1
|
da Costa AABA, Chowdhury D, Shapiro GI, D'Andrea AD, Konstantinopoulos PA. Targeting replication stress in cancer therapy. Nat Rev Drug Discov 2023; 22:38-58. [PMID: 36202931 PMCID: PMC11132912 DOI: 10.1038/s41573-022-00558-5] [Citation(s) in RCA: 159] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 02/06/2023]
Abstract
Replication stress is a major cause of genomic instability and a crucial vulnerability of cancer cells. This vulnerability can be therapeutically targeted by inhibiting kinases that coordinate the DNA damage response with cell cycle control, including ATR, CHK1, WEE1 and MYT1 checkpoint kinases. In addition, inhibiting the DNA damage response releases DNA fragments into the cytoplasm, eliciting an innate immune response. Therefore, several ATR, CHK1, WEE1 and MYT1 inhibitors are undergoing clinical evaluation as monotherapies or in combination with chemotherapy, poly[ADP-ribose]polymerase (PARP) inhibitors, or immune checkpoint inhibitors to capitalize on high replication stress, overcome therapeutic resistance and promote effective antitumour immunity. Here, we review current and emerging approaches for targeting replication stress in cancer, from preclinical and biomarker development to clinical trial evaluation.
Collapse
|
Review |
2 |
159 |
2
|
Ehsan A, Mann MJ, Dell'Acqua G, Dzau VJ. Long-term stabilization of vein graft wall architecture and prolonged resistance to experimental atherosclerosis after E2F decoy oligonucleotide gene therapy. J Thorac Cardiovasc Surg 2001; 121:714-22. [PMID: 11279413 DOI: 10.1067/mtc.2001.111204] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE We tested the hypothesis that a single intraoperative transfection of rabbit vein grafts with a decoy oligonucleotide that blocks cell-cycle gene transactivation by the transcription factor E2F induces long-term stable adaptation that involves medial hypertrophy and a resistance to neointimal hyperplasia and atherosclerosis. METHODS Jugular vein to carotid artery interposition vein grafts in hypercholesterolemic rabbits were treated, using pressure-mediated delivery, with either E2F decoy oligonucleotide, scrambled oligonucleotide, or vehicle alone. E2F decoy inhibition of cell-cycle gene expression was determined by measuring proliferating cell nuclear antigen upregulation and bromodeoxyuridine incorporation in vascular smooth muscle cells. Neointimal hyperplasia and atherosclerosis were compared between groups at 6 months after operation. Wall stress was derived from the ratio of luminal radius to wall thickness. Normal rabbits exposed to 6 weeks of diet-induced hypercholesterolemia starting 6 months after operation were analyzed in the same manner. RESULTS The E2F decoy oligonucleotide, but not scrambled oligonucleotide or vehicle alone, inhibited proliferating cell nuclear antigen expression and smooth muscle cell proliferation. Furthermore, this manipulation of cell-cycle gene expression yielded an inhibition of neointimal hyperplasia and atherosclerotic plaque formation throughout the 6 months of cholesterol feeding. In normocholesterolemic rabbits, vehicle-treated and scrambled oligonucleotide-treated vein grafts remain susceptible to diet-induced atherosclerosis as well, whereas resistance to this disease induction remained stable in genetically engineered grafts. CONCLUSION A single intraoperative pressure-mediated delivery of E2F decoy effectively provides vein grafts with long-term resistance to neointimal hyperplasia and atherosclerosis. These findings suggest that long-term reduction in human vein graft failure rates may be feasible with this ex vivo gene therapy approach.
Collapse
|
Comparative Study |
24 |
103 |
3
|
Nasu T, Maeshima Y, Kinomura M, Hirokoshi-Kawahara K, Tanabe K, Sugiyama H, Sonoda H, Sato Y, Makino H. Vasohibin-1, a negative feedback regulator of angiogenesis, ameliorates renal alterations in a mouse model of diabetic nephropathy. Diabetes 2009; 58:2365-75. [PMID: 19587360 PMCID: PMC2750227 DOI: 10.2337/db08-1790] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The involvement of proangiogenic factors such as vascular endothelial growth factor as well as the therapeutic efficacy of angiogenesis inhibitors in early diabetic nephropathy has been reported. Vasohibin-1 (VASH-1) is a unique endogenous angiogenesis inhibitor that is induced in endothelial cells by proangiogenic factors. We investigated the therapeutic efficacy of VASH-1 in an early diabetic nephropathy model. RESEARCH DESIGN AND METHODS Streptozotocin- induced type 1 diabetic mice received intravenous injections of adenoviral vectors encoding VASH-1 (AdhVASH-1) or beta-gal (AdLacZ) every other week and were killed after 28 days. RESULTS Treatment with AdhVASH-1 resulted in sustained increase in the protein levels of VASH-1 in the liver and sera, in the absence of any inflammatory alterations. AdhVASH-1 treatment significantly suppressed renal hypertrophy, glomerular hypertrophy, glomerular hyperfiltration, albuminuria, increase of the CD31(+) glomerular endothelial area, F4/80(+) monocyte/macrophage infiltration, the accumulation of type IV collagen, and mesangial matrix compared with AdLacZ-treated diabetic mice. Increase in the renal levels of transforming growth factor-beta1, monocyte chemoattractant protein-1, and receptor for advanced glycation end products in diabetic animals was significantly suppressed by AdhVASH-1 (real-time PCR and immunoblot). VASH-1 significantly suppressed the increase of transforming growth factor-beta, monocyte chemoattractant protein-1, and receptor for advanced glycation end products, induced by high ambient glucose in cultured mouse mesangial cells. Increased phosphorylation of VEGFR2 was suppressed in AdVASH-1-treated diabetic animals and in cultured glomerular endothelial cells. Endogenous mouse VASH-1 was localized to the mesangial and endothelial area in glomeruli of diabetic mice. CONCLUSIONS These results suggest the potential therapeutic efficacy of VASH-1 in treating early diabetic nephropathy potentially mediated via glomerular endothelial and mesangial cells.
Collapse
|
research-article |
16 |
61 |
4
|
Awad MM, Chu QSC, Gandhi L, Stephenson JJ, Govindan R, Bradford DS, Bonomi PD, Ellison DM, Eaton KD, Fritsch H, Munzert G, Johnson BE, Socinski MA. An open-label, phase II study of the polo-like kinase-1 (Plk-1) inhibitor, BI 2536, in patients with relapsed small cell lung cancer (SCLC). Lung Cancer 2017; 104:126-130. [PMID: 28212994 DOI: 10.1016/j.lungcan.2016.12.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/20/2016] [Accepted: 12/26/2016] [Indexed: 12/01/2022]
Abstract
OBJECTIVES This phase II, open-label study was designed to evaluate the response rate to the polo-like kinase 1 (Plk-1) inhibitor BI 2536 in patients with sensitive-relapsed small cell lung cancer (SCLC). Secondary endpoints included progression-free survival (PFS), overall survival (OS), duration of response, and safety. MATERIALS AND METHODS Patients were treated with the recommended phase II dose of 200mg of BI 2536 intravenously every 21days. This was a two-stage design with an early stopping rule in place if responses were not seen in at least 2 of the first 18 enrolled patients. RESULTS AND CONCLUSION Twenty-three patients were enrolled in the study and 21 patients were evaluable for response. No responses were observed and all 23 patients have progressed. The median PFS was 1.4 months. Treatment was generally well tolerated and the most frequent adverse events were neutropenia, fatigue, nausea, vomiting, and constipation. BI 2536 is not effective in the treatment of sensitive relapsed SCLC. The criteria for expanding the trial to the second stage were not achieved, and the study was terminated for a lack of efficacy.
Collapse
|
Clinical Trial, Phase II |
8 |
44 |
5
|
Iwahashi M, Katsuda M, Nakamori M, Nakamura M, Naka T, Ojima T, Iida T, Yamaue H. Vaccination with peptides derived from cancer-testis antigens in combination with CpG-7909 elicits strong specific CD8+ T cell response in patients with metastatic esophageal squamous cell carcinoma. Cancer Sci 2010; 101:2510-7. [PMID: 20874827 PMCID: PMC11158191 DOI: 10.1111/j.1349-7006.2010.01732.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Potent helper action is necessary for peptide-based vaccines to efficiently induce antitumor immune responses against advanced cancer. A phase I trial for advanced esophageal squamous cell carcinoma was carried out for patients with HLA-A*2402 using epitope peptides derived from novel cancer-testis antigens, LY6K and TTK, in combination with CpG-7909 (NCT00669292). This study investigated the feasibility and the toxicity as well as induction of tumor antigen-specific immune responses. Nine patients were vaccinated on days 1, 8, 15, and 22 of each 28-day treatment cycle with peptide LY6K-177, peptide TTK-567, and CpG-7909 (level-1; 0, level-2; 0.02, level-3; 0.1 mg/kg) and all were tolerated by this treatment. LY6K-specific T cell responses in PBMCs were detected in two of the three patients in each level. In particular, two patients in level-2/3 showed potent LY6K-specific T cell responses. In contrast, only two patients in level-2/3 showed TTK-567-specific T cell responses. The frequency of LY6K-177 or TTK-567-specific CD8+ T cells increased in patients in level-2/3 (with CpG). The vaccination with peptides and CpG-7909 increased and activated both plasmacytoid dendritic cells and natural killer cells, and increased the serum level of α-interferon. There were no complete response (CR) and partial response (PR), however, one of three patients in level-1, and four of six patients in level-2/3 showed stable disease (SD). In conclusion, vaccination with LY6K-177 and TTK-567 in combination with CpG-7909 successfully elicited antigen-specific CD8+ T cell responses and enhanced the innate immunity of patients with advanced esophageal squamous cell carcinoma. This vaccine protocol is therefore recommended to undergo further phase II trials.
Collapse
|
Clinical Trial, Phase I |
15 |
38 |
6
|
See HT, Kavanagh JJ, Hu W, Bast RC. Targeted therapy for epithelial ovarian cancer: Current status and future prospects. Int J Gynecol Cancer 2003; 13:701-34. [PMID: 14675307 DOI: 10.1111/j.1525-1438.2003.13601.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Despite advances in surgery and chemotherapy, less than 20% of patients with stage III or IV ovarian cancer survive long-term. In the past, cytotoxic regimens have been developed empirically, combining active agents at maximally tolerated doses, often without a clear rationale for their interaction. Advances in understanding the biology of ovarian cancer have identified multiple molecular targets that differ in normal and malignant cells. Targets include cell cycle regulators, growth factor receptors, signal transduction pathways, molecules that confer drug resistance, and angiogenic mechanisms. A number of targeted agents have entered clinical trials. Small molecular weight inhibitors, monoclonal antibodies, and antisense and gene therapy are all being evaluated alone and in combination with cytotoxic drugs. In contrast to earlier studies, the impact of each agent on the designated target can be assessed and agents can be matched to the genotype and phenotype of malignant and normal cells. In the long run, this should facilitate individualization of more effective, less toxic therapy for women with ovarian cancer.
Collapse
|
|
22 |
36 |
7
|
Francis SC, Raizada MK, Mangi AA, Melo LG, Dzau VJ, Vale PR, Isner JM, Losordo DW, Chao J, Katovich MJ, Berecek KH. Genetic targeting for cardiovascular therapeutics: are we near the summit or just beginning the climb? Physiol Genomics 2001; 7:79-94. [PMID: 11773594 DOI: 10.1152/physiolgenomics.00073.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article is based on an Experimental Biology symposium held in April 2001 and presents the current status of gene therapy for cardiovascular diseases in experimental studies and clinical trials. Evidence for the use of gene therapy to limit neointimal hyperplasia and confer myocardial protection was presented, and it was found that augmenting local nitric oxide (NO) production using gene transfer (GT) of NO synthase or interruption of cell cycle progression through a genetic transfer of cell cycle regulatory genes limited vascular smooth muscle hyperplasia in animal models and infra-inguinal bypass patients. The results of application of vascular endothelial growth factor (VEGF) GT strategies for therapeutic angiogenesis in critical limb and myocardial ischemia in pilot clinical trials was reviewed. In addition, experimental evidence was presented that genetic manipulation of peptide systems (i.e., the renin-angiotensin II system and the kallikrein-kinin system) was effective in the treatment of systemic cardiovascular diseases such as hypertension, heart failure, and renal failure. Although, as of yet, there are no well controlled human trials proving the clinical benefits of gene therapy for cardiovascular diseases, the data presented here in animal models and in human subjects show that genetic targeting is a promising and encouraging modality, not only for the treatment and long-term control of cardiovascular diseases, but for their prevention as well.
Collapse
|
Review |
24 |
22 |
8
|
Abstract
Leland H. Hartwell, Paul M. Nurse et R. Timothy Hunt just received the Nobel price for their discovery of the molecular components of the cell cycle and cell cycle checkpoints. This review is an update of the molecular networks driving the cell cycle and its regulation, and of the importance of this knowledge for understanding the mechanisms driving oncogenesis and therapeutic developments.
Collapse
|
English Abstract |
22 |
18 |
9
|
Nguyen KH, Hachem P, Khor LY, Salem N, Hunt KK, Calkins PR, Pollack A. Adenoviral-E2F-1 radiosensitizes p53wild-type and p53null human prostate cancer cells. Int J Radiat Oncol Biol Phys 2005; 63:238-46. [PMID: 15993550 PMCID: PMC4347813 DOI: 10.1016/j.ijrobp.2005.04.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 04/22/2005] [Accepted: 04/26/2005] [Indexed: 01/30/2023]
Abstract
PURPOSE E2F-1 is a transcription factor that enhances the radiosensitivity of various cell lines by inducing apoptosis. However, there are conflicting data concerning whether this enhancement is mediated via p53 dependent pathways. Additionally, the role of E2F-1 in the response of human prostate cancer to radiation has not been well characterized. In this study, we investigated the effect of Adenoviral-E2F-1 (Ad-E2F-1) on the radiosensitivity of p53wild-type (LNCaP) and p53null (PC3) prostate cancer cell lines. METHODS AND MATERIALS LNCaP and PC3 cells were transduced with Ad-E2F-1, Adenoviral-Luciferase (Ad-Luc) control vector, or Adenoviral-p53 (Ad-p53). Expression of E2F-1 and p53 was examined by Western blot analysis. Annexin V and caspase 3 + 7 assays were performed to estimate the levels of apoptosis. Clonogenic survival assays were used to determine overall cell death. Statistical significance was determined by analysis of variance, using the Bonferroni method to correct for multiple comparisons. RESULTS Western blot analysis confirmed the efficacy of transductions with Ad-E2F-1 and Ad-p53. Ad-E2F-1 transduction significantly enhanced apoptosis and decreased clonogenic survival in both cell lines. These effects were compounded by the addition of RT. Although E2F-1-mediated radiosensitization was independent of p53 status, this effect was more pronounced in p53wild-type LNCaP cells. When PC3 cells were treated with Ad-p53 in combination with RT and Ad-E2F-1, there was at least an additive reduction in clonogenic survival. CONCLUSIONS Our results suggest that Ad-E2F-1 significantly enhances the response of p53wild-type and p53null prostate cancer cells to radiation therapy, although radiosensitization is more pronounced in the presence of p53. Ad-E2F-1 may be a useful adjunct to radiation therapy in the treatment of prostate cancer.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
15 |
10
|
Caponigro F, Ionna F, Comella G. New cytotoxic and molecular-targeted therapies of head and neck tumors. Curr Opin Oncol 2004; 16:225-30. [PMID: 15069317 DOI: 10.1097/00001622-200405000-00006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an update on novel medical treatments for head and neck cancer. RECENT FINDINGS Despite the continuing introduction of new cytotoxic agents, such as antimetabolites (capecitabine, pemetrexed), and topoisomerase I inhibitors, the management of advanced head and neck cancer remains challenging. Epidermal growth factor receptor is an appealing target for novel therapies in head and neck cancer. Several rational approaches have been designed to abrogate epidermal growth factor receptor function, among which the development of small molecules, such as gefitinib or erlotinib, that inhibit tyrosine kinase activity, therefore abrogating the receptor's catalytic activity, autophosphorylation, and its engagement with signal transducers. The development of monoclonal antibodies, such as cetuximab, directed against the receptor's extracellular domain and competing for the binding of receptor ligands is another antireceptor strategy, because it induces epidermal growth factor receptor downregulation from the tumor cell surface. Gefitinib has been evaluated in a phase II study in head and neck cancer, at a dose of 500 mg/day. In this study, a 53% disease control rate was achieved, with a low toxicity. Currently, a phase II study at a dose of 250 mg/day is ongoing. A phase II study of erlotinib in advanced head and neck cancer has provided similar results to those of gefitinib, with a 46% control rate and an acceptable toxicity. Phase I studies of cetuximab have been carried out in advanced head and neck cancer, mainly combining the drug with chemotherapy or radiotherapy. Three phase II studies have evaluated the combination of cetuximab with platinum-based chemotherapy in pretreated patients with recurrent/metastatic head and neck cancer, with a control rate ranging from 29 to 66%. A phase III placebo-controlled trial has shown that the addition of cetuximab to cisplatin does not significantly improve median progression-free survival, despite a difference in the response rate between the two arms. Other molecular-targeted approaches in head and neck cancer include farnesyl transferase inhibitors, cell cycle regulators, and gene therapy. SUMMARY Novel targeted therapies are highly appealing in advanced head and neck cancer, and the most clever way to use them is a matter of intense investigation.
Collapse
|
|
21 |
13 |
11
|
Machado-Pinilla R, Carrillo J, Manguan-Garcia C, Sastre L, Mentzer A, Gu BW, Mason PJ, Perona R. Defects in mTR stability and telomerase activity produced by the Dkc1 A353V mutation in dyskeratosis congenita are rescued by a peptide from the dyskerin TruB domain. Clin Transl Oncol 2012; 14:755-63. [PMID: 22855157 DOI: 10.1007/s12094-012-0865-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/16/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND The predominant X-linked form of dyskeratosis congenita results from mutations in dyskerin, a protein required for ribosomal RNA modification that is also a component of the telomerase complex. We have previously found that expression of an internal fragment of dyskerin (GSE24.2) rescues telomerase activity in X-linked dyskeratosis congenita (X-DC) patient cells. MATERIALS AND METHODS Here, we have generated F9 mouse cell lines expressing the most frequent mutation found in X-DC patients, A353V and study the effect of expressing the GSE24.2 cDNA or GSE24.2 peptide on telomerase activity by TRAP assay, and mTERT and mTR expression by Q-PCR. Point mutation in GSE24.2 residues were generated by site-directed mutagenesis. RESULTS Expression of GSE24.2 increases mTR and to a lesser extent mTERT RNA levels, and leads to recovery of telomerase activity. Point mutations in GSE24.2 residues known to be highly conserved and crucial for the pseudouridine-synthase activity of dyskerin abolished the effect of the peptide. Recovery of telomerase activity and increase in mTERT levels were found when the GSE24.2 peptide purified from bacteria was introduced into the cells. Moreover, mTR stability was also rescued by transfection of the peptide GSE24.2. DISCUSSION These data indicate that supplying GSE24.2, either from a cDNA vector, or as a peptide, can reduces the pathogenic effects of Dkc1 mutations and could form the basis of a novel therapeutic approach.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
11 |
12
|
Gajjela BK, Zhou MM. Bromodomain inhibitors and therapeutic applications. Curr Opin Chem Biol 2023; 75:102323. [PMID: 37207401 PMCID: PMC10524616 DOI: 10.1016/j.cbpa.2023.102323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023]
Abstract
The bromodomain acts to recognize acetylated lysine in histones and transcription proteins and plays a fundamental role in chromatin-based cellular processes including gene transcription and chromatin remodeling. Many bromodomain proteins, particularly the bromodomain and extra terminal domain (BET) protein BRD4 have been implicated in cancers and inflammatory disorders and recognized as attractive drug targets. Although clinical studies of many BET bromodomain inhibitors have made substantial progress toward harnessing the therapeutic potential of targeting the bromodomain proteins, the development of this new class of epigenetic drugs is met with challenges, especially on-target dose-limiting toxicity. In this review, we highlight the current development of new-generation small molecule inhibitors for the BET and non-BET bromodomain proteins and discuss the research strategies used to target different bromodomain proteins for a wide array of human diseases including cancers and inflammatory disorders.
Collapse
|
Review |
2 |
9 |
13
|
Gunji D, Narumi R, Muraoka S, Isoyama J, Ikemoto N, Ishida M, Tomonaga T, Sakai Y, Obama K, Adachi J. Integrative analysis of cancer dependency data and comprehensive phosphoproteomics data revealed the EPHA2-PARD3 axis as a cancer vulnerability in KRAS-mutant colorectal cancer. Mol Omics 2023; 19:624-639. [PMID: 37232035 DOI: 10.1039/d3mo00042g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Colorectal cancer (CRC), a common malignant tumour of the gastrointestinal tract, is a life-threatening cancer worldwide. Mutations in KRAS and BRAF, the major driver mutation subtypes in CRC, activate the RAS pathway, contribute to tumorigenesis in CRC and are being investigated as potential therapeutic targets. Despite recent advances in clinical trials targeting KRASG12C or RAS downstream signalling molecules for KRAS-mutant CRC, there is a lack of effective therapeutic interventions. Therefore, understanding the unique molecular characteristics of KRAS-mutant CRC is essential for identifying molecular targets and developing novel therapeutic interventions. We obtained in-depth proteomics and phosphoproteomics quantitative data for over 7900 proteins and 38 700 phosphorylation sites in cells from 35 CRC cell lines and performed informatic analyses, including proteomics-based coexpression analysis and correlation analysis between phosphoproteomics data and cancer dependency scores of the corresponding phosphoproteins. Our results revealed novel dysregulated protein-protein associations enriched specifically in KRAS-mutant cells. Our phosphoproteomics analysis revealed activation of EPHA2 kinase and downstream tight junction signalling in KRAS-mutant cells. Furthermore, the results implicate the phosphorylation site Y378 in the tight junction protein PARD3 as a cancer vulnerability in KRAS-mutant cells. Together, our large-scale phosphoproteomics and proteomics data across 35 steady-state CRC cell lines represent a valuable resource for understanding the molecular characteristics of oncogenic mutations. Our approach to predicting cancer dependency from phosphoproteomics data identified the EPHA2-PARD3 axis as a cancer vulnerability in KRAS-mutant CRC.
Collapse
|
|
2 |
6 |
14
|
Atencio IA, Chen Z, Nguyen QH, Faha B, Maneval DC. p21WAF-1/Cip-1 gene therapy as an adjunct to glaucoma filtration surgery. CURRENT OPINION IN MOLECULAR THERAPEUTICS 2004; 6:624-8. [PMID: 15663327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Glaucoma is a blinding eye disease characterized by elevated intraocular pressure (IOP). Glaucoma filtration surgery (GFS) is designed to reduce IOP, but wound healing responses to the procedure can result in surgical failure. Anti-metabolites used in conjunction with GFS are commonly employed to control the wound healing response, but have unwanted side effects. This review describes the therapeutic potential of ocular gene therapy using an adenovirus vector containing the human p21WAF-1/Cip-1 gene (rAd-p21) to control unwanted wound healing post-GFS. Here, we summarize encouraging preclinical data in relevant models, and propose rAd-p21 gene therapy as an alternative to the currently used methods of wound healing modulation.
Collapse
|
Review |
21 |
|
15
|
Agnarelli A, Mitchell S, Caalim G, Wood CD, Milton‐Harris L, Chevassut T, West MJ, Mancini EJ. Dissecting the impact of bromodomain inhibitors on the Interferon Regulatory Factor 4-MYC oncogenic axis in multiple myeloma. Hematol Oncol 2022; 40:417-429. [PMID: 35544413 PMCID: PMC9543246 DOI: 10.1002/hon.3016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
B-cell progenitor fate determinant interferon regulatory factor 4 (IRF4) exerts key roles in the pathogenesis and progression of multiple myeloma (MM), a currently incurable plasma cell malignancy. Aberrant expression of IRF4 and the establishment of a positive auto-regulatory loop with oncogene MYC, drives a MM specific gene-expression program leading to the abnormal expansion of malignant immature plasma cells. Targeting the IRF4-MYC oncogenic loop has the potential to provide a selective and effective therapy for MM. Here we evaluate the use of bromodomain inhibitors to target the IRF4-MYC axis through combined inhibition of their known epigenetic regulators, BRD4 and CBP/EP300. Although all inhibitors induced cell death, we found no synergistic effect of targeting both of these regulators on the viability of MM cell-lines. Importantly, for all inhibitors over a time period up to 72 h, we detected reduced IRF4 mRNA, but a limited decrease in IRF4 protein expression or mRNA levels of downstream target genes. This indicates that inhibitor-induced loss of cell viability is not mediated through reduced IRF4 protein expression, as previously proposed. Further analysis revealed a long half-life of IRF4 protein in MM cells. In support of our experimental observations, gene network modeling of MM suggests that bromodomain inhibition is exerted primarily through MYC and not IRF4. These findings suggest that despite the autofeedback positive regulatory loop between IRF4 and MYC, bromodomain inhibitors are not effective at targeting IRF4 in MM and that novel therapeutic strategies should focus on the direct inhibition or degradation of IRF4.
Collapse
|
research-article |
3 |
|
16
|
Iolascon A, Della Ragione F. Cell division cycle manipulation and cancer treatment: a solid promise or just a dream? Haematologica 2002; 87:453-4. [PMID: 12010656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
|
Editorial |
23 |
|
17
|
Wang Y, Sheng W, Yang J, Liu J. [Synergistic tumor suppression by Ad. RGD-iNG4 in human nasopharyngeal carcinoma cell CNE and its mechanism]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2014; 28:410-415. [PMID: 24961131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
OBJECTIVE To investigate the effect of adenovirus-mediated ING4 with RGD on proliferation, apoptosis and cell cycle of human nasopharyngeal carcinoma cell CNE and explore its probable mechanism. METHOD CNE cells were infected with Ad. RGD-ING4 and adenovirus vector, ING4 gene expression level was detected by RT-PCR and the target protein expression was tested by Western blot. MTT assay was adopted to evaluate the efect of ING4 on cell growth of CNE, Annexin -V-PE/7-AAD Double staining was used to measure the efect of ING4 on apoptosis, and PI staining was used to measure the efect of ING4 on the cell cycle. Differential expression of P21, Bcl-2 and Bax gene was detected by RT-PCR,and Differential expression of Survivin and Caspase 3 protein was detected by Western blot. RESULT CNE cells were cultured with Ad. RGD-ING4 for 72 h ,the results showed that ING4 was overexpressed in CNE cells ,the growth of CNE cells was obviously inhibited , apoptosis rate was significantly increased and G2/M phase was arrested apparently. The results of RT-PCR showed that Ad. RGD-ING4 significantly down-regulated the Bcl-2 and up-regulates the Bax and P21 expression in CNE cells, and the difference was statistically significant(P < 0.01). Western blot showed that the expression of Survivin was decreased and Cleaved-Caspase 3 was increased. CONCLUSION Ad. RGD-ING4 can play the role of tumor suppressor synergies on nasopharyngeal carcinoma cell CNE by down-regulating Bcl-2, Survivin expression and up-regulating P21, Bax and Cleaved-Caspase 3 expression.
Collapse
|
|
11 |
|
18
|
Tomita T, Hashimoto H, Kunugiza Y, Yoshikawa H. [Potential application of oligodeoxynucleotides for rheumatoid arthritis]. NIHON RINSHO. JAPANESE JOURNAL OF CLINICAL MEDICINE 2005; 63 Suppl 1:660-5. [PMID: 15799438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|
Review |
20 |
|
19
|
Zhou SY, Xie ZL, Xiao O, Yang XR, Heng BC, Sato Y. Inhibition of mouse alkali burn induced-corneal neovascularization by recombinant adenovirus encoding human vasohibin-1. Mol Vis 2010; 16:1389-98. [PMID: 20680097 PMCID: PMC2913137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 07/22/2010] [Indexed: 11/01/2022] Open
Abstract
PURPOSE To evaluate the activity of recombinant adenovirus encoding human vasohibin-1 (Ad-Vasohibin-1) on mouse corneal neovasularization induced by alkali burn. METHODS For the treatment group, 50 mice each received subconjunctival injection (5 microl) of 10(9) plaque forming units of replication-defective Ad-Vasohibin-1. Control group mice received the same dosage of blank adenoviral vector (AdNull). Five days after injection, corneal neovascularization (CNV) was induced by placing 2.5 microl of 0.1 M NaOH on the right cornea for 30 s. Subsequently, CNV was observed and photographed every 3 days for a total duration of 9 days after the alkali burn. The percentage of neovascularized area was measured and compared with the AdNull control. The expression of human vasohibin-1 protein was detected by immunohistochemistry and western blotting at 5, 8, and 14 days after injection. The mRNA expression levels of murine vascular endothelial growth factor (Vegf), VEGF receptor 1 and 2 (Vegfr1, Vegfr2), and vasohibin-1 (Vash1) were analyzed and compared by real time quantitative reverse-transcription polymerase chain reaction. RESULTS The percentage of neovascularized area within the cornea was significantly reduced in mice treated with Ad-Vasohibin-1 compared to mice treated with AdNull at every time point after alkali-induced injury (7.11%+/-3.91% and 15.48%+/-1.79% of corneal area in the treatment and control groups, respectively, on day 3; 31.64%+/-4.71% and 43.93%+/-6.15% on day 6, and 45.02%+/-9.98% and 66.24%+/-7.17% on day 9, all p<0.001). Human vasohibin-1 protein was detected at the injection sites on day 3 after corneal burn and was highly expressed in the central subepithelial stroma and co-localized with neovascularized vessels within the alkali-treated cornea on day 6. On day 9, the peripheral cornea exhibited a similar staining pattern as the central cornea, but a more intense vasohibin-1 immunostaining signal was detected in the deep stroma. Some of the vasohibin-1 stain signal diffused into the frontal and deep stroma of the central cornea and was not co-localized with new vessels. By contrast, in mice injected with AdNull or normal corneas, no vasohibin-1 stain signal was detected within the corneas. Vasohibin-1 protein expression within treated corneas was also further confirmed by western blotting on day 5. Expression appeared to peak by day 8 and was maintained at high levels until day 14. However, Vasohibin-1 protein was not detected in the corneas of normal mice or mice treated with AdNull. Real-time quantitative reverse-transcription polymerase chain reaction analysis showed that expression of Vegfr2 and endogenous Vash1 mRNA were significantly decreased in the treatment versus control group (t(1)=-2.161, p(1)=0.047; t(2)=-2.236, p(2)=0.041). In contrast, there were no significant differences in Vegf and Vegfr1 mRNA expression levels between the treatment and control groups (p>0.05 for both). CONCLUSIONS Subconjunctival injection of Ad-Vasohibin-1 significantly reduces corneal neovascularization in alkali-treated mouse corneas. This effect of anti-neovascularization may be related to the downregulation of Vegfr2 expression.
Collapse
|
research-article |
15 |
|
20
|
Sato Y. [Self-regulatory system of angiogenesis programmed in vascular endothelium]. Nihon Yakurigaku Zasshi 2007; 129:163-6. [PMID: 17379965 DOI: 10.1254/fpj.129.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
Review |
18 |
|
21
|
Cheng Y, Huang X, Tang Y, Li J, Tan Y, Yuan Q. Effects of evodiamine on ROS/TXNIP/NLRP3 pathway against gouty arthritis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1015-1023. [PMID: 37555854 DOI: 10.1007/s00210-023-02654-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
Evodiamine (EVO) was tested on acute gouty arthritis rats to investigate its anti-inflammatory effect. Seventy-two male Sprague-Dawley (SD) rats were randomly assigned into the control, model, high, medium, and low dose of EVO groups and colchicine group. The ankle swelling degrees were measured at 2 h, 6 h, and 24 h following sodium urate injection into ankle joint. Histopathological examination was performed 24 h after injection. Reactive oxygen species (ROS) content in the ankle joint was detected using chemical fluorescence. Serum interleukin-1β (IL-1β), interleukin-18 (IL-18), and tumor necrosis factor-α (TNF-α) content were determined by ELISA. Serum xanthine oxidase (XOD), superoxide dismutase (SOD), and malondialdehyde (MDA) were determined by spectrophotometry. The expressions of thioredoxin-interacting protein (TXNIP), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), pro-caspase-1, caspase-1, and apoptosis-related spot like protein (ASC) in synovium were detected by Western blot. Evodiamine alleviated the ankle swelling of the affected foot in gouty arthritis rats and reduced inflammatory cell infiltration in joint synovial tissue. Evodiamine also decreased the content of serum inflammatory factors including IL-1β, IL-18, and TNF-α, and increased serum SOD activity, while it decreased serum XOD, MDA activity, and ROS level. Moreover, evodiamine downregulated the protein expression levels of TXNIP, NLRP3, pro-caspase-1, cleaved caspae-1, and ASC. The mechanism of EVO in treating gouty arthritis is associated with the inhibition of NLRP3 inflammasome by regulating the ROS/TXNIP/NLRP3 signaling pathway.
Collapse
|
|
1 |
|
22
|
Kobayashi H, Sato Y. [Gene therapy for rheumatoid arthritis]. NIHON RINSHO. JAPANESE JOURNAL OF CLINICAL MEDICINE 2005; 63 Suppl 12:655-8. [PMID: 16416869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
Review |
20 |
|
23
|
Lee J, Bang JH, Ryu YC, Hwang BH. Multiple suppressing small interfering RNA for cancer treatment-Application to triple-negative breast cancer. Biotechnol J 2023; 18:e2300060. [PMID: 37478121 DOI: 10.1002/biot.202300060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Certain cancers, such as triple-negative breast cancer (TNBC), pose a challenging prognosis due to the absence of identifiable hormone-related receptors and effective targeted therapies. Consequently, novel therapeutics are required for these cancers, offering minimal side effects and reduced drug resistance. Unexpectedly, siRNA-7, initially employed as a control, exhibited significant efficacy in inhibiting cell viability in MDA-MB-231 cells. Through a genome-wide search of seed sequences, the targets of siRNA-7 were identified as cancer-related genes, namely PRKCE, RBPJ, ZNF737, and CDC7 in MDA-MB-231 cells. The mRNA repression analysis confirmed the simultaneous suppression by siRNA-7. Combinatorial administration of single-targeting siRNAs demonstrated a comparable reduction in viability to that achieved by siRNA-7. Importantly, siRNA-7 selectively inhibited cell viability in MDA-MB-231 cells, while normal HDF-n cells remained unaffected. Furthermore, in a xenograft mouse model, siRNA-7 exhibited a remarkable 76% reduction in tumor volume without any loss in body weight. These findings position siRNA-7 as a promising candidate for a novel, safe, specific, and potent TNBC cancer therapeutic. Moreover, the strategy of multiple suppressing small interfering RNA holds potential for the treatment of various diseases associated with gene overexpression.
Collapse
|
|
2 |
|
24
|
Lee CM, Kang JH, Go SI. Clinical implication of megestrol acetate in metastatic gastric cancer: a big data analysis from Health Insurance Review and Assessment (HIRA) database. Support Care Cancer 2024; 32:249. [PMID: 38530439 DOI: 10.1007/s00520-024-08430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
OBJECTIVE Megestrol acetate (MA) is used to manage anorexia and cachexia in patients with advanced cancer. This study investigated the prescription patterns of MA in patients with metastatic gastric cancer, as well as evaluated its impact on survival outcomes and the incidence of venous thromboembolism (VTE). METHODS A Health Insurance Review and Assessment (HIRA) service database was used to investigate differences in baseline characteristics, survival, and the incidence of VTE according to MA prescription patterns (i.e., prescription vs. no prescription) in patients diagnosed with metastatic gastric cancer from July 2014 to December 2015. RESULTS A total of 1938 patients were included in this study. In total, 65% of the patients were prescribed MA. Older age, treatment in tertiary hospitals, and palliative chemotherapy were statistically significant predictive factors for MA prescription. Continuous prescription of MA was observed in 37% of patients. There was no statistically significant difference in survival between the MA and non-MA prescription groups on multivariate analysis. Among the 1427 patients included in the analysis for VTE incidence, 4.3% and 2.9% were diagnosed with VTE during the follow-up period in the MA and non-MA prescription groups, respectively. However, there was no statistically significant difference in VTE diagnosis between the groups on multivariate analysis. CONCLUSION MA is commonly prescribed for metastatic gastric cancer, especially in elderly patients and those undergoing palliative chemotherapy, without significantly affecting survival or VTE risk.
Collapse
|
|
1 |
|
25
|
McFaline-Figueroa JL, Srivatsan S, Hill AJ, Gasperini M, Jackson DL, Saunders L, Domcke S, Regalado SG, Lazarchuck P, Alvarez S, Monnat RJ, Shendure J, Trapnell C. Multiplex single-cell chemical genomics reveals the kinase dependence of the response to targeted therapy. CELL GENOMICS 2024; 4:100487. [PMID: 38278156 PMCID: PMC10879025 DOI: 10.1016/j.xgen.2023.100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/26/2023] [Accepted: 12/15/2023] [Indexed: 01/28/2024]
Abstract
Chemical genetic screens are a powerful tool for exploring how cancer cells' response to drugs is shaped by their mutations, yet they lack a molecular view of the contribution of individual genes to the response to exposure. Here, we present sci-Plex-Gene-by-Environment (sci-Plex-GxE), a platform for combined single-cell genetic and chemical screening at scale. We highlight the advantages of large-scale, unbiased screening by defining the contribution of each of 522 human kinases to the response of glioblastoma to different drugs designed to abrogate signaling from the receptor tyrosine kinase pathway. In total, we probed 14,121 gene-by-environment combinations across 1,052,205 single-cell transcriptomes. We identify an expression signature characteristic of compensatory adaptive signaling regulated in a MEK/MAPK-dependent manner. Further analyses aimed at preventing adaptation revealed promising combination therapies, including dual MEK and CDC7/CDK9 or nuclear factor κB (NF-κB) inhibitors, as potent means of preventing transcriptional adaptation of glioblastoma to targeted therapy.
Collapse
|
research-article |
1 |
|