1
|
Abstract
BACKGROUND Epidemiologic evidence indicates that diets high in carotenoid-rich fruits and vegetables, as well as high serum levels of vitamin E (alpha-tocopherol) and beta carotene, are associated with a reduced risk of lung cancer. METHODS We performed a randomized, double-blind, placebo-controlled primary-prevention trial to determine whether daily supplementation with alpha-tocopherol, beta carotene, or both would reduce the incidence of lung cancer and other cancers. A total of 29,133 male smokers 50 to 69 years of age from southwestern Finland were randomly assigned to one of four regimens: alpha-tocopherol (50 mg per day) alone, beta carotene (20 mg per day) alone, both alpha-tocopherol and beta carotene, or placebo. Follow-up continued for five to eight years. RESULTS Among the 876 new cases of lung cancer diagnosed during the trial, no reduction in incidence was observed among the men who received alpha-tocopherol (change in incidence as compared with those who did not, -2 percent; 95 percent confidence interval, -14 to 12 percent). Unexpectedly, we observed a higher incidence of lung cancer among the men who received beta carotene than among those who did not (change in incidence, 18 percent; 95 percent confidence interval, 3 to 36 percent). We found no evidence of an interaction between alpha-tocopherol and beta carotene with respect to the incidence of lung cancer. Fewer cases of prostate cancer were diagnosed among those who received alpha-tocopherol than among those who did not. Beta carotene had little or no effect on the incidence of cancer other than lung cancer. Alpha-tocopherol had no apparent effect on total mortality, although more deaths from hemorrhagic stroke were observed among the men who received this supplement than among those who did not. Total mortality was 8 percent higher (95 percent confidence interval, 1 to 16 percent) among the participants who received beta carotene than among those who did not, primarily because there were more deaths from lung cancer and ischemic heart disease. CONCLUSIONS We found no reduction in the incidence of lung cancer among male smokers after five to eight years of dietary supplementation with alpha-tocopherol or beta carotene. In fact, this trial raises the possibility that these supplements may actually have harmful as well as beneficial effects.
Collapse
|
Clinical Trial |
31 |
2927 |
2
|
Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, Keogh JP, Meyskens FL, Valanis B, Williams JH, Barnhart S, Hammar S. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 1996; 334:1150-5. [PMID: 8602180 DOI: 10.1056/nejm199605023341802] [Citation(s) in RCA: 2137] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Lung cancer and cardiovascular disease are major causes of death in the United States. It has been proposed that carotenoids and retinoids are agents that may prevent these disorders. METHODS We conducted a multicenter, randomized, double-blind, placebo-controlled primary prevention trial -- the Beta Carotene and Retinol Efficacy Trial -- involving a total of 18,314 smokers, former smokers, and workers exposed to asbestos. The effects of a combination of 30 mg of beta carotene per day and 25,000 IU of retinol (vitamin A) in the form of retinyl palmitate per day on the primary end point, the incidence of lung cancer, were compared with those of placebo. RESULTS A total of 388 new cases of lung cancer were diagnosed during the 73,135 person-years of follow-up (mean length of follow-up, 4.0 years). The active-treatment group had a relative risk of lung cancer of 1.28 (95 percent confidence interval, 1.04 to 1.57; P=0.02), as compared with the placebo group. There were no statistically significant differences in the risks of other types of cancer. In the active-treatment group, the relative risk of death from any cause was 1.17 (95 percent confidence interval, 1.03 to 1.33); of death from lung cancer, 1.46 (95 percent confidence interval, 1.07 to 2.00); and of death from cardiovascular disease, 1.26 (95 percent confidence interval, 0.99 to 1.61). On the basis of these findings, the randomized trial was stopped 21 months earlier than planned; follow-up will continue for another 5 years. CONCLUSIONS After an average of four years of supplementation, the combination of beta carotene and vitamin A had no benefit and may have had an adverse effect on the incidence of lung cancer and on the risk of death from lung cancer, cardiovascular disease, and any cause in smokers and workers exposed to asbestos.
Collapse
|
Clinical Trial |
29 |
2137 |
3
|
Hennekens CH, Buring JE, Manson JE, Stampfer M, Rosner B, Cook NR, Belanger C, LaMotte F, Gaziano JM, Ridker PM, Willett W, Peto R. Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med 1996; 334:1145-9. [PMID: 8602179 DOI: 10.1056/nejm199605023341801] [Citation(s) in RCA: 1407] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Observational studies suggest that people who consume more fruits and vegetables containing beta carotene have somewhat lower risks of cancer and cardiovascular disease, and earlier basic research suggested plausible mechanisms. Because large randomized trials of long duration were necessary to test this hypothesis directly, we conducted a trial of beta carotene supplementation. METHODS In a randomized, double-blind, placebo-controlled trial of beta carotene (50 mg on alternate days), we enrolled 22,071 male physicians, 40 to 84 years of age, in the United States; 11 percent were current smokers and 39 percent were former smokers at the beginning of the study in 1982. By December 31, 1995, the scheduled end of the study, fewer than 1 percent had been lost to follow-up, and compliance was 78 percent in the group that received beta carotene. RESULTS Among 11,036 physicians randomly assigned to receive beta carotene and 11,035 assigned to receive placebo, there were virtually no early or late differences in the overall incidence of malignant neoplasms or cardiovascular disease, or in overall mortality. In the beta carotene group, 1273 men had any malignant neoplasm (except nonmelanoma skin cancer), as compared with 1293 in the placebo group (relative risk, 0.98; 95 percent confidence interval, 0.91 to 1.06). There were also no significant differences in the number of cases of lung cancer (82 in the beta carotene group vs. 88 in the placebo group); the number of deaths from cancer (386 vs. 380), deaths from any cause (979 vs. 968), or deaths from cardiovascular disease (338 vs. 313); the number of men with myocardial infarction (468 vs. 489); the number with stroke (367 vs. 382); or the number with any one of the previous three end points (967 vs. 972). Among current and former smokers, there were also no significant early or late differences in any of these end points. CONCLUSIONS In this trial among healthy men, 12 years of supplementation with beta carotene produced neither benefit nor harm in terms of the incidence of malignant neoplasms, cardiovascular disease, or death from all causes.
Collapse
|
Clinical Trial |
29 |
1407 |
4
|
Peto R, Doll R, Buckley JD, Sporn MB. Can dietary beta-carotene materially reduce human cancer rates? Nature 1981; 290:201-8. [PMID: 7010181 DOI: 10.1038/290201a0] [Citation(s) in RCA: 967] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Human cancer risks are inversely correlated with (a) blood retinol and (b) dietary beta-carotene. Although retinol in the blood might well be truly protective, this would be of little immediate value without discovery of the important external determinants of blood retinol which (in developed countries) do not include dietary retinol or beta-carotene. If dietary beta-carotene is truly protective--which could be tested by controlled trials--there are a number of theoretical mechanisms whereby it might act, some of which do not directly involve its 'provitamin A' activity.
Collapse
|
Review |
44 |
967 |
5
|
Abstract
Based on extensive epidemiological observation, fruits and vegetables that are a rich source of carotenoids are thought to provide health benefits by decreasing the risk of various diseases, particularly certain cancers and eye diseases. The carotenoids that have been most studied in this regard are beta-carotene, lycopene, lutein and zeaxanthin. In part, the beneficial effects of carotenoids are thought to be due to their role as antioxidants. beta-Carotene may have added benefits due its ability to be converted to vitamin A. Additionally, lutein and zeaxanthin may be protective in eye disease because they absorb damaging blue light that enters the eye. Food sources of these compounds include a variety of fruits and vegetables, although the primary sources of lycopene are tomato and tomato products. Additionally, egg yolk is a highly bioavailable source of lutein and zeaxanthin. These carotenoids are available in supplement form. However, intervention trials with large doses of beta-carotene found an adverse effect on the incidence of lung cancer in smokers and workers exposed to asbestos. Until the efficacy and safety of taking supplements containing these nutrients can be determined, current dietary recommendations of diets high in fruits and vegetables are advised.
Collapse
|
|
20 |
746 |
6
|
Abstract
Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds and crustacea. Animals are unable to synthesise carotenoids de novo, and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. The aim of this article is to review our current understanding of carotenoid formation, to explain the perceived benefits of carotenoids in the diet and review the efforts that have been made to increase carotenoids in certain crop plants.
Collapse
|
Review |
21 |
733 |
7
|
Abstract
Carotenoids are pigments which play a major role in the protection of plants against photooxidative processes. They are efficient antioxidants scavenging singlet molecular oxygen and peroxyl radicals. In the human organism, carotenoids are part of the antioxidant defense system. They interact synergistically with other antioxidants; mixtures of carotenoids are more effective than single compounds. According to their structure most carotenoids exhibit absorption maxima at around 450 nm. Filtering of blue light has been proposed as a mechanism protecting the macula lutea against photooxidative damage. There is increasing evidence from human studies that carotenoids protect the skin against photooxidative damage.
Collapse
|
Review |
21 |
730 |
8
|
The alpha-tocopherol, beta-carotene lung cancer prevention study: design, methods, participant characteristics, and compliance. The ATBC Cancer Prevention Study Group. Ann Epidemiol 1994; 4:1-10. [PMID: 8205268 DOI: 10.1016/1047-2797(94)90036-1] [Citation(s) in RCA: 446] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Alpha-Tocopherol, Beta-Carotene (ATBC) Lung Cancer Prevention Study was a randomized, double-blind, placebo-controlled, 2 x 2 factorial design, primary prevention trial testing the hypothesis that alpha-tocopherol (50 mg/day) and beta-carotene (20 mg/day) supplements reduce the incidence of lung cancer and possibly other cancers. Total and disease-specific mortality and incidence of various diseases and symptoms were monitored for safety. Between 1985 and 1993, 29,133 eligible male smokers aged 50 to 69 years at entry were randomized to receive daily active supplements or placebo capsules for 5 to 8 years (median 6.1 years), accumulating 169,751 follow-up years. This report describes the study design, methods, and protocol as well as the baseline characteristics and capsule compliance of the participants. The ATBC Study is the largest lung cancer chemoprevention trial conducted to date.
Collapse
|
Clinical Trial |
31 |
446 |
9
|
Greenberg ER, Baron JA, Tosteson TD, Freeman DH, Beck GJ, Bond JH, Colacchio TA, Coller JA, Frankl HD, Haile RW. A clinical trial of antioxidant vitamins to prevent colorectal adenoma. Polyp Prevention Study Group. N Engl J Med 1994; 331:141-7. [PMID: 8008027 DOI: 10.1056/nejm199407213310301] [Citation(s) in RCA: 443] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND People who consume a diet high in vegetables and fruits have a lower risk of cancer of the large bowel. Antioxidant vitamins, which are present in vegetables and fruits, have been associated with a diminished risk of cancers at various anatomical sites. We conducted a randomized, controlled clinical trial to test the efficacy of beta carotene and vitamins C and E in preventing colorectal adenoma, a precursor of invasive cancer. METHODS We randomly assigned 864 patients, using a two-by-two factorial design, to four treatment groups, which received placebo; beta carotene (25 mg daily); vitamin C (1 g daily) and vitamin E (400 mg daily); or the beta carotene plus vitamins C and E. In order to identify new adenomas, we performed complete colonoscopic examinations in the patients one year and four years after they entered the study. The primary end points for analyses were new adenomas identified after the first of these two follow-up examinations. RESULTS Patients adhered well to the prescribed regimen, and 751 completed the four-year clinical trial. There was no evidence that either beta carotene or vitamins C and E reduced the incidence of adenomas; the relative risk for beta carotene was 1.01 (95 percent confidence interval, 0.85 to 1.20); for vitamins C and E, it was 1.08 (95 percent confidence interval, 0.91 to 1.29). Neither treatment appeared to be effective in any subgroup of patients or in the prevention of any subtype of polyp defined by size or location. CONCLUSIONS The lack of efficacy of these vitamins argues against the use of supplemental beta carotene and vitamins C and E to prevent colorectal cancer. Although our data do not prove definitively that these antioxidants have no anticancer effect, other dietary factors may make more important contributions to the reduction in the risk of cancer associated with a diet high in vegetables and fruits.
Collapse
|
Clinical Trial |
31 |
443 |
10
|
|
Clinical Trial |
37 |
370 |
11
|
Abstract
Carotenoids are natural pigments which are synthesized by plants and are responsible for the bright colors of various fruits and vegetables. There are several dozen carotenoids in the foods that we eat, and most of these carotenoids have antioxidant activity. Beta-carotene has been best studied since, in most countries it is the most common carotenoid in fruits and vegetables. However, in the U.S., lycopene from tomatoes now is consumed in approximately the same amount as beta-carotene. Antioxidants (including carotenoids) have been studied for their ability to prevent chronic disease. Beta-carotene and others carotenoids have antioxidant properties in vitro and in animal models. Mixtures of carotenoids or associations with others antioxidants (e.g. vitamin E) can increase their activity against free radicals. The use of animals models for studying carotenoids is limited since most of the animals do not absorb or metabolize carotenoids similarly to humans. Epidemiologic studies have shown an inverse relationship between presence of various cancers and dietary carotenoids or blood carotenoid levels. However, three out of four intervention trials using high dose beta-carotene supplements did not show protective effects against cancer or cardiovascular disease. Rather, the high risk population (smokers and asbestos workers) in these intervention trials showed an increase in cancer and angina cases. It appears that carotenoids (including beta-carotene) can promote health when taken at dietary levels, but may have adverse effects when taken in high dose by subjects who smoke or who have been exposed to asbestos. It will be the task of ongoing and future studies to define the populations that can benefit from carotenoids and to define the proper doses, lengths of treatment, and whether mixtures, rather than single carotenoids (e.g. beta-carotene) are more advantageous.
Collapse
|
Review |
26 |
345 |
12
|
Abstract
Diets rich in fruits and vegetables delay the onset of many age-related diseases, and contain a complex mixture of antioxidants (including ascorbate, carotenoids, vitamin E and other phenolics such as the flavonoids). However, diet also contains pro-oxidants, including iron, copper, H2O2, haem, lipid peroxides and aldehydes. Nitrite is frequently present in diet, leading to generation of reactive nitrogen species in the stomach. In considering the biological importance of dietary antioxidants, attention has usually focussed on those that are absorbed through the gastrointestinal tract into the rest of the body. In the present paper we develop the argument that the high levels of antioxidants present in certain foods (fruits, vegetables, grains) and beverages (e.g. green tea) play an important role in protecting the gastrointestinal tract itself from oxidative damage, and in delaying the development of stomach, colon and rectal cancer. Indeed, carotenoids and flavonoids do not seem to be as well absorbed as vitamins C and E. Hence their concentrations can be much higher in the lumen of the GI tract than are ever achieved in plasma or other body tissues, making an antioxidant action in the GI tract more likely. Additional protective mechanisms of these dietary constituents (e.g. effects on intercellular communication, apoptosis, cyclooxygenases and telomerase) may also be important.
Collapse
|
Review |
25 |
343 |
13
|
Byers T, Perry G. Dietary carotenes, vitamin C, and vitamin E as protective antioxidants in human cancers. Annu Rev Nutr 1992; 12:139-59. [PMID: 1503801 DOI: 10.1146/annurev.nu.12.070192.001035] [Citation(s) in RCA: 336] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
Review |
33 |
336 |
14
|
Tapiero H, Townsend DM, Tew KD. The role of carotenoids in the prevention of human pathologies. Biomed Pharmacother 2004; 58:100-10. [PMID: 14992791 PMCID: PMC6361147 DOI: 10.1016/j.biopha.2003.12.006] [Citation(s) in RCA: 331] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species (ROS) and oxidative damage to biomolecules have been postulated to be involved in the causation and progression of several chronic diseases, including cancer and cardiovascular diseases, the two major causes of morbidity and mortality in Western world. Consequently dietary antioxidants, which inactivate ROS and provide protection from oxidative damage are being considered as important preventive strategic molecules. Carotenoids have been implicated as important dietary nutrients having antioxidant potential, being involved in the scavenging of two of the ROS, singlet molecular oxygen (1O2) and peroxyl radicals generated in the process of lipid peroxidation. Carotenoids are lipophilic molecules which tend to accumulate in lipophilic compartments like membranes or lipoproteins. Chronic ethanol consumption significantly increases hydrogen peroxide and decreases mitochondrial glutathione (GSH) in cells overexpressing CYP2E1. The depletion of mitochondrial GSH and the rise of hydrogen peroxide are responsible for the ethanol-induced apoptosis. Increased intake of lycopene, a major carotenoid in tomatoes, consumed as the all-trans-isomer attenuates alcohol induced apoptosis in 2E1 cells and reduces risk of prostate, lung and digestive cancers. Cancer-preventive activities of carotenoids have been associated as well as with their antioxidant properties and the induction and stimulation of intercellular communication via gap junctions which play a role in the regulation of cell growth, differentiation and apoptosis. Gap junctional communication between cells which may be a basis for protection against cancer development is independent of the antioxidant property.
Collapse
|
Review |
21 |
331 |
15
|
Kitade H, Chen G, Ni Y, Ota T. Nonalcoholic Fatty Liver Disease and Insulin Resistance: New Insights and Potential New Treatments. Nutrients 2017; 9:E387. [PMID: 28420094 PMCID: PMC5409726 DOI: 10.3390/nu9040387] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver disorders worldwide. It is associated with clinical states such as obesity, insulin resistance, and type 2 diabetes, and covers a wide range of liver changes, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), liver cirrhosis, and hepatocellular carcinoma. Metabolic disorders, such as lipid accumulation, insulin resistance, and inflammation, have been implicated in the pathogenesis of NAFLD, but the underlying mechanisms, including those that drive disease progression, are not fully understood. Both innate and recruited immune cells mediate the development of insulin resistance and NASH. Therefore, modifying the polarization of resident and recruited macrophage/Kupffer cells is expected to lead to new therapeutic strategies in NAFLD. Oxidative stress is also pivotal for the progression of NASH, which has generated interest in carotenoids as potent micronutrient antioxidants in the treatment of NAFLD. In addition to their antioxidative function, carotenoids regulate macrophage/Kupffer cell polarization and thereby prevent NASH progression. In this review, we summarize the molecular mechanisms involved in the pathogenesis of NAFLD, including macrophage/Kupffer cell polarization, and disturbed hepatic function in NAFLD. We also discuss dietary antioxidants, such as β-cryptoxanthin and astaxanthin, that may be effective in the prevention or treatment of NAFLD.
Collapse
|
Review |
8 |
323 |
16
|
Tanaka T, Shnimizu M, Moriwaki H. Cancer chemoprevention by carotenoids. Molecules 2012; 17:3202-42. [PMID: 22418926 PMCID: PMC6268471 DOI: 10.3390/molecules17033202] [Citation(s) in RCA: 311] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/15/2012] [Accepted: 03/06/2012] [Indexed: 02/07/2023] Open
Abstract
Carotenoids are natural fat-soluble pigments that provide bright coloration to plants and animals. Dietary intake of carotenoids is inversely associated with the risk of a variety of cancers in different tissues. Preclinical studies have shown that some carotenoids have potent antitumor effects both in vitro and in vivo, suggesting potential preventive and/or therapeutic roles for the compounds. Since chemoprevention is one of the most important strategies in the control of cancer development, molecular mechanism-based cancer chemoprevention using carotenoids seems to be an attractive approach. Various carotenoids, such as β-carotene, a-carotene, lycopene, lutein, zeaxanthin, β-cryptoxanthin, fucoxanthin, canthaxanthin and astaxanthin, have been proven to have anti-carcinogenic activity in several tissues, although high doses of β-carotene failed to exhibit chemopreventive activity in clinical trials. In this review, cancer prevention using carotenoids are reviewed and the possible mechanisms of action are described.
Collapse
|
Review |
13 |
311 |
17
|
|
Review |
33 |
307 |
18
|
Youdim KA, Joseph JA. A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: a multiplicity of effects. Free Radic Biol Med 2001; 30:583-94. [PMID: 11295356 DOI: 10.1016/s0891-5849(00)00510-4] [Citation(s) in RCA: 301] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It is rare to see a day pass in which we are not told through some popular medium that the population is becoming older. Along with this information comes the "new" revelation that as we enter the next millennium there will be increases in age-associated diseases (e.g., cancer, cardiovascular disease) including the most devastating of these, which involve the nervous system (e.g., Alzheimer's disease [AD] and Parkinson's disease [PD]). It is estimated that within the next 50 years approximately 30% of the population will be aged 65 years or older. Of those between 75 and 84 years of age, 6 million will exhibit some form of AD symptoms, and of those older than 85 years, over 12 million will have some form of dementia associated with AD. What appears more ominous is that many cognitive changes occur even in the absence of specific age-related neurodegenerative diseases. Common components thought to contribute to the manifestation of these disorders and normal age-related declines in brain performance are increased susceptibility to long-term effects of oxidative stress (OS) and inflammatory insults. Unless some means is found to reduce these age-related decrements in neuronal function, health care costs will continue to rise exponentially. Thus, it is extremely important to explore methods to retard or reverse age-related neuronal deficits as well as their subsequent, behavioral manifestations. Fortunately, the growth of knowledge in the biochemistry of cell viability has opened new avenues of research focused at identifying new therapeutic agents that could potentially disrupt the perpetual cycle of events involved in the decrements associated with these detrimental processes. In this regard, a new role in which certain dietary components may play important roles in alleviating certain disorders are beginning to receive increased attention, in particular those involving phytochemicals found in fruits and vegetables.
Collapse
|
Review |
24 |
301 |
19
|
Greenberg ER, Baron JA, Stukel TA, Stevens MM, Mandel JS, Spencer SK, Elias PM, Lowe N, Nierenberg DW, Bayrd G. A clinical trial of beta carotene to prevent basal-cell and squamous-cell cancers of the skin. The Skin Cancer Prevention Study Group. N Engl J Med 1990; 323:789-95. [PMID: 2202901 DOI: 10.1056/nejm199009203231204] [Citation(s) in RCA: 291] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Beta carotene has been associated with a decreased risk of human cancer in many studies employing dietary questionnaires or blood measurements, and it has had protective effects in some animal models of carcinogenesis. METHODS We tested the possible cancer-preventing effects of beta carotene by randomly assigning 1805 patients who had had a recent nonmelanoma skin cancer to receive either 50 mg of beta carotene or placebo per day and by conducting annual skin examinations to determine the occurrence of new nonmelanoma skin cancer. RESULTS Adherence to the prescribed treatment was good, and after one year the actively treated group's median plasma beta carotene level (3021 nmol per liter) was much higher than that of the control group (354 nmol per liter). After five years of follow-up, however, there was no difference between the groups in the rate of occurrence of the first new nonmelanoma skin cancer (relative rate, 1.05; 95 percent confidence interval, 0.91 to 1.22). In subgroup analyses, active treatment showed no efficacy either in the patients whose initial plasma beta carotene level was in the lowest quartile or in those who currently smoked. There was also no significant difference between treated and control groups in the mean number of new nonmelanoma skin cancers per patient-year. CONCLUSIONS In persons with a previous nonmelanoma skin cancer, treatment with beta carotene does not reduce the occurrence of new skin cancers over a five-year period of treatment and observation.
Collapse
|
Clinical Trial |
35 |
291 |
20
|
Abstract
Lycopene, a carotenoid without provitamin-A activity, is present in many fruits and vegetables; however, tomatoes and processed tomato products constitute the major source of lycopene in North American diet. Among the carotenoids, lycopene is a major component found in the serum and other tissues. Dietary intakes of tomatoes and tomato products containing lycopene have been shown to be associated with decreased risk of chronic diseases such as cancer and cardiovascular diseases in several recent studies. Serum and tissue lycopene levels have also been inversely related with the chronic disease risk. Although the antioxidant properties of lycopene are thought to be primarily responsible for its beneficial properties, evidence is accumulating to suggest other mechanisms such as modulation of intercellular gap junction communication, hormonal and immune system and metabolic pathways may also be involved. This review summarizes the background information about lycopene and presents the most current knowledge with respect to its role in human health and disease.
Collapse
|
Review |
25 |
284 |
21
|
Abstract
CONTEXT Although vitamin deficiency is encountered infrequently in developed countries, inadequate intake of several vitamins is associated with chronic disease. OBJECTIVE To review the clinically important vitamins with regard to their biological effects, food sources, deficiency syndromes, potential for toxicity, and relationship to chronic disease. DATA SOURCES AND STUDY SELECTION We searched MEDLINE for English-language articles about vitamins in relation to chronic diseases and their references published from 1966 through January 11, 2002. DATA EXTRACTION We reviewed articles jointly for the most clinically important information, emphasizing randomized trials where available. DATA SYNTHESIS Our review of 9 vitamins showed that elderly people, vegans, alcohol-dependent individuals, and patients with malabsorption are at higher risk of inadequate intake or absorption of several vitamins. Excessive doses of vitamin A during early pregnancy and fat-soluble vitamins taken anytime may result in adverse outcomes. Inadequate folate status is associated with neural tube defect and some cancers. Folate and vitamins B(6) and B(12) are required for homocysteine metabolism and are associated with coronary heart disease risk. Vitamin E and lycopene may decrease the risk of prostate cancer. Vitamin D is associated with decreased occurrence of fractures when taken with calcium. CONCLUSIONS Some groups of patients are at higher risk for vitamin deficiency and suboptimal vitamin status. Many physicians may be unaware of common food sources of vitamins or unsure which vitamins they should recommend for their patients. Vitamin excess is possible with supplementation, particularly for fat-soluble vitamins. Inadequate intake of several vitamins has been linked to chronic diseases, including coronary heart disease, cancer, and osteoporosis
Collapse
|
Review |
23 |
278 |
22
|
Abstract
Diet is believed to play a complex role in the development of cardiovascular disease, the leading cause of death in the Western world. Tomatoes, the second most produced and consumed vegetable nationwide, are a rich source of lycopene, beta-carotene, folate, potassium, vitamin C, flavonoids, and vitamin E. The processing of tomatoes may significantly affect the bioavailability of these nutrients. Homogenization, heat treatment, and the incorporation of oil in processed tomato products leads to increased lycopene bioavailability, while some of the same processes cause significant loss of other nutrients. Nutrient content is also affected by variety and maturity. Many of these nutrients may function individually, or in concert, to protect lipoproteins and vascular cells from oxidation, the most widely accepted theory for the genesis of atherosclerosis. This hypothesis has been supported by in vitro, limited in vivo, and many epidemiological studies that associate reduced cardiovascular risk with consumption of antioxidant-rich foods. Other cardioprotective functions provided by the nutrients in tomatoes may include the reduction of low-density lipoprotein (LDL) cholesterol, homocysteine, platelet aggregation, and blood pressure. Because tomatoes include several nutrients associated with theoretical or proven effects and are widely consumed year round, they may be considered a valuable component of a cardioprotective diet.
Collapse
|
Review |
22 |
266 |
23
|
Abstract
Cardiovascular disease (CVD) is the main cause of death in Western countries. Nutrition has a significant role in the prevention of many chronic diseases such as CVD, cancers, and degenerative brain diseases. The major risk and protective factors in the diet are well recognized, but interesting new candidates continue to appear. It is well known that a greater intake of fruit and vegetables can help prevent heart diseases and mortality. Because fruit, berries, and vegetables are chemically complex foods, it is difficult to pinpoint any single nutrient that contributes the most to the cardioprotective effects. Several potential components that are found in fruit, berries, and vegetables are probably involved in the protective effects against CVD. Potential beneficial substances include antioxidant vitamins, folate, fiber, and potassium. Antioxidant compounds found in fruit and vegetables, such as vitamin C, carotenoids, and flavonoids, may influence the risk of CVD by preventing the oxidation of cholesterol in arteries. In this review, the role of main dietary carotenoids, ie, lycopene, beta-carotene, alpha-carotene, beta-cryptoxanthin, lutein, and zeaxanthin, in the prevention of heart diseases is discussed. Although it is clear that a higher intake of fruit and vegetables can help prevent the morbidity and mortality associated with heart diseases, more information is needed to ascertain the association between the intake of single nutrients, such as carotenoids, and the risk of CVD. Currently, the consumption of carotenoids in pharmaceutical forms for the treatment or prevention of heart diseases cannot be recommended.
Collapse
|
Review |
19 |
260 |
24
|
Palace VP, Khaper N, Qin Q, Singal PK. Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. Free Radic Biol Med 1999; 26:746-61. [PMID: 10218665 DOI: 10.1016/s0891-5849(98)00266-4] [Citation(s) in RCA: 256] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite being one of the first vitamins to be discovered, the full range of biological activities for vitamin A remains to be defined. Structurally similar to vitamin A, carotenoids are a group of nearly 600 compounds. Only about 50 of these have provitamin A activity. Recent evidence has shown vitamin A, carotenoids and provitamin A carotenoids can be effective antioxidants for inhibiting the development of heart disease. Vitamin A must be obtained from the diet: green and yellow vegetables, dairy products, fruits and organ meats are some of the richest sources. Within the body, vitamin A can be found as retinol, retinal and retinoic acid. Because all of these forms are toxic at high concentrations, they are bound to proteins in the extracellular fluids and inside cells. Vitamin A is stored primarily as long chain fatty esters and as provitamin carotenoids in the liver, kidney and adipose tissue. The antioxidant activity of vitamin A and carotenoids is conferred by the hydrophobic chain of polyene units that can quench singlet oxygen , neutralize thiyl radicals and combine with and stabilize peroxyl radicals. In general, the longer the polyene chain, the greater the peroxyl radical stabilizing ability. Because of their structures, vitamin A and carotenoids can autoxidize when O2 tension increases, and thus are most effective antioxidants at low oxygen tensions that are typical of physiological levels found in tissues. Overall, the epidemiological evidence suggests that vitamin A and carotenoids are important dietary factors for reducing the incidence of heart disease. Although there is considerable discrepancy in the results from studies in humans regarding this relationship, carefully controlled experimental studies continue to indicate that these compounds are effective for mitigating and defending against many forms of cardiovascular disease. More work, especially concerning the relevance of how tissue concentrations, rather than plasma levels, relate to the progression of tissue damage in heart disease is required. This review assembles information regarding the basic structure and metabolism of vitamin A and carotenoids as related to their antioxidant activities. Epidemiological, intervention trials and experimental evidence about the effectiveness of vitamin A and carotenoids for reducing cardiovascular disease is also reviewed.
Collapse
|
Review |
26 |
256 |
25
|
Lippman SM, Batsakis JG, Toth BB, Weber RS, Lee JJ, Martin JW, Hays GL, Goepfert H, Hong WK. Comparison of low-dose isotretinoin with beta carotene to prevent oral carcinogenesis. N Engl J Med 1993; 328:15-20. [PMID: 8416267 DOI: 10.1056/nejm199301073280103] [Citation(s) in RCA: 246] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND High-dose isotretinoin therapy has been determined to be an effective treatment for leukoplakia. However, a high rate of relapses and toxic reactions led us to conduct a trial of a much lower dose of isotretinoin in the hope of maintaining a response and limiting toxicity. METHODS In the first phase of the study, 70 patients with leukoplakia underwent induction therapy with a high dose of isotretinoin (1.5 mg per kilogram of body weight per day) for three months; in the second phase, patients with responses or stable lesions were randomly assigned to maintenance therapy with either beta carotene (30 mg per day) or a low dose of isotretinoin (0.5 mg per kilogram per day) for nine months. RESULTS In the first phase, the rate of response to high-dose induction therapy in the 66 patients who could be evaluated was 55 percent (36 patients). The lesions of seven patients progressed, and therefore they did not participate in the second phase of the trial. Of the 59 patients included in the second phase, 33 were assigned to beta carotene therapy and 26 to low-dose isotretinoin therapy; these two groups did not differ significantly in prognostic factors. Of the 53 patients who could be evaluated, 22 in the low-dose isotretinoin group and 13 in the beta carotene group responded to maintenance therapy or continued to have stable lesions (92 percent vs. 45 percent, P < 0.001). In situ carcinoma developed in one patient in each group, and invasive squamous-cell carcinoma in five patients in the beta carotene group. Toxicity was generally mild, though greater in the group given low-dose isotretinoin therapy. CONCLUSIONS When preceded by high-dose induction therapy, low-dose isotretinoin therapy was significantly more active against leukoplakia than beta carotene and was easily tolerated.
Collapse
|
Clinical Trial |
32 |
246 |