1
|
Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, Luo SW, Li PH, Zhang LJ, Guan YJ, Butt KM, Wong KL, Chan KW, Lim W, Shortridge KF, Yuen KY, Peiris JSM, Poon LLM. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 2003; 302:276-8. [PMID: 12958366 DOI: 10.1126/science.1087139] [Citation(s) in RCA: 1594] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A novel coronavirus (SCoV) is the etiological agent of severe acute respiratory syndrome (SARS). SCoV-like viruses were isolated from Himalayan palm civets found in a live-animal market in Guangdong, China. Evidence of virus infection was also detected in other animals (including a raccoon dog, Nyctereutes procyonoides) and in humans working at the same market. All the animal isolates retain a 29-nucleotide sequence that is not found in most human isolates. The detection of SCoV-like viruses in small, live wild mammals in a retail market indicates a route of interspecies transmission, although the natural reservoir is not known.
Collapse
|
Comparative Study |
22 |
1594 |
2
|
The Chinese SARS Molecular Epidemiology Consortium. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 2004; 303:1666-1669. [PMID: 14752165 DOI: 10.1126/science.1092002] [Citation(s) in RCA: 548] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sixty-one SARS coronavirus genomic sequences derived from the early, middle, and late phases of the severe acute respiratory syndrome (SARS) epidemic were analyzed together with two viral sequences from palm civets. Genotypes characteristic of each phase were discovered, and the earliest genotypes were similar to the animal SARS-like coronaviruses. Major deletions were observed in the Orf8 region of the genome, both at the start and the end of the epidemic. The neutral mutation rate of the viral genome was constant but the amino acid substitution rate of the coding sequences slowed during the course of the epidemic. The spike protein showed the strongest initial responses to positive selection pressures, followed by subsequent purifying selection and eventual stabilization.
Collapse
|
|
21 |
548 |
3
|
Roelke-Parker ME, Munson L, Packer C, Kock R, Cleaveland S, Carpenter M, O'Brien SJ, Pospischil A, Hofmann-Lehmann R, Lutz H, Mwamengele GL, Mgasa MN, Machange GA, Summers BA, Appel MJ. A canine distemper virus epidemic in Serengeti lions (Panthera leo). Nature 1996; 379:441-5. [PMID: 8559247 PMCID: PMC7095363 DOI: 10.1038/379441a0] [Citation(s) in RCA: 456] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Canine distemper virus (CDV) is thought to have caused several fatal epidemics in canids within the Serengeti-Mara ecosystem of East Africa, affecting silver-backed jackals (Canis mesomelas) and bat-eared foxes (Otocyon megalotis) in 1978 (ref. 1), and African wild dogs (Lycaon pictus) in 1991 (refs 2, 3). The large, closely monitored Serengeti lion population was not affected in these epidemics. However, an epidemic caused by a morbillivirus closely related to CDV emerged abruptly in the lion population of the Serengeti National Park, Tanzania, in early 1994, resulting in fatal neurological disease characterized by grand mal seizures and myoclonus; the lions that died had encephalitis and pneumonia. Here we report the identification of CDV from these lions, and the close phylogenetic relationship between CDV isolates from lions and domestic dogs. By August 1994, 85% of the Serengeti lion population had anti-CDV antibodies, and the epidemic spread north to lions in the Maasai Mara National reserve, Kenya, and uncounted hyaenas, bat-eared foxes, and leopards were also affected.
Collapse
|
research-article |
29 |
456 |
4
|
Abstract
Lyssaviruses are unsegmented RNA viruses causing rabies. Their vectors belong to the Carnivora and Chiroptera orders. We studied 36 carnivoran and 17 chiropteran lyssaviruses representing the main genotypes and variants. We compared their genes encoding the surface glycoprotein, which is responsible for receptor recognition and membrane fusion. The glycoprotein is the main protecting antigen and bears virulence determinants. Point mutation is the main force in lyssavirus evolution, as Sawyer's test and phylogenetic analysis showed no evidence of recombination. Tests of neutrality indicated a neutral model of evolution, also supported by globally high ratios of synonymous substitutions (d(S)) to nonsynonymous substitutions (d(N)) (>7). Relative-rate tests suggested similar rates of evolution for all lyssavirus lineages. Therefore, the absence of recombination and similar evolutionary rates make phylogeny-based conclusions reliable. Phylogenetic reconstruction strongly supported the hypothesis that host switching occurred in the history of lyssaviruses. Indeed, lyssaviruses evolved in chiropters long before the emergence of carnivoran rabies, very likely following spillovers from bats. Using dated isolates, the average rate of evolution was estimated to be roughly 4.3 x 10(-4) d(S)/site/year. Consequently, the emergence of carnivoran rabies from chiropteran lyssaviruses was determined to have occurred 888 to 1,459 years ago. Glycoprotein segments accumulating more d(N) than d(S) were distinctly detected in carnivoran and chiropteran lyssaviruses. They may have contributed to the adaptation of the virus to the two distinct mammal orders. In carnivoran lyssaviruses they overlapped the main antigenic sites, II and III, whereas in chiropteran lyssaviruses they were located in regions of unknown functions.
Collapse
|
research-article |
24 |
258 |
5
|
Truyen U, Gruenberg A, Chang SF, Obermaier B, Veijalainen P, Parrish CR. Evolution of the feline-subgroup parvoviruses and the control of canine host range in vivo. J Virol 1995; 69:4702-10. [PMID: 7609035 PMCID: PMC189276 DOI: 10.1128/jvi.69.8.4702-4710.1995] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A related group of parvoviruses infects members of many different carnivore families. Some of those viruses differ in host range or antigenic properties, but the true relationships are poorly understood. We examined 24 VP1/VP2 and 8 NS1 gene sequences from various parvovirus isolates to determine the phylogenetic relationships between viruses isolated from cats, dogs, Asiatic raccoon dogs, mink, raccoons, and foxes. There were about 1.3% pairwise sequence differences between the VP1/VP2 genes of viruses collected up to four decades apart. Viruses from cats, mink, foxes, and raccoons were not distinguished from each other phylogenetically, but the canine or Asiatic raccoon dog isolates formed a distinct clade. Characteristic antigenic, tissue culture host range, and other properties of the canine isolates have previously been shown to be determined by differences in the VP1/VP2 gene, and we show here that there are at least 10 nucleotide sequence differences which distinguish all canine isolates from any other virus. The VP1/VP2 gene sequences grouped roughly according to the time of virus isolation, and there were similar rates of sequence divergence among the canine isolates and those from the other species. A smaller number of differences were present in the NS1 gene sequences, but a similar phylogeny was revealed. Inoculation of mutants of a feline virus isolate into dogs showed that three or four CPV-specific differences in the VP1/VP2 gene controlled the in vivo canine host range.
Collapse
|
research-article |
30 |
157 |
6
|
Morimoto K, Patel M, Corisdeo S, Hooper DC, Fu ZF, Rupprecht CE, Koprowski H, Dietzschold B. Characterization of a unique variant of bat rabies virus responsible for newly emerging human cases in North America. Proc Natl Acad Sci U S A 1996; 93:5653-8. [PMID: 8643632 PMCID: PMC39303 DOI: 10.1073/pnas.93.11.5653] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The silver-haired bat variant of rabies virus (SHBRV) has been identified as the etiological agent of a number of recent human rabies cases in the United States that are unusual in not having been associated with any known history of conventional exposure. Comparison of the different biological and biochemical properties of isolates of this virus with those of a coyote street rabies virus (COSRV) revealed that there are unique features associated with SHBRV. In vitro studies showed that, while the susceptibility of neuroblastoma cells to infection by both viruses was similar, the infectivity of SHBRV was much higher than that of COSRV in fibroblasts (BHK-21) and epithelial cells (MA-104), particularly when these cells were kept at 34 degrees C. At this temperature, low pH-dependent fusion and cell-to-cell spread of virus is seen in BHK-21 cells infected with SHBRV but not with COSRV. It appears that SHBRV may possess an unique cellular tropism and the ability to replicate at lower temperature, allowing a more effective local replication in the dermis. This hypothesis is supported by in vivo results which showed that while SHBRV is less neurovirulent than COSRV when administered via the intramuscular or intranasal routes, both viruses are equally neuroinvasive if injected intracranially or intradermally. Consistent with the above findings, the amino acid sequences of the glycoproteins of SHBRV and COSRV were found to have substantial differences, particularly in the region that contains the putative toxic loop, which are reflected in marked differences in their antigenic composition. Nevertheless, an experimental rabies vaccine based on the Pittman Moore vaccine strain protected mice equally well from lethal doses of SHBRV and COSRV, suggesting that currently used vaccines should be effective in the postexposure prophylaxis of rabies due to SHBRV.
Collapse
|
research-article |
29 |
141 |
7
|
Ikeda Y, Mochizuki M, Naito R, Nakamura K, Miyazawa T, Mikami T, Takahashi E. Predominance of canine parvovirus (CPV) in unvaccinated cat populations and emergence of new antigenic types of CPVs in cats. Virology 2000; 278:13-9. [PMID: 11112475 DOI: 10.1006/viro.2000.0653] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serological, sequence, and in vitro host range analyses of feline parvovirus (FPV) isolates in Vietnam and Taiwan revealed that more than 80% of the isolates were of the canine parvovirus (CPV) type, rather than feline panleukopenia virus (FPLV). Although parvovirus isolates from three Vietnamese leopard cats were genetically related to CPV type 2a or 2b, they had a natural mutation of VP2 residue 300 Gly to an Asp, resulting in remarkable changes in their antigenic properties. These results indicated the possibility that CPV-2a/2b-type viruses can spread in cats more efficiently than conventional FPLV under natural conditions and that CPV-2a/2b viruses are further evolving in cats.
Collapse
|
Comparative Study |
25 |
134 |
8
|
Kuzmin IV, Shi M, Orciari LA, Yager PA, Velasco-Villa A, Kuzmina NA, Streicker DG, Bergman DL, Rupprecht CE. Molecular inferences suggest multiple host shifts of rabies viruses from bats to mesocarnivores in Arizona during 2001-2009. PLoS Pathog 2012; 8:e1002786. [PMID: 22737076 PMCID: PMC3380930 DOI: 10.1371/journal.ppat.1002786] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/18/2012] [Indexed: 12/25/2022] Open
Abstract
In nature, rabies virus (RABV; genus Lyssavirus, family Rhabdoviridae) represents an assemblage of phylogenetic lineages, associated with specific mammalian host species. Although it is generally accepted that RABV evolved originally in bats and further shifted to carnivores, mechanisms of such host shifts are poorly understood, and examples are rarely present in surveillance data. Outbreaks in carnivores caused by a RABV variant, associated with big brown bats, occurred repeatedly during 2001–2009 in the Flagstaff area of Arizona. After each outbreak, extensive control campaigns were undertaken, with no reports of further rabies cases in carnivores for the next several years. However, questions remained whether all outbreaks were caused by a single introduction and further perpetuation of bat RABV in carnivore populations, or each outbreak was caused by an independent introduction of a bat virus. Another question of concern was related to adaptive changes in the RABV genome associated with host shifts. To address these questions, we sequenced and analyzed 66 complete and 20 nearly complete RABV genomes, including those from the Flagstaff area and other similar outbreaks in carnivores, caused by bat RABVs, and representatives of the major RABV lineages circulating in North America and worldwide. Phylogenetic analysis demonstrated that each Flagstaff outbreak was caused by an independent introduction of bat RABV into populations of carnivores. Positive selection analysis confirmed the absence of post-shift changes in RABV genes. In contrast, convergent evolution analysis demonstrated several amino acids in the N, P, G and L proteins, which might be significant for pre-adaptation of bat viruses to cause effective infection in carnivores. The substitution S/T242 in the viral glycoprotein is of particular merit, as a similar substitution was suggested for pathogenicity of Nishigahara RABV strain. Roles of the amino acid changes, detected in our study, require additional investigations, using reverse genetics and other approaches. Host shifts of the rabies virus (RABV) from bats to carnivores are important for our understanding of viral evolution and emergence, and have significant public health implications, particularly for the areas where “terrestrial” rabies has been eliminated. In this study we addressed several rabies outbreaks in carnivores that occurred in the Flagstaff area of Arizona during 2001–2009, and caused by the RABV variant associated with big brown bats (Eptesicus fuscus). Based on phylogenetic analysis we demonstrated that each outbreak resulted from a separate introduction of bat RABV into populations of carnivores. No post-shift changes in viral genomes were detected under the positive selection analysis. Trying to answer the question why certain bat RABV variants are capable for host shifts to carnivores and other variants are not, we developed a convergent evolution analysis, and implemented it for multiple RABV lineages circulating worldwide. This analysis identified several amino acids in RABV proteins which may facilitate host shifts from bats to carnivores. Precise roles of these amino acids require additional investigations, using reverse genetics and animal experimentation. In general, our approach and the results obtained can be used for prediction of host shifts and emergence of other zoonotic pathogens.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
13 |
127 |
9
|
Troyer JL, Pecon-Slattery J, Roelke ME, Johnson W, VandeWoude S, Vazquez-Salat N, Brown M, Frank L, Woodroffe R, Winterbach C, Winterbach H, Hemson G, Bush M, Alexander KA, Revilla E, O'Brien SJ. Seroprevalence and genomic divergence of circulating strains of feline immunodeficiency virus among Felidae and Hyaenidae species. J Virol 2005; 79:8282-94. [PMID: 15956574 PMCID: PMC1143723 DOI: 10.1128/jvi.79.13.8282-8294.2005] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Feline immunodeficiency virus (FIV) infects numerous wild and domestic feline species and is closely related to human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). Species-specific strains of FIV have been described for domestic cat (Felis catus), puma (Puma concolor), lion (Panthera leo), leopard (Panthera pardus), and Pallas' cat (Otocolobus manul). Here, we employ a three-antigen Western blot screening (domestic cat, puma, and lion FIV antigens) and PCR analysis to survey worldwide prevalence, distribution, and genomic differentiation of FIV based on 3,055 specimens from 35 Felidae and 3 Hyaenidae species. Although FIV infects a wide variety of host species, it is confirmed to be endemic in free-ranging populations of nine Felidae and one Hyaenidae species. These include the large African carnivores (lion, leopard, cheetah, and spotted hyena), where FIV is widely distributed in multiple populations; most of the South American felids (puma, jaguar, ocelot, margay, Geoffroy's cat, and tigrina), which maintain a lower FIV-positive level throughout their range; and two Asian species, the Pallas' cat, which has a species-specific strain of FIV, and the leopard cat, which has a domestic cat FIV strain in one population. Phylogenetic analysis of FIV proviral sequence demonstrates that most species for which FIV is endemic harbor monophyletic, genetically distinct species-specific FIV strains, suggesting that FIV transfer between cat species has occurred in the past but is quite infrequent today.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
107 |
10
|
Bell D, Roberton S, Hunter PR. Animal origins of SARS coronavirus: possible links with the international trade in small carnivores. Philos Trans R Soc Lond B Biol Sci 2004; 359:1107-14. [PMID: 15306396 PMCID: PMC1693393 DOI: 10.1098/rstb.2004.1492] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The search for animal host origins of severe acute respiratory syndrome (SARS) coronavirus has so far remained focused on wildlife markets, restaurants and farms within China. A significant proportion of this wildlife enters China through an expanding regional network of illegal, international wildlife trade. We present the case for extending the search for ancestral coronaviruses and their hosts across international borders into countries such as Vietnam and Lao People's Democratic Republic, where the same guilds of species are found on sale in similar wildlife markets or food outlets. The three species that have so far been implicated, a viverrid, a mustelid and a canid, are part of a large suite of small carnivores distributed across this region currently overexploited by this international wildlife trade. A major lesson from SARS is that the underlying roots of newly emergent zoonotic diseases may lie in the parallel biodiversity crisis of massive species loss as a result of overexploitation of wild animal populations and the destruction of their natural habitats by increasing human populations. To address these dual threats to the long-term future of biodiversity, including man, requires a less anthropocentric and more interdisciplinary approach to problems that require the combined research expertise of ecologists, conservation biologists, veterinarians, epidemiologists, virologists, as well as human health professionals.
Collapse
|
Journal Article |
21 |
97 |
11
|
Harder TC, Kenter M, Vos H, Siebelink K, Huisman W, van Amerongen G, Orvell C, Barrett T, Appel MJ, Osterhaus AD. Canine distemper virus from diseased large felids: biological properties and phylogenetic relationships. J Gen Virol 1996; 77 ( Pt 3):397-405. [PMID: 8601773 DOI: 10.1099/0022-1317-77-3-397] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Specific pathogen free (SPF) domestic cats were inoculated with tissue homogenate obtained from a Chinese leopard (Panthera pardus japonensis) that had died in a North American zoo from a natural infection with canine distemper virus (CDV). The cats developed a transient cell-associated CDV viraemia along with pronounced lymphopenia but did not show any clinical symptoms. Plasma neutralizing-antibody titres against the homologous CDV (A92-27/4, isolated from the Chinese leopard) were consistently higher than against the CDV vaccine strain 'Bussell'. The Chinese leopard CDV isolate showed in vitro biological properties reminiscent of virulent, wild-type CDV strains. Sequence analysis of the H gene of two large felid CDV isolates from the USA (A92-27/4 and A92-6) revealed up to 10% amino acid changes including up to four additional potential N-linked glycosylation sites in the extra-cytoplasmic domain as compared to CDV vaccine strains. Phylogenetic analysis was performed using the entire coding region of the H gene and a 388 bp fragment of the P gene of several morbillivirus species. Evidence was obtained that recent CDV isolates from different species in the United States (including isolates from large felids), Europe and Africa are significantly distinct from CDV vaccine strains. All wild-type CDV isolates analysed clustered according to geographical distribution rather than to host species origin. By sequence analysis a CDV epizootic among large felids in a Californian safari park was linked to a virus which most likely originated from feral non-felid carnivores.
Collapse
|
|
29 |
97 |
12
|
Steinel A, Munson L, van Vuuren M, Truyen U. Genetic characterization of feline parvovirus sequences from various carnivores. J Gen Virol 2000; 81:345-50. [PMID: 10644832 DOI: 10.1099/0022-1317-81-2-345] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infections with viruses of the feline parvovirus subgroup such as feline panleukopenia virus (FPV), mink enteritis virus (MEV) and canine parvovirus (CPV-2) [together with its new antigenic types (CPV-2a, CPV-2b)] have been reported from several wild carnivore species. To examine the susceptibility of different species to the various parvoviruses and their antigenic types, samples from wild carnivores with acute parvovirus infections were collected. Viral DNA was amplified, and subsequently analysed, from faeces or formalin-fixed small intestines from an orphaned bat-eared fox (Otocyon megalotis), a free-ranging honey badger (Mellivora capensis), six captive cheetahs (Acinonyx jubatus), a captive Siberian tiger (Panthera tigris altaica) and a free-ranging African wild cat (Felis lybica). Parvovirus infection in bat-eared fox and honey badger was demonstrated for the first time. FPV-sequences were detected in tissues of the African wild cat and in faeces of one cheetah and the honey badger, whereas CPV-2b sequences were found in five cheetahs and the bat-eared fox. The Siberian tiger (from a German zoo) was infected with a CPV-type 2a virus. This distribution of feline parvovirus antigenic types in captive large cats suggests an interspecies transmission from domestic dogs. CPV-2 sequences were not detected in any of the specimens and no sequences with features intermediate between FPV and CPV were found in any of the animals examined.
Collapse
|
Comparative Study |
25 |
97 |
13
|
McQuiston JH, Yager PA, Smith JS, Rupprecht CE. Epidemiologic characteristics of rabies virus variants in dogs and cats in the United States, 1999. J Am Vet Med Assoc 2001; 218:1939-42. [PMID: 11417737 DOI: 10.2460/javma.2001.218.1939] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate epidemiologic features of rabies virus variants in dogs and cats in the United States during 1999 and assess the role of bat-associated variants. DESIGN Epidemiologic survey. SAMPLE POPULATION Rabies viruses from 78 dogs and 230 cats. PROCEDURE Brain specimens from rabid dogs and cats were submitted for typing of rabies virus. Historical information, including ownership and vaccination status, was obtained for each animal. Specimens were typed by use of indirect fluorescent antibody assay or reverse transcriptase polymerase chain reaction assay and nucleotide sequence analysis. RESULTS Nearly all animals were infected with the predicted terrestrial rabies virus variant associated with the geographic location of the submission. A bat-associated variant of rabies virus was found in a single cat from Maryland. More than half (53%) of submitted animals were classified as owned animals, and most had no known history of vaccination. One vaccination failure was reported in a dog that did not receive a booster dose of rabies vaccine after exposure to a possibly rabid animal. CONCLUSIONS AND CLINICAL RELEVANCE Bat-associated rabies virus variants were not a common cause of rabies in dogs and cats during 1999. Vaccine failures were uncommon during the study period. Because most rabid dogs and cats were unvaccinated and were owned animals rather than strays, educational campaigns targeting owners may be useful.
Collapse
|
|
24 |
69 |
14
|
Carpenter MA, Appel MJ, Roelke-Parker ME, Munson L, Hofer H, East M, O'Brien SJ. Genetic characterization of canine distemper virus in Serengeti carnivores. Vet Immunol Immunopathol 1998; 65:259-66. [PMID: 9839878 DOI: 10.1016/s0165-2427(98)00159-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The lion (Panthera leo) population in the Serengeti ecosystem was recently afflicted by a fatal epidemic involving neurological disease, encephalitis and pneumonia. The cause was identified as canine distemper virus (CDV). Several other species in the Serengeti were also affected. This report presents CDV H and P gene sequences isolated from Serengeti lions (Panthera leo), spotted hyenas (Crocuta crocuta), bat-eared fox (Otocyon megalotis) and domestic dog (Canis familiaris). Sequence analyses demonstrated that the four Serengeti species carry closely related CDV isolates which are genetically distinct from other CDV isolates from various species and locations. The results are consistent with the conclusions that: (1) a particularly virulent strain of CDV emerged among Serengeti carnivores within the last few years; (2) that strain has recognizable shared-derived (synapomorphic) genetic differences in both H and P genes when compared to CDV from other parts of the world; and (3) that the CDV strain has frequently crossed host species among Serengeti carnivores.
Collapse
|
|
27 |
63 |
15
|
Biek R, Rodrigo AG, Holley D, Drummond A, Anderson CR, Ross HA, Poss M. Epidemiology, genetic diversity, and evolution of endemic feline immunodeficiency virus in a population of wild cougars. J Virol 2003; 77:9578-89. [PMID: 12915571 PMCID: PMC187433 DOI: 10.1128/jvi.77.17.9578-9589.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Within the large body of research on retroviruses, the distribution and evolution of endemic retroviruses in natural host populations have so far received little attention. In this study, the epidemiology, genetic diversity, and molecular evolution of feline immunodeficiency virus specific to cougars (FIVpco) was examined using blood samples collected over several years from a free-ranging cougar population in the western United States. The virus prevalence was 58% in this population (n = 52) and increased significantly with host age. Based on phylogenetic analysis of fragments of envelope (env) and polymerase (pol) genes, two genetically distinct lineages of FIVpco were found to cooccur in the population but not in the same individuals. Within each of the virus lineages, geographically nearby isolates formed monophyletic clusters of closely related viruses. Sequence diversity for env within a host rarely exceeded 1%, and the evolution of this gene was dominated by purifying selection. For both pol and env, our data indicate mean rates of molecular evolution of 1 to 3% per 10 years. These results support the premise that FIVpco is well adapted to its cougar host and provide a basis for comparing lentivirus evolution in endemic and epidemic infections in natural hosts.
Collapse
|
research-article |
22 |
60 |
16
|
Abstract
In 1987, Pedersen et al. (1987) reported the isolation of a T-lymphotropic virus possessing the characteristics of a lentivirus from pet cats in Davis, California. From the first report onwards, it was evident that in causing an acquired immunodeficiency syndrome in cats, the virus was of substantial veterinary importance. It shares many physical and biochemical properties with human immunodeficiency virus (HIV), and was therefore named feline immunodeficiency virus (FIV). This article reviews recent knowledge of the aetiology, epidemiology, pathogenesis, clinical signs, diagnosis, prevention, and treatment options of FIV infection.
Collapse
|
review-article |
27 |
60 |
17
|
Hecht SJ, Stedman KE, Carlson JO, DeMartini JC. Distribution of endogenous type B and type D sheep retrovirus sequences in ungulates and other mammals. Proc Natl Acad Sci U S A 1996; 93:3297-302. [PMID: 8622932 PMCID: PMC39601 DOI: 10.1073/pnas.93.8.3297] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The jaagsiekte sheep retrovirus (JSRV), which appears to be a type B/D retrovirus chimera, has been incriminated as the cause of ovine pulmonary carcinoma. Recent studies suggest that the sequences related to this virus are found in the genomes of normal sheep and goats. To learn whether there are breeds of sheep that lack the endogenous viral sequences and to study their distribution among other groups of mammals, we surveyed several domestic sheep and goat breeds, other ungulates, and various mammal groups for sequences related to JSRV. Probes prepared from the envelope (SU) region of JSRV and the capsid (CA) region of a Peruvian type D virus related to JSRV were used in Southern blot hybridization with genomic DNA followed by low- and high-stringency washes. Fifteen to 20 CA and SU bands were found in all members of the 13 breeds of domestic sheep and 6 breeds of goats tested. There were similar findings in 6 wild Ovis and Capra genera. Within 22 other genera of Bovidae including domestic cattle, and 7 other families of Artiodactyla including Cervidae, there were usually a few CA or SU bands at low stringency and rare bands at high stringency. Among 16 phylogenetically distant genera, there were generally fewer bands hybridizing with either probe. These results reveal wide-spread phylogenetic distribution of endogenous type B and type D retroviral sequences related to JSRV among mammals and argue for further investigation of their potential role in disease.
Collapse
|
research-article |
29 |
58 |
18
|
Fournier-Chambrillon C, Aasted B, Perrot A, Pontier D, Sauvage F, Artois M, Cassiède JM, Chauby X, Dal Molin A, Simon C, Fournier P. Antibodies to Aleutian mink disease parvovirus in free-ranging European mink (Mustela lutreola) and other small carnivores from southwestern France. J Wildl Dis 2005; 40:394-402. [PMID: 15465705 DOI: 10.7589/0090-3558-40.3.394] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Owing to the rapid decline of the European mink (Mustela lutreola) in France, a national conservation action plan has been initiated, in which scientific research to improve understanding of the causes of the decline is one of the primary objectives. In order to investigate the possible role of Aleutian disease parvovirus (ADV) in decline of the species, a serologic survey was conducted from March 1996 to March 2002 in 420 free-ranging individuals of six species of small carnivores distributed in eight departments of southwestern France. Antibodies to ADV were detected in 17 of 75 American mink (Mustela vison), 12 of 99 European mink, 16 of 145 polecats (Mustela putorius), four of 17 stone martens (Martes foina), one of 16 pine martens (Martes martes), and three of 68 common genets (Genetta genetta). Seroprevalence was significantly higher in American mink than in other species. Seropositive individuals with gamma globulin levels >20% were observed in four European mink, four American mink, two stone martens, and one pine marten. Geographic distribution of positive animals indicates the virus has spread to all areas where European mink are found. Furthermore, a trend of increasing prevalence seems to appear in Mustela sp. sympatric with American mink. Although further investigations are necessary to evaluate the role of ADV in decline of European mink, evidence of the virus in the wild at the levels found in our study has implications for conservation of this species.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
55 |
19
|
McEwan WA, Schaller T, Ylinen LM, Hosie MJ, Towers GJ, Willett BJ. Truncation of TRIM5 in the Feliformia explains the absence of retroviral restriction in cells of the domestic cat. J Virol 2009; 83:8270-5. [PMID: 19494015 PMCID: PMC2715776 DOI: 10.1128/jvi.00670-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 05/26/2009] [Indexed: 11/20/2022] Open
Abstract
TRIM5alpha mediates a potent retroviral restriction phenotype in diverse mammalian species. Here, we identify a TRIM5 transcript in cat cells with a truncated B30.2 capsid binding domain and ablated restrictive function which, remarkably, is conserved across the Feliformia. Cat TRIM5 displayed no restriction activity, but ectopic expression conferred a dominant negative effect against human TRIM5alpha. Our findings explain the absence of retroviral restriction in cat cells and suggest that disruption of the TRIM5 locus has arisen independently at least twice in the Carnivora, with implications concerning the evolution of the host and pathogen in this taxon.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
53 |
20
|
van Moll P, Alldinger S, Baumgärtner W, Adami M. Distemper in wild carnivores: an epidemiological, histological and immunocytochemical study. Vet Microbiol 1995; 44:193-9. [PMID: 8588313 DOI: 10.1016/0378-1135(95)00012-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Brain tissue from 236 wild carnivores, 146 mustelids and 90 foxes, originating from the same geographical area in southwest Germany was collected over a 2 year period between May 1989 and May 1991 and studied for the presence of canine distemper virus (CDV) antigen by immunohistochemistry. CDV antigen was found in the brains of 54 (37%) mustelids, predominantly in the cerebellar grey matter. Interestingly, no CDV infection was observed in foxes. An increasing number of CDV infections among mustelids was noted between November 1989 and November 1990, peaking in summer 1990. Histological brain lesions, demonstrated only in 45% of the CDV positive mustelids, were characterized by non-purulent encephalitis predominantly in the cerebrum and focal vacuolation of the cerebellar white matter, whereas demyelination was only rarely observed. Histological and immunocytochemical CNS findings indicate an early stage of distemper infection in these mustelids and the high percentage of CDV positive animals together with the seasonal prevalence are suggestive of a CDV epizootic among mustelids.
Collapse
|
|
30 |
52 |
21
|
Abstract
The epidemiology of rabies in southern Africa is complex, due to a large number of vector species and the presence of at least two distinct biotypes of the virus. Our objective was to contribute to the understanding of the epidemiology of rabies in the southern African subcontinent by studying the genetic relationship of 89 rabies virus isolates from this region. In this study, we have focused on an analysis of viruses that cycle in canid host species (canid biotype) throughout South Africa and Zimbabwe. By phylogenetic analysis of the cytoplasmic domain of the glycoprotein and the non-coding G-L intergenic region, all the southern African canid viruses were found to be closely related and no apparent general distinction could be made between them. Although there was a minor degree of phylogenetic branching, with certain branches associated with cycles defined by species, location and time, the phylogenetic pattern indicated that canid rabies in southern Africa is derived from a single virus lineage, which has spread opportunistically within whatever canid host population is ecologically capable of sustaining prolonged cycles. This molecular epidemiological study presents the first comprehensive comparison of rabies viruses from South Africa and Zimbabwe and has demonstrated the need for multinational approaches towards the control of this important zoonotic disease in Africa.
Collapse
|
|
22 |
49 |
22
|
Abstract
The emergence of pathogenic viruses in new species offers an unusual opportunity to monitor the coadaptation of viruses and their hosts in a dynamic ongoing process of intense biological selection. Tracking lentivirus epidemics in man, monkeys and cats reveals genomic struggles at three levels: quasispecies divergence within an individual; coadaptation of virus and host genomes subsequent to disease outbreaks; and transmission, spread and pathogenesis in related host species. Aspects of each level are revealed by examining the genetic diversity of feline immunodeficiency virus in domestic and wild cat species. This approach has been facilitated by the recent genetic characterization of a novel lentivirus in lions.
Collapse
|
Comparative Study |
30 |
47 |
23
|
Abstract
The case fatality was the lowest (3.8%) among 1512 cases with severe acute respiratory syndrome (SARS) in Guangdong Province, China. Rational use of corticosteroid, non-invasive ventilation and the integration of traditional Chinese medicine and modern medicine may partly have contributed to the lowest fatality figure. There was a close linkage between civet cats and humans in terms of transmission of SARS. Strict control of the wild-animal market may be significant in preventing a new outbreak of SARS this year.
Collapse
|
Journal Article |
21 |
45 |
24
|
Duarte MD, Henriques AM, Barros SC, Fagulha T, Mendonça P, Carvalho P, Monteiro M, Fevereiro M, Basto MP, Rosalino LM, Barros T, Bandeira V, Fonseca C, Cunha MV. Snapshot of viral infections in wild carnivores reveals ubiquity of parvovirus and susceptibility of Egyptian mongoose to feline panleukopenia virus. PLoS One 2013; 8:e59399. [PMID: 23527182 PMCID: PMC3603882 DOI: 10.1371/journal.pone.0059399] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 02/15/2013] [Indexed: 11/18/2022] Open
Abstract
The exposure of wild carnivores to viral pathogens, with emphasis on parvovirus (CPV/FPLV), was assessed based on the molecular screening of tissue samples from 128 hunted or accidentally road-killed animals collected in Portugal from 2008 to 2011, including Egyptian mongoose (Herpestes ichneumon, n = 99), red fox (Vulpes vulpes, n = 19), stone marten (Martes foina, n = 3), common genet (Genetta genetta, n = 3) and Eurasian badger (Meles meles, n = 4). A high prevalence of parvovirus DNA (63%) was detected among all surveyed species, particularly in mongooses (58%) and red foxes (79%), along with the presence of CPV/FPLV circulating antibodies that were identified in 90% of a subset of parvovirus-DNA positive samples. Most specimens were extensively autolysed, restricting macro and microscopic investigations for lesion evaluation. Whenever possible to examine, signs of active disease were not present, supporting the hypothesis that the parvovirus vp2 gene fragments detected by real-time PCR possibly correspond to viral DNA reminiscent from previous infections. The molecular characterization of viruses, based on the analysis of the complete or partial sequence of the vp2 gene, allowed typifying three viral strains of mongoose and four red fox's as feline panleukopenia virus (FPLV) and one stone marten's as newCPV-2b type. The genetic similarity found between the FPLV viruses from free-ranging and captive wild species originated in Portugal and publicly available comparable sequences, suggests a closer genetic relatedness among FPLV circulating in Portugal. Although the clinical and epidemiological significance of infection could not be established, this study evidences that exposure of sympatric wild carnivores to parvovirus is common and geographically widespread, potentially carrying a risk to susceptible populations at the wildlife-domestic interface and to threatened species, such as the wildcat (Felis silvestris) and the critically endangered Iberian lynx (Lynx pardinus).
Collapse
|
research-article |
12 |
42 |
25
|
Kallio-Kokko H, Uzcategui N, Vapalahti O, Vaheri A. Viral zoonoses in Europe. FEMS Microbiol Rev 2005; 29:1051-77. [PMID: 16024128 PMCID: PMC7110368 DOI: 10.1016/j.femsre.2005.04.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 04/11/2005] [Accepted: 04/19/2005] [Indexed: 12/19/2022] Open
Abstract
A number of new virus infections have emerged or re-emerged during the past 15 years. Some viruses are spreading to new areas along with climate and environmental changes. The majority of these infections are transmitted from animals to humans, and thus called zoonoses. Zoonotic viruses are, as compared to human-only viruses, much more difficult to eradicate. Infections by several of these viruses may lead to high mortality and also attract attention because they are potential bio-weapons. This review will focus on zoonotic virus infections occurring in Europe.
Collapse
|
Review |
20 |
41 |