosamine, hexamethylphosphoramide, pyrene and safrole were selected for this study based on the positive and negative results reported with conventional in vitro assays employing rat liver S9 fraction for metabolic activation. Two directly-acting mutagens, methyl methanesulphonate and mitomycin C, were also included in this study. In this system, the human hepatoma cells act as the metabolic activation source as well as the target cell for DNA damage. The results obtained demonstrate that the Hep G2 cells are metabolically competent to activate different classes of mutagens into biologically active metabolites. The non-carcinogen pyrene did not induce any increase in the frequencies of MN and SCE in Hep G2 cells. Furthermore, a good correlation was found between positive and negative data obtained for the tested chemicals in this in vitro assay with literature data obtained in in vivo tests using rodents.
Collapse
|
|
34 |
144 |
9
|
Ito N, Tamano S, Shirai T. A medium-term rat liver bioassay for rapid in vivo detection of carcinogenic potential of chemicals. Cancer Sci 2003; 94:3-8. [PMID: 12708466 PMCID: PMC11160283 DOI: 10.1111/j.1349-7006.2003.tb01343.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Revised: 11/15/2002] [Accepted: 11/18/2002] [Indexed: 11/30/2022] Open
Abstract
A reliable medium-term bioassay system for rapid detection of carcinogenic potential of chemicals in the human environment has been developed. The 8-week-protocol consists of 2 stages; male F344 rats are given a single intraperitoneal injection of diethylnitrosamine (200 mg/kg) for initiation of liver carcinogenesis, followed by a 6-week test chemical treatment starting 2 weeks thereafter. Test chemicals are usually given in the diet or the drinking water and in the 2nd week of test chemical treatment, all rats are subjected to two-thirds partial hepatectomy in order to induce regenerative cell replication. The end-point marker is the glutathione S-transferase placental form (GST-P)-positive hepatic focus, the numbers and sizes of which are analyzed using an image-analyzer and expressed as values per unit liver section (1 cm2). When the yield of GST-P-positive foci is significantly enhanced (P<0.05) over the control value, a chemical is judged to possess carcinogenic or promotion potential for the liver. Among 313 chemicals already tested in this system in our laboratory, 30/31 (97%) mutagenic hepatocarcinogens and 29/33 (88%) non-mutagenic hepatocarcinogens gave positive results. Ten out of 43 (23%) agents known to be carcinogenic in organs other than the liver were also positive. It is particularly important that only one of 48 non-carcinogens gave a very weak positive result, so that the system has a very low false-positivity rate. It is now well documented that the assay system is highly effective for detecting hepatocarcinogens, bridging the gap between traditional long-term carcinogenicity tests and short-term screening assays. At the Fourth International Conference on Harmonization, our medium-term liver bioassay based on an initiation and promotion protocol was recommended in the guidelines as an acceptable alternative to the long-term rodent carcinogenicity test.
Collapse
|
Review |
22 |
134 |
10
|
Bolt HM, Foth H, Hengstler JG, Degen GH. Carcinogenicity categorization of chemicals-new aspects to be considered in a European perspective. Toxicol Lett 2004; 151:29-41. [PMID: 15177638 DOI: 10.1016/j.toxlet.2004.04.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Existing systems of classification of carcinogens are a matter of discussion, world-wide. There is agreement that it should be distinguished between genotoxic and non-genotoxic chemicals. The risk assessment approach used for non-genotoxic chemicals is similar among different regulatory bodies: insertion of an uncertainty (safety) factor permits the derivation of permissible exposure levels at which no relevant human cancer risks are anticipated. For genotoxic carcinogens, case studies of chemicals point to a whole array of possibilities. Positive data of chromosomal effects only, in the absence of mutagenicity, may support the characterization of a compound that produces carcinogenic effects only at high, toxic doses. Non-DNA-reactive genotoxins, such as topoisomerase inhibitors or inhibitors of the spindle apparatus are considered in this respect. In such cases, arguments are in favour of the existence of "practical" thresholds. Taking existing concepts together, it is proposed to basically distinguish between "perfect" and "practical" thresholds. There is a wide consensus that for non-DNA-reactive genotoxins such as aneugens (aneuploidy, chromosome loss, non-disjunction) thresholds should be defined. It is being discussed as to whether the identification of possible threshold effects should also include other mechanisms of genotoxicity, in addition to aneugenic effects. Specific mechanisms of clastogenicity have been repeatedly addressed as also having thresholds, such as topoisomerase II poisons or mechanisms based on reactive oxygen. Oxidative stress as an important mechanism is triggered by exposure to exogenous factors such as ultraviolet (UV) and ionizing radiation, anoxia and hyperoxia, and by chemicals producing reactive oxygen species. The idea is receiving increased support that reactive oxygen species (ROS)-mediated processes of carcinogenesis have practical thresholds. Since reactive oxygen species are genotoxic in principle, questions arise whether chemicals that increase ROS production will superimpose to an endogenously produced background level of DNA lesions, related to mechanisms that may result in non-linear dose-effect relationships. The existence of "endogenous" DNA adducts has been generally accepted, and possible regulatory implications of the presence of endogenous carcinogens have been discussed. It is now becoming evident that a diversity of methods of carcinogenic risk extrapolation to low doses must be considered, dependent on the mode of action. Although there is an increasing international awareness of these developments, the system of classification of carcinogens of the European Union still remains static. This should be changed, as the philosophy of separation of a strictly sequential "hazard assessment" and "risk assessment" appears out-of-date.
Collapse
|
Review |
21 |
129 |
11
|
Abstract
Over 200 agents/factors have been examined in the single cell gel electrophoresis assay, more commonly known as the Comet assay, performed either in vitro or in vivo in a variety of species. Unequivocal carcinogenicity data are available for 119 of them, amongst which unequivocal Comet assay data exist for 95 agents. Of these 95 agents the prevalence of carcinogens was 88% (84/95). The carcinogens that were Comet positive (sensitivity) formed 88% (74/84), the non-carcinogens that were Comet negative (specificity) formed 64% (7/11). This simple analysis of the Comet assay has not taken account of the difference between in vitro and in vivo responses, species differences or organ and tissue differences. Also, limitations as to the conduct of the assay have not been examined in any depth. Thus, at the present time the Comet assay has high sensitivity for carcinogens, but its specificity is uncertain because few non-carcinogens have been tested.
Collapse
|
Review |
27 |
122 |
12
|
Yuan BZ, Zhou X, Durkin ME, Zimonjic DB, Gumundsdottir K, Eyfjord JE, Thorgeirsson SS, Popescu NC. DLC-1 gene inhibits human breast cancer cell growth and in vivo tumorigenicity. Oncogene 2003; 22:445-50. [PMID: 12545165 DOI: 10.1038/sj.onc.1206064] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The human DLC-1 (deleted in liver cancer 1) gene was cloned from a primary human hepatocellular carcinoma (HCC) and mapped to the chromosome 8p21-22 region frequently deleted in common human cancers and suspected to harbor tumor suppressor genes. DLC-1 was found to be deleted or downregulated in a significant number of HCCs. We expanded our investigations to other cancers with recurrent deletions of 8p22, and in this study examined alterations of DLC-1 in primary human breast tumors, human breast, colon, and prostate tumor cell lines. Genomic deletion of DLC-1 was observed in 40% of primary breast tumors, whereas reduced or undetectable levels of DLC-1 mRNA were seen in 70% of breast, 70% of colon, and 50% of prostate tumor cell lines To see whether DLC-1 expression affects cell growth and tumorigenicity, two breast carcinoma cell lines lacking the expression of endogenous gene were transfected with the DLC-1 cDNA. In both cell lines, DLC-1 transfection caused significant growth inhibition and reduction of colony formation. Furthermore, introduction of the DLC-1 cDNA abolished the in vivo tumorigenicity in nude mice, suggesting that the DLC-1 gene plays a role in breast cancer by acting as a bona fide tumor suppressor gene.
Collapse
|
|
22 |
121 |
13
|
Gold LS, Manley NB, Slone TH, Ward JM. Compendium of chemical carcinogens by target organ: results of chronic bioassays in rats, mice, hamsters, dogs, and monkeys. Toxicol Pathol 2001; 29:639-52. [PMID: 11794380 DOI: 10.1080/019262301753385979] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A compendium of carcinogenesis bioassay results organized by target organ is presented for 738 chemicals that are carcinogenic in chronic-exposure, long-term bioassays in at least 1 species. This compendium is based primarily on experiments in rats or mice; results in hamsters, monkeys, and dogs are also reported. The compendium can be used to identify chemicals that induce tumors at particular sites and to determine whether target sites are the same for chemicals positive in more than 1 species. The source of information is the Carcinogenic Potency Database (CPDB). which includes results of 6073 experiments on 1458 chemicals (positive or negative for carcinogenicity) that have been reported in Technical Reports of the National Cancer Institute/National Toxicology Program or in papers in the general published literature. The published CPDB includes detailed analyses of each test and citations. The CPDB is publicly available in several formats (http://potency.berkeley.edu). Chemical carcinogens are reported for 35 different target organs in rats or mice. Target organs in humans are also summarized for 82 agents that have been evaluated as human carcinogens at a particular target site by the International Agency for Research on Cancer (IARC). Comparisons are provided of target organs for mutagens versus nonmutagens and rats versus mice.
Collapse
|
Review |
24 |
115 |
14
|
Chappell G, Pogribny IP, Guyton KZ, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2016; 768:27-45. [PMID: 27234561 PMCID: PMC4884606 DOI: 10.1016/j.mrrev.2016.03.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 01/30/2023]
Abstract
Accumulating evidence suggests that epigenetic alterations play an important role in chemically-induced carcinogenesis. Although the epigenome and genome may be equally important in carcinogenicity, the genotoxicity of chemical agents and exposure-related transcriptomic responses have been more thoroughly studied and characterized. To better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints. Specifically, we searched for publications reporting epigenetic effects for the 28 agents and occupations included in Monograph Volume 100F of the International Agency for the Research on Cancer (IARC) that were classified as "carcinogenic to humans" (Group 1) with strong evidence of genotoxic mechanisms of carcinogenesis. We identified a total of 158 studies that evaluated epigenetic alterations for 12 of these 28 carcinogenic agents and occupations (1,3-butadiene, 4-aminobiphenyl, aflatoxins, benzene, benzidine, benzo[a]pyrene, coke production, formaldehyde, occupational exposure as a painter, sulfur mustard, and vinyl chloride). Aberrant DNA methylation was most commonly studied, followed by altered expression of non-coding RNAs and histone changes (totaling 85, 59 and 25 studies, respectively). For 3 carcinogens (aflatoxins, benzene and benzo[a]pyrene), 10 or more studies reported epigenetic effects. However, epigenetic studies were sparse for the remaining 9 carcinogens; for 4 agents, only 1 or 2 published reports were identified. While further research is needed to better identify carcinogenesis-associated epigenetic perturbations for many potential carcinogens, published reports on specific epigenetic endpoints can be systematically identified and increasingly incorporated in cancer hazard assessments.
Collapse
|
Review |
9 |
112 |
15
|
Matthews EJ, Contrera JF. A new highly specific method for predicting the carcinogenic potential of pharmaceuticals in rodents using enhanced MCASE QSAR-ES software. Regul Toxicol Pharmacol 1998; 28:242-64. [PMID: 10049796 DOI: 10.1006/rtph.1998.1259] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This report describes in detail a new quantitative structure-activity relational expert system (QSAR-ES) method for predicting the carcinogenic potential of pharmaceuticals and other organic chemicals in rodents, and a beta-test evaluation of its performance. The method employs an optimized, computer-automated structure evaluation (MCASE) software program and new database modules which were developed under a Cooperative Research and Development Agreement (CRADA) between FDA and Multicase, Inc. The beta-test utilized 126 compounds with carcinogenicity studies not included in control database modules and three sets of modules, including: A07-9 (Multicase, Inc.), AF1-4 (FDA-OTR/Multicase, Inc.), and AF5-8 (FDA-OTR/proprietary). The investigation demonstrated that the standard MCASE(A07-9) system which had a small data-set (n = 319), detected few structure alerts (SA) for carcinogenicity (n = 17), and had poor coverage for beta-test compounds (51%). Conversely, the new, optimized FDA-OTR/MCASE(AF5-8) system had a large data-set (n = 934), detected many SA (n = 58) and had good coverage (94%). In addition, the study showed the standard MCASE(A07-9) software had poor predictive value for carcinogens and specificity for noncarcinogens (50 and 42%), detected many false positives (58%), and exhibited poor concordance (46%). Conversely, the new, FDA-OTR/MCASE(AF5-8) system demonstrated excellent predictive value for carcinogens and specificity for non-carcinogens (97%, 98%), detected only one false positive (2%), and exhibited good concordance (75%). The dramatic improvements in the performance of the MCASE were due to numerous modifications, including: (a) enhancement of the size of the control database modules, (b) optimization of MCASE SAR assay evaluation criteria, (c) incorporation of a carcinogenic potency scale for control compound activity and MCASE biophores, (d) construction of individual rodent gender- and species-specific modules, and (e) defining assay acceptance criteria for query and control database compounds.
Collapse
|
Comparative Study |
27 |
111 |
16
|
Thompson CM, Kirman CR, Proctor DM, Haws LC, Suh M, Hays SM, Hixon JG, Harris MA. A chronic oral reference dose for hexavalent chromium-induced intestinal cancer. J Appl Toxicol 2014; 34:525-36. [PMID: 23943231 PMCID: PMC4282340 DOI: 10.1002/jat.2907] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 05/15/2013] [Accepted: 06/02/2013] [Indexed: 01/18/2023]
Abstract
High concentrations of hexavalent chromium [Cr(VI)] in drinking water induce villous cytotoxicity and compensatory crypt hyperplasia in the small intestines of mice (but not rats). Lifetime exposure to such cytotoxic concentrations increases intestinal neoplasms in mice, suggesting that the mode of action for Cr(VI)-induced intestinal tumors involves chronic wounding and compensatory cell proliferation of the intestine. Therefore, we developed a chronic oral reference dose (RfD) designed to be protective of intestinal damage and thus intestinal cancer. A physiologically based pharmacokinetic model for chromium in mice was used to estimate the amount of Cr(VI) entering each intestinal tissue section (duodenum, jejunum and ileum) from the lumen per day (normalized to intestinal tissue weight). These internal dose metrics, together with corresponding incidences for diffuse hyperplasia, were used to derive points of departure using benchmark dose modeling and constrained nonlinear regression. Both modeling techniques resulted in similar points of departure, which were subsequently converted to human equivalent doses using a human physiologically based pharmacokinetic model. Applying appropriate uncertainty factors, an RfD of 0.006 mg kg(-1) day(-1) was derived for diffuse hyperplasia-an effect that precedes tumor formation. This RfD is protective of both noncancer and cancer effects in the small intestine and corresponds to a safe drinking water equivalent level of 210 µg l(-1). This concentration is higher than the current federal maximum contaminant level for total Cr (100 µg l(-1)) and well above levels of Cr(VI) in US drinking water supplies (typically ≤ 5 µg l(-1)).
Collapse
|
research-article |
11 |
109 |
17
|
Kirkland D, Aardema M, Müller L, Makoto H. Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2006; 608:29-42. [PMID: 16769241 DOI: 10.1016/j.mrgentox.2006.04.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 04/10/2006] [Accepted: 04/30/2006] [Indexed: 11/27/2022]
Abstract
One of the consequences of the low specificity of the in vitro mammalian cell genotoxicity assays reported in our previous paper [D. Kirkland, M. Aardema, L. Henderson, L. Muller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1-256] is industry and regulatory agencies dealing with a large number of false-positive results during the safety assessment of new chemicals and drugs. Addressing positive results from in vitro genotoxicity assays to determine which are "false" requires extensive resources, including the conduct of additional animal studies. In order to reduce animal usage, and to conserve industry and regulatory agency resources, we thought it was important to raise the question as to whether the protocol requirements for a valid in vitro assay or the criteria for a positive result could be changed in order to increase specificity without a significant loss in sensitivity of these tests. We therefore analysed some results of the mouse lymphoma assay (MLA) and the chromosomal aberration (CA) test obtained for rodent carcinogens and non-carcinogens in more detail. For a number of chemicals that are positive only in either of these mammalian cell tests (i.e. negative in the Ames test) there was no correlation between rodent carcinogenicity and level of toxicity (we could not analyse this for the CA test as insufficient data were available in publications), magnitude of response or lowest effective positive concentration. On the basis of very limited in vitro and in vivo data, we could also find no correlation between the above parameters and formation of DNA adducts. Therefore, a change to the current criteria for required level of toxicity in the MLA, to limit positive calls to certain magnitudes of response, or to certain concentration ranges would not improve the specificity of the tests without significantly reducing the sensitivity. We also investigated a possible correlation between tumour profile (trans-species, trans-sex and multi-site versus single-species, single-sex and single-site) and pattern of genotoxicity results. Carcinogens showing the combination of trans-species, trans-sex and multi-site tumour profile were much more prevalent (70% more) in the group of chemicals giving positive results in all three in vitro assays than amongst those giving all negative results. However, single-species, single-sex, single-site carcinogens were not very prevalent even amongst those chemicals giving three negative results in vitro. Surprisingly, when mixed positive and negative results were compared, multi-site carcinogens were highly prevalent amongst chemicals giving only a single positive result in the battery of three in vitro tests. Finally we extended our relative predictivity (RP) calculations to combinations of positive and negative results in the genotoxicity battery. For two out of three tests positive, the RP for carcinogenicity was no higher than 1.0 and for 2/3 tests negative the RP for non-carcinogenicity was either zero (for Ames+MLA+MN) or 1.7 (for Ames+MLA+CA). Thus, all values were less than a meaningful RP of two, and indicate that it is not possible to predict outcome of the rodent carcinogenicity study when only 2/3 genotoxicity results are in agreement.
Collapse
|
|
19 |
101 |
18
|
Schiestl RH, Gietz RD, Mehta RD, Hastings PJ. Carcinogens induce intrachromosomal recombination in yeast. Carcinogenesis 1989; 10:1445-55. [PMID: 2665967 DOI: 10.1093/carcin/10.8.1445] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To identify environmental carcinogens there is a need for inexpensive and reliable short-term tests that can be used to predict the carcinogenic potential of any given substance with high accuracy. The Ames assay, which is based on the induction of mutations in Salmonella typhimurium, is the most extensively used short-term test but certain human or animal carcinogens exist that are persistently undetectable as mutagens with the Ames assay or with other short-term tests. There is a need for a short-term test to detect those carcinogens that are missed by the Ames assay. Carcinogenesis is in many cases associated with genome rearrangement. Because of this association a system screening for intrachromosomal recombination that results in genome rearrangement has been constructed for potential use as a short-term test in the yeast Saccharomyces cerevisiae. Evaluation of this recombination system shows that it is readily inducible by a variety of mutagenic as well as non-readily inducible by a variety of mutagenic as well as non-mutagenic carcinogens, including carcinogens that are not detectable by the Ames assay or by various other short-term tests, such as safrole, urethane, ethionine, auramine, methylene chloride, carbon tetrachloride, cadmium sulfate, aniline, dimethylhydrazine, aminotriazole, acetamide, thiourea and DDE. The present report shows the data for these as well as for additional agents, their response profiles with different concentrations of the agents and the protocol for the DEL system.
Collapse
|
|
36 |
100 |
19
|
Stepanov I, Jensen J, Hatsukami D, Hecht SS. Tobacco-specific nitrosamines in new tobacco products. Nicotine Tob Res 2006; 8:309-13. [PMID: 16766423 DOI: 10.1080/14622200500490151] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
New tobacco products, designed to attract consumers who are concerned about the health effects of tobacco, have been appearing on the market. Objective evaluation of these products requires, as a first step, data on their potentially toxic constituents. Tobacco-specific nitrosamines (TSNAs) are an important class of carcinogens in tobacco products, but virtually no data were available on their levels in these products. In the present study, we analyzed several new products-Ariva, Stonewall, Exalt, Revel, Smokey Mountain, and Quest-for TSNAs and compared their TSNA levels with those in nicotine replacement products and conventional smokeless tobacco and cigarette brands. TSNAs were not detected in Smokey Mountain, which is a tobacco-free snuff product. The lowest levels among the new products containing tobacco were in Ariva and Stonewall (0.26-0.28 microg/g wet weight of product). The highest levels in the new products were found in Exalt (3.3 microg/g tobacco), whereas Revel and Quest had intermediate amounts. Only trace amounts were found in nicotine replacement products, and conventional brands had levels consistent with those reported in the literature. These results demonstrate that TSNA levels in new tobacco products range from relatively low to comparable with those found in some conventional brands.
Collapse
|
Comparative Study |
19 |
98 |
20
|
Storer RD, French JE, Haseman J, Hajian G, LeGrand EK, Long GG, Mixson LA, Ochoa R, Sagartz JE, Soper KA. P53+/- hemizygous knockout mouse: overview of available data. Toxicol Pathol 2002; 29 Suppl:30-50. [PMID: 11695560 DOI: 10.1080/019262301753178465] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The performance of the p53-/- transgenic (knockout) mouse model was evaluated through review of the data from 31 short-term carcinogenicity studies with 21 compounds tested as part of the International Life Sciences Institute's (ILSI) Alternatives to Carcinogenicity Testing (ACT) project, together with data from other studies which used comparable protocols. As expected based on the hypothesis for the model, a significant number (12/16 or 75%) of the genotoxic human and/or rodent carcinogens tested were positive and the positive control, p-cresidine, gave reproducible responses across laboratories (18/19 studies positive in bladder). An immunosuppressive human carcinogen, cyclosporin A, was positive for lymphomas but produced a similar response in wild type mice. Two hormones that are human tumorigens, diethylstilbestrol and 17beta-estradiol, gave positive and equivocal results, respectively, in the pituitary with p53-deficient mice showing a greater incidence of proliferative lesions than wild type. None of the 22 nongenotoxic rodent carcinogens that have been tested produced a positive response but 2 compounds in this category, chloroform and diethylhexylphthalate, were judged equivocal based on effects in liver and kidney respectively. Four genotoxic noncarcinogens and 6 nongenotoxic, noncarcinogens were also negative. In total (excluding compounds with equivocal results), 42 of 48 compounds or 88% gave results that were concordant with expectations. The technical lessons learned from the ILSI ACT-sponsored testing in the p53+/- model are discussed.
Collapse
|
Evaluation Study |
23 |
93 |
21
|
Tennant RW, Spalding J, French JE. Evaluation of transgenic mouse bioassays for identifying carcinogens and noncarcinogens. Mutat Res 1996; 365:119-27. [PMID: 8898993 DOI: 10.1016/s0165-1110(96)90016-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Data supporting the use of transgenic lines to identify carcinogens and noncarcinogens are thus far based on a limited number of chemicals for which there are also long-term bioassay results in rats and/or mice. Six chemicals have been tested in the heterozygous p53-deficient mice and 13 in the Tg.AC line. The results show that the p53def responds rapidly to mutagenic carcinogens and the Tg.AC responds rapidly to both mutagenic and nonmutagenic carcinogens. Neither transgenic line responded to the noncarcinogens that were tested. The p53def line failed to respond to two nonmutagenic carcinogens (N-methyloacrylamide and reserpine), the Tg.AC line failed to respond to ethyl acrylate, a nonmutagenic chemical that induced tumors of the forestomach when administered by gavage, and to triethanolamine that caused an increase in hepatocellular tumors in B6C3F1 mice via skin painting. Both of the latter chemicals are examples of highly specific responses related to either route of administration or to strain susceptibility. Further efforts to evaluate the range of chemicals to which these transgenic lines respond are currently in progress.
Collapse
|
Review |
29 |
90 |
22
|
Abstract
Many compounds giving a positive result in animal carcinogenicity studies through mechanisms involving secondary carcinogenesis pose little or no risk to humans. This article provides an overview of current understanding, with particular reference to renal tumors in male rats with alpha 2mu-globulin nephropathy, urinary bladder neoplasia in rodents, mesovarian leiomyomas induced in rats by beta 2-receptor stimulants, carcinoid tumors in the rodent stomach induced by prolonged suppression of acid secretion, thyroid follicular cell tumors in rodents, canine mammary neoplasia due to administration of progestagens, rodent mammary neoplasia induced by estrogens, uterine endometrial carcinomas of rats induced by dopamine agonists, Leydig cell tumors in the testis of rats, and ovarian tubulostromal adenomas in mice. A positive result on a rodent carcinogenicity study should not automatically preclude further development of a compound; future progress in this field should increase the accuracy of the rodent carcinogenicity study as a tool in human safety assessment.
Collapse
|
Review |
31 |
90 |
23
|
Ito N, Imaida K, Hasegawa R, Tsuda H. Rapid bioassay methods for carcinogens and modifiers of hepatocarcinogenesis. Crit Rev Toxicol 1989; 19:385-415. [PMID: 2663023 DOI: 10.3109/10408448909029328] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
It is very important to detect environmental carcinogens in a short period. For this purpose, a rapid bioassay system based on two-step hepatocarcinogenesis has been developed in our laboratory. Rats were initially given a single dose (200 mg/kg) of diethylnitrosamine (DEN) i.p. and, starting 2 weeks later, were treated with test compounds for 6 weeks and then sacrificed, all rats being subjected to a two thirds partial hepatectomy at week 3. Carcinogenic potential was scored by comparing the glutathione S-transferase placental form-positive foci in the liver with those of the corresponding control. More than 90% of hepatocarcinogens showed positivity, and none of the compounds reported as noncarcinogenic demonstrated positivity. Furthermore, this system also detected inhibitory effects. In order to detect nonhepatocarcinogens, other appropriate systems also have been developed, for example, using methylnitrosourea or other multispectrum carcinogens. These rapid bioassay systems are particularly useful for the screening of environmental carcinogens.
Collapse
|
Review |
36 |
84 |
24
|
Usui T, Mutai M, Hisada S, Takoaka M, Soper KA, McCullough B, Alden C. CB6F1-rasH2 mouse: overview of available data. Toxicol Pathol 2002; 29 Suppl:90-108. [PMID: 11695565 DOI: 10.1080/019262301753178500] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This article presents data from short-term carcinogenicity studies of compounds tested in the CB6F1-rasH2 transgenic mouse as part of the International Life Sciences Institutes' (ILSI) Health and Environmental Sciences' (HESI) Alternative to Carcinogenicity Testing (ACT) project. Additionally, data from other studies that were not conducted as part of the ILSI program, but used comparable or slightly modified protocols, are included here. A significant number (3 of 4) of the genotoxic carcinogens tested were positive in the rasH2 mouse; the other compound was equivocally positive. The positive control, N-Methyl-N-nitrosurea (MNU), gave reproducible responses across all participating laboratories with tumors noted at multiple sites in the animal. The immunosuppressive human carcinogen. Cyclosporin A, was equivocal. Two hormones that are human tumorigens. Diethylstilbestrol and 17beta-Estradiol, gave positive and negative results, respectively. Of the twelve additional compounds tested that are classified as non-genotoxic rodent carcinogens and putative human non-carcinogens, only the two peroxisome proliferators (clofibrate and diethylhexylphthalate(DEHP)) produced a positive response (liver effects). The three non-genotoxic non-carcinogens that were tested also gave negative responses in the rasH2 model. This result provides confidence that the model is likely to have a low false-positive rate.
Collapse
|
Evaluation Study |
23 |
84 |
25
|
Guyton KZ, Rusyn I, Chiu WA, Corpet DE, van den Berg M, Ross MK, Christiani DC, Beland FA, Smith MT. Application of the key characteristics of carcinogens in cancer hazard identification. Carcinogenesis 2018; 39:614-622. [PMID: 29562322 PMCID: PMC5888955 DOI: 10.1093/carcin/bgy031] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/09/2018] [Accepted: 02/20/2018] [Indexed: 12/14/2022] Open
Abstract
Smith et al. (Env. Health Perspect. 124: 713, 2016) identified 10 key characteristics (KCs), one or more of which are commonly exhibited by established human carcinogens. The KCs reflect the properties of a cancer-causing agent, such as 'is genotoxic,' 'is immunosuppressive' or 'modulates receptor-mediated effects,' and are distinct from the hallmarks of cancer, which are the properties of tumors. To assess feasibility and limitations of applying the KCs to diverse agents, methods and results of mechanistic data evaluations were compiled from eight recent IARC Monograph meetings. A systematic search, screening and evaluation procedure identified a broad literature encompassing multiple KCs for most (12/16) IARC Group 1 or 2A carcinogens identified in these meetings. Five carcinogens are genotoxic and induce oxidative stress, of which pentachlorophenol, hydrazine and malathion also showed additional KCs. Four others, including welding fumes, are immunosuppressive. The overall evaluation was upgraded to Group 2A based on mechanistic data for only two agents, tetrabromobisphenol A and tetrachloroazobenzene. Both carcinogens modulate receptor-mediated effects in combination with other KCs. Fewer studies were identified for Group 2B or 3 agents, with the vast majority (17/18) showing only one or no KCs. Thus, an objective approach to identify and evaluate mechanistic studies pertinent to cancer revealed strong evidence for multiple KCs for most Group 1 or 2A carcinogens but also identified opportunities for improvement. Further development and mapping of toxicological and biomarker endpoints and pathways relevant to the KCs can advance the systematic search and evaluation of mechanistic data in carcinogen hazard identification.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
83 |