1
|
Serhan CN, Jain A, Marleau S, Clish C, Kantarci A, Behbehani B, Colgan SP, Stahl GL, Merched A, Petasis NA, Chan L, Van Dyke TE. Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators. THE JOURNAL OF IMMUNOLOGY 2004; 171:6856-65. [PMID: 14662892 DOI: 10.4049/jimmunol.171.12.6856] [Citation(s) in RCA: 302] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PGs and leukotrienes (LTs) mediate cardinal signs of inflammation; hence, their enzymes are targets of current anti-inflammatory therapies. Products of arachidonate 15-lipoxygenases (LO) types I and II display both beneficial roles, such as lipoxins (LXs) that stereoselectively signal counterregulation, as well as potential deleterious actions (i.e., nonspecific phospholipid degradation). In this study, we examined transgenic (TG) rabbits overexpressing 15-LO type I and their response to inflammatory challenge. Skin challenges with either LTB(4) or IL-8 showed that 15-LO TG rabbits give markedly reduced neutrophil (PMN) recruitment and plasma leakage at dermal sites with LTB(4). PMN from TG rabbits also exhibited a dramatic reduction in LTB(4)-stimulated granular mobilization that was not evident with peptide chemoattractants. Leukocytes from 15-LO TG rabbits gave enhanced LX production, underscoring differences in lipid mediator profiles compared with non-TG rabbits. Microbe-associated inflammation and leukocyte-mediated bone destruction were assessed by initiating acute periodontitis. 15-LO TG rabbits exhibited markedly reduced bone loss and local inflammation. Because enhanced LX production was associated with an increased anti-inflammatory status of 15-LO TG rabbits, a stable analog of 5S,6R,15S-trihydroxyeicosa-7E,9E,11Z,13E-tetraenoic acid (LXA(4)) was applied to the gingival crevice subject to periodontitis. Topical application with the 15-epi-16-phenoxy-para-fluoro-LXA(4) stable analog (ATLa) dramatically reduced leukocyte infiltration, ensuing bone loss as well as inflammation. These results indicate that overexpression of 15-LO type I and LXA(4) is associated with dampened PMN-mediated tissue degradation and bone loss, suggesting that enhanced anti-inflammation status is an active process. Moreover, they suggest that LXs can be targets for novel approaches to diseases, e.g., periodontitis and arthritis, where inflammation and bone destruction are features.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
302 |
2
|
Boyden SE, Desai A, Cruse G, Young ML, Bolan HC, Scott LM, Eisch AR, Long RD, Lee CCR, Satorius CL, Pakstis AJ, Olivera A, Mullikin JC, Chouery E, Mégarbané A, Medlej-Hashim M, Kidd KK, Kastner DL, Metcalfe DD, Komarow HD. Vibratory Urticaria Associated with a Missense Variant in ADGRE2. N Engl J Med 2016; 374:656-63. [PMID: 26841242 PMCID: PMC4782791 DOI: 10.1056/nejmoa1500611] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Patients with autosomal dominant vibratory urticaria have localized hives and systemic manifestations in response to dermal vibration, with coincident degranulation of mast cells and increased histamine levels in serum. We identified a previously unknown missense substitution in ADGRE2 (also known as EMR2), which was predicted to result in the replacement of cysteine with tyrosine at amino acid position 492 (p.C492Y), as the only nonsynonymous variant cosegregating with vibratory urticaria in two large kindreds. The ADGRE2 receptor undergoes autocatalytic cleavage, producing an extracellular subunit that noncovalently binds a transmembrane subunit. We showed that the variant probably destabilizes an autoinhibitory subunit interaction, sensitizing mast cells to IgE-independent vibration-induced degranulation. (Funded by the National Institutes of Health.).
Collapse
|
Research Support, N.I.H., Extramural |
9 |
139 |
3
|
Abstract
PURPOSE OF REVIEW The present review considers recent reports that identify the roles of key intermediate signaling components and mediators during and after mast cell activation and degranulation leading to anaphylaxis. RECENT FINDINGS Mechanisms of anaphylaxis are becoming better understood as the interaction of several regulatory systems in the mast cell activation and degranulation signaling cascade. Multiple tyrosine kinases, activated after immunoglobulin E binding to the high-affinity receptors for immunoglobulin E (FcepsilonRI), exert both positive and negative regulation on the signaling cascade, which may vary with genetic background or mutations in signaling proteins. Calcium influx, the essential, proximal intracellular event leading to mast cell degranulation, is controlled also by both negative and positive regulation through calcium channels. Sphingosine-1-phosphate is emerging as a newly realized mediator of anaphylaxis, acting as a signaling component within the mast cell and as a circulating mediator. SUMMARY Anaphylaxis is a systemic reaction involving multiple organ systems, but it is believed that it may be influenced by cellular events in mast cells and basophils resulting in the release of mediators. Therefore, understanding the mechanisms of mast cell activation and degranulation is critical to understanding the mechanisms of anaphylaxis. Recent reports have identified important regulatory components of the signaling cascade and, consequently, potential targets for therapeutic intervention.
Collapse
|
Research Support, N.I.H., Intramural |
17 |
136 |
4
|
Kawakami Y, Kitaura J, Satterthwaite AB, Kato RM, Asai K, Hartman SE, Maeda-Yamamoto M, Lowell CA, Rawlings DJ, Witte ON, Kawakami T. Redundant and opposing functions of two tyrosine kinases, Btk and Lyn, in mast cell activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1210-9. [PMID: 10903718 DOI: 10.4049/jimmunol.165.3.1210] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Protein-tyrosine kinases play crucial roles in mast cell activation through the high-affinity IgE receptor (FcepsilonRI). In this study, we have made the following observations on growth properties and FcepsilonRI-mediated signal transduction of primary cultured mast cells from Btk-, Lyn-, and Btk/Lyn-deficient mice. First, Lyn deficiency partially reversed the survival effect of Btk deficiency. Second, FcepsilonRI-induced degranulation and leukotriene release were almost abrogated in Btk/Lyn doubly deficient mast cells while singly deficient cells exhibited normal responses. Tyrosine phosphorylation of cellular proteins including phospholipases C-gamma1 and C-gamma2 was reduced in Btk/Lyn-deficient mast cells. Accordingly, FcepsilonRI-induced elevation of intracellular Ca2+ concentrations and activation of protein kinase Cs were blunted in the doubly deficient cells. Third, in contrast, Btk and Lyn demonstrated opposing roles in cytokine secretion and mitogen-activated protein kinase activation. Lyn-deficient cells exhibited enhanced secretion of TNF-alpha and IL-2 apparently through the prolonged activation of extracellular signal-related kinases and c-Jun N-terminal kinase. Potentially accounting for this phenomenon and robust degranulation in Lyn-deficient cells, the activities of protein kinase Calpha and protein kinase CbetaII, low at basal levels, were enhanced in these cells. Fourth, cytokine secretion was severely reduced and c-Jun N-terminal kinase activation was completely abrogated in Btk/Lyn-deficient mast cells. The data together demonstrate that Btk and Lyn are involved in mast cell signaling pathways in distinctly different ways, emphasizing that multiple signal outcomes must be evaluated to fully understand the functional interactions of individual signaling components.
Collapse
|
|
25 |
132 |
5
|
Okayama Y, Kirshenbaum AS, Metcalfe DD. Expression of a functional high-affinity IgG receptor, Fc gamma RI, on human mast cells: Up-regulation by IFN-gamma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:4332-9. [PMID: 10754333 DOI: 10.4049/jimmunol.164.8.4332] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Biologically relevant activation of human mast cells through Fc receptors is believed to occur primarily through the high-affinity IgE receptor Fc epsilon RI. However, the demonstration in animal models that allergic reactions do not necessarily require Ag-specific IgE, nor the presence of a functional IgE receptor, and the clinical occurrence of some allergic reactions in situations where Ag-specific IgE appears to be lacking, led us to examine the hypothesis that human mast cells might express the high-affinity IgG receptor Fc gamma RI and in turn be activated through aggregation of this receptor. We thus first determined by RT-PCR that resting human mast cells exhibit minimal message for Fc gamma RI. We next found that IFN-gamma up-regulated the expression of Fc gamma RI. This was confirmed by flow cytometry, where Fc gamma RI expression on human mast cells was increased from approximately 2 to 44% by IFN-gamma exposure. Fc epsilon RI, Fc gamma RII, and Fc gamma RIII expression was not affected. Scatchard plots were consisted with these data where the average binding sites for monomeric IgG1 (Ka = 4-5 x 108 M-1) increased from approximately 2,400 to 12,100-17,300 per cell. Aggregation of Fc gamma RI on human mast cells, and only after IFN-gamma exposure, led to significant degranulation as evidenced by histamine release (24.5 +/- 4.4%): and up-regulation of mRNA expression for specific cytokines including TNF-alpha, GM-CSF, IL-3 and IL-13. These findings thus suggest another mechanism by which human mast cells may be recruited into the inflammatory processes associated with some immunologic and infectious diseases.
Collapse
|
|
25 |
131 |
6
|
Forbes E, Murase T, Yang M, Matthaei KI, Lee JJ, Lee NA, Foster PS, Hogan SP. Immunopathogenesis of experimental ulcerative colitis is mediated by eosinophil peroxidase. THE JOURNAL OF IMMUNOLOGY 2004; 172:5664-75. [PMID: 15100311 DOI: 10.4049/jimmunol.172.9.5664] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The precise role that individual inflammatory cells and mediators play in the development of gastrointestinal (GI) dysfunction and extraintestinal clinical manifestations of ulcerative colitis (UC) is unknown. In this study, we have used a mouse model of UC to establish a central role for eotaxin and, in turn, eosinophils in the development of the immunopathogenesis of this disease. In this model the administration of dextran sodium sulfate (DSS) induces a prominent colonic eosinophilic inflammation and GI dysfunction (diarrhea with blood and shortening of the colon) that resembles UC in patients. GI dysfunction was associated with evidence of eosinophilic cytolytic degranulation and the release of eosinophil peroxidase (EPO) into the colon lumen. By using IL-5 or eotaxin-deficient mice, we show an important role for eotaxin in eosinophil recruitment into the colon during experimental UC. Furthermore, using EPO-deficient mice and an EPO inhibitor resorcinol we demonstrate that eosinophil-derived peroxidase is critical in the development of GI dysfunction in experimental UC. These findings provide direct evidence of a central role for eosinophils and EPO in GI dysfunction and potentially the immunopathogenesis of UC.
Collapse
MESH Headings
- Animals
- Cell Degranulation/genetics
- Cell Degranulation/immunology
- Cell Movement/genetics
- Cell Movement/immunology
- Cell Separation
- Chemokine CCL11
- Chemokines, CC/deficiency
- Chemokines, CC/genetics
- Chemokines, CC/physiology
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/pathology
- Colitis, Ulcerative/physiopathology
- Colon/pathology
- Colon/physiopathology
- Dextran Sulfate/administration & dosage
- Diarrhea/physiopathology
- Disease Models, Animal
- Enzyme Inhibitors/administration & dosage
- Enzyme Inhibitors/pharmacology
- Eosinophil Peroxidase
- Eosinophils/enzymology
- Eosinophils/metabolism
- Eosinophils/pathology
- Gastrointestinal Hemorrhage/physiopathology
- Injections, Intraperitoneal
- Interleukin-5/deficiency
- Interleukin-5/genetics
- Interleukin-5/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Peroxidases/antagonists & inhibitors
- Peroxidases/deficiency
- Peroxidases/genetics
- Peroxidases/physiology
- Resorcinols/administration & dosage
- Resorcinols/pharmacology
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
121 |
7
|
Jones CI, Bray S, Garner SF, Stephens J, de Bono B, Angenent WGJ, Bentley D, Burns P, Coffey A, Deloukas P, Earthrowl M, Farndale RW, Hoylaerts MF, Koch K, Rankin A, Rice CM, Rogers J, Samani NJ, Steward M, Walker A, Watkins NA, Akkerman JW, Dudbridge F, Goodall AH, Ouwehand WH, Bloodomics Consortium. A functional genomics approach reveals novel quantitative trait loci associated with platelet signaling pathways. Blood 2009; 114:1405-16. [PMID: 19429868 DOI: 10.1182/blood-2009-02-202614] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelet response to activation varies widely between individuals but shows interindividual consistency and strong heritability. The genetic basis of this variation has not been properly explored. We therefore systematically measured the effect on function of sequence variation in 97 candidate genes in the collagen and adenosine-diphosphate (ADP) signaling pathways. Resequencing of the genes in 48 European DNA samples nearly doubled the number of known single nucleotide polymorphisms (SNPs) and informed the selection of 1327 SNPs for genotyping in 500 healthy Northern European subjects with known platelet responses to collagen-related peptide (CRP-XL) and ADP. This identified 17 novel associations with platelet function (P < .005) accounting for approximately 46% of the variation in response. Further investigations with platelets of known genotype explored the mechanisms behind some of the associations. SNPs in PEAR1 associated with increased platelet response to CRP-XL and increased PEAR1 protein expression after platelet degranulation. The minor allele of a 3' untranslated region (UTR) SNP (rs2769668) in VAV3 was associated with higher protein expression (P = .03) and increased P-selectin exposure after ADP activation (P = .004). Furthermore the minor allele of the intronic SNP rs17786144 in ITPR1 modified Ca(2+) levels after activation with ADP (P < .004). These data provide novel insights into key hubs within platelet signaling networks.
Collapse
|
Multicenter Study |
16 |
113 |
8
|
Zhong H, Shlykov SG, Molina JG, Sanborn BM, Jacobson MA, Tilley SL, Blackburn MR. Activation of murine lung mast cells by the adenosine A3 receptor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:338-45. [PMID: 12817016 DOI: 10.4049/jimmunol.171.1.338] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adenosine has been implicated to play a role in asthma in part through its ability to influence mediator release from mast cells. Most physiological roles of adenosine are mediated through adenosine receptors; however, the mechanisms by which adenosine influences mediator release from lung mast cells are not understood. We established primary murine lung mast cell cultures and used real-time RT-PCR and immunofluorescence to demonstrate that the A(2A), A(2B), and A(3) adenosine receptors are expressed on murine lung mast cells. Studies using selective adenosine receptor agonists and antagonists suggested that activation of A(3) receptors could induce mast cell histamine release in association with increases in intracellular Ca(2+) that were mediated through G(i) and phosphoinositide 3-kinase signaling pathways. The function of A(3) receptors in vivo was tested by exposing mice to the A(3) receptor agonist, IB-MECA. Nebulized IB-MECA directly induced lung mast cell degranulation in wild-type mice while having no effect in A(3) receptor knockout mice. Furthermore, studies using adenosine deaminase knockout mice suggested that elevated endogenous adenosine induced lung mast cell degranulation by engaging A(3) receptors. These results demonstrate that the A(3) adenosine receptor plays an important role in adenosine-mediated murine lung mast cell degranulation.
Collapse
MESH Headings
- Adenosine/administration & dosage
- Adenosine/analogs & derivatives
- Adenosine Deaminase/deficiency
- Adenosine Deaminase/genetics
- Animals
- Calcium/antagonists & inhibitors
- Calcium/metabolism
- Cell Degranulation/drug effects
- Cell Degranulation/genetics
- Cell Degranulation/physiology
- Cells, Cultured
- Enzyme Inhibitors/pharmacology
- GTP-Binding Protein alpha Subunits, Gi-Go/antagonists & inhibitors
- Histamine Antagonists/pharmacology
- Histamine Release/drug effects
- Histamine Release/genetics
- Histamine Release/physiology
- Intracellular Fluid/drug effects
- Intracellular Fluid/metabolism
- Lung/cytology
- Lung/enzymology
- Lung/metabolism
- Lung/physiology
- Mast Cells/metabolism
- Mast Cells/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Nebulizers and Vaporizers
- Pertussis Toxin/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Purinergic P1 Receptor Agonists
- Receptor, Adenosine A2A
- Receptor, Adenosine A2B
- Receptor, Adenosine A3
- Receptors, Purinergic P1/biosynthesis
- Receptors, Purinergic P1/deficiency
- Receptors, Purinergic P1/physiology
- Up-Regulation/physiology
Collapse
|
|
22 |
108 |
9
|
Sugawara K, Bíró T, Tsuruta D, Tóth BI, Kromminga A, Zákány N, Zimmer A, Funk W, Gibbs BF, Zimmer A, Paus R. Endocannabinoids limit excessive mast cell maturation and activation in human skin. J Allergy Clin Immunol 2012; 129:726-738.e8. [PMID: 22226549 DOI: 10.1016/j.jaci.2011.11.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 11/01/2011] [Accepted: 11/08/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND Mast cells (MCs) crucially contribute to many inflammatory diseases. However, the physiological controls preventing excessive activities of MCs in human skin are incompletely understood. OBJECTIVE Since endocannabinoids are important neuroendocrine MC modifiers, we investigated how stimulation/inhibition of cannabinoid 1 (CB1) receptors affect the biology of human skin MCs in situ. METHODS This was investigated in the MC-rich connective tissue sheath of organ-cultured human scalp hair follicles by quantitative (immuno)histomorphometry, ultrastructural, and quantitative PCR techniques with the use of CB1 agonists or antagonists, CB1 knockdown, or CB1 knockout mice. RESULTS Kit+ MCs within the connective tissue sheath of human hair follicles express functional CB1 receptors, whose pharmacological blockade or gene silencing significantly stimulated both the degranulation and the maturation of MCs from resident progenitor cells in situ (ie, enhanced the number of tryptase+, FcεRIα, or chymase+ connective tissue sheath-MCs). This was, at least in part, stem cell factor-dependent. CB1 agonists counteracted the MC-activating effects of classical MC secretagogues. Similar phenomena were observed in CB1 knockout mice, attesting to the in vivo relevance of this novel MC-inhibitory mechanism. CONCLUSION By using human hair follicle organ culture as an unconventional, but clinically relevant model system for studying the biology of MCs in situ, we show that normal skin MCs are tightly controlled by the endocannabinoid system. This limits excessive activation and maturation of MCs from resident progenitors via "tonic" CB1 stimulation by locally synthesized endocannabinoids. The excessive numbers and activation of MCs in allergic and other chronic inflammatory skin diseases may partially arise from resident intracutaneous MC progenitors, for example, because of insufficient CB1 stimulation. Therefore, CB1 stimulation is a promising strategy for the future management of allergy and MC-dependent skin diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
103 |
10
|
Kim HS, Das A, Gross CC, Bryceson YT, Long EO. Synergistic signals for natural cytotoxicity are required to overcome inhibition by c-Cbl ubiquitin ligase. Immunity 2010; 32:175-86. [PMID: 20189481 PMCID: PMC2843589 DOI: 10.1016/j.immuni.2010.02.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 11/12/2009] [Accepted: 12/08/2009] [Indexed: 11/22/2022]
Abstract
Natural killer (NK) cell cytotoxicity toward target cells depends on synergistic coactivation by NK cell receptors such as NKG2D and 2B4. How synergy occurs is not known. Synergistic phosphorylation of phospholipase PLC-gamma2, Ca(2+) mobilization, and degranulation triggered by NKG2D and 2B4 coengagement were blocked by Vav1 siRNA knockdown, but enhanced by knockdown of c-Cbl. c-Cbl inhibited Vav1-dependent signals, given that c-Cbl knockdown did not rescue the Vav1 defect. Moreover, c-Cbl knockdown and Vav1 overexpression each circumvented the necessity for synergy because NKG2D or 2B4 alone became sufficient for activation. Thus, synergy requires not strict complementation but, rather, strong Vav1 signals to overcome inhibition by c-Cbl. Inhibition of NK cell cytotoxicity by CD94-NKG2A binding to HLA-E on target cells was dominant over synergistic activation, even after c-Cbl knockdown. Therefore, NK cell activation by synergizing receptors is regulated at the level of Vav1 by a hierarchy of inhibitory mechanisms.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Calcium/metabolism
- Cell Degranulation/genetics
- Cell Degranulation/immunology
- Cell Line, Tumor
- Cytotoxicity, Immunologic/genetics
- Cytotoxicity, Immunologic/immunology
- HLA Antigens/genetics
- HLA Antigens/immunology
- HLA Antigens/metabolism
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/pathology
- Mice
- NK Cell Lectin-Like Receptor Subfamily D/metabolism
- NK Cell Lectin-Like Receptor Subfamily K/genetics
- NK Cell Lectin-Like Receptor Subfamily K/immunology
- NK Cell Lectin-Like Receptor Subfamily K/metabolism
- Phospholipase C gamma/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-cbl/genetics
- Proto-Oncogene Proteins c-vav/genetics
- RNA, Small Interfering/genetics
- Receptor Cross-Talk/immunology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Signal Transduction/immunology
- Signaling Lymphocytic Activation Molecule Family
- Transfection
- HLA-E Antigens
Collapse
|
Research Support, N.I.H., Intramural |
15 |
99 |
11
|
Nguyen M, Solle M, Audoly LP, Tilley SL, Stock JL, McNeish JD, Coffman TM, Dombrowicz D, Koller BH. Receptors and signaling mechanisms required for prostaglandin E2-mediated regulation of mast cell degranulation and IL-6 production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4586-93. [PMID: 12370397 DOI: 10.4049/jimmunol.169.8.4586] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cells are implicated in the pathogenesis of a broad spectrum of immunological disorders. These cells release inflammatory mediators in response to a number of stimuli, including IgE-Ag complexes. The degranulation of mast cells is modified by PGs. To begin to delineate the pathway(s) used by PGs to regulate mast cell function, we examined bone marrow-derived mast cells (BMMC) cultured from mice deficient in the EP(1), EP(2), EP(3), and EP(4) receptors for PGE(2). Although BMMCs express all four of these PGE(2) receptors, potentiation of Ag-stimulated degranulation and IL-6 cytokine production by PGE(2) is dependent on the EP(3) receptor. Consistent with the coupling of this receptor to G(alphai), PGE(2) activation of the EP(3) receptor leads to both inhibition of adenylate cyclase and increased intracellular Ca(2+). The magnitude of increase in intracellular Ca(2+) induced by EP(3) activation is similar to that observed after activation of cells with IgE and Ag. Although PGE alone is not sufficient to initiate BMMC degranulation, stimulation of cells with PGE along with PMA induces degranulation. These actions are mediated by the EP(3) receptor through signals involving Ca(2+) mobilization and/or decreased cAMP levels. Accordingly, these studies identify PGE(2)/EP(3) as a proinflammatory signaling pathway that promotes mast cell activation.
Collapse
MESH Headings
- Alprostadil/analogs & derivatives
- Alprostadil/pharmacology
- Animals
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/physiology
- Cell Degranulation/drug effects
- Cell Degranulation/genetics
- Cell Degranulation/physiology
- Cytokines/metabolism
- Dinoprostone/pharmacology
- Interleukin-6/biosynthesis
- Leukotrienes/metabolism
- Mast Cells/drug effects
- Mast Cells/metabolism
- Mast Cells/physiology
- Mice
- Mice, Knockout
- Receptors, Prostaglandin E/biosynthesis
- Receptors, Prostaglandin E/deficiency
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E/physiology
- Receptors, Prostaglandin E, EP1 Subtype
- Receptors, Prostaglandin E, EP2 Subtype
- Receptors, Prostaglandin E, EP3 Subtype
- Receptors, Prostaglandin E, EP4 Subtype
- Signal Transduction/genetics
- Signal Transduction/physiology
- Tetradecanoylphorbol Acetate/pharmacology
Collapse
|
|
23 |
87 |
12
|
Fumagalli L, Zhang H, Baruzzi A, Lowell CA, Berton G. The Src family kinases Hck and Fgr regulate neutrophil responses to N-formyl-methionyl-leucyl-phenylalanine. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:3874-85. [PMID: 17339487 PMCID: PMC4683084 DOI: 10.4049/jimmunol.178.6.3874] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The chemotactic peptide formyl-methionyl-leucyl-phenilalanine (fMLP) triggers intracellular protein tyrosine phosphorylation leading to neutrophil activation. Deficiency of the Src family kinases Hck and Fgr have previously been found to regulate fMLP-induced degranulation. In this study, we further investigate fMLP signaling in hck-/-fgr-/- neutrophils and find that they fail to activate a respiratory burst and display reduced F-actin polymerization in response to fMLP. Additionally, albeit migration of both hck-/-fgr-/-mouse neutrophils and human neutrophils incubated with the Src family kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) through 3-microm pore size Transwells was normal, deficiency, or inhibition, of Src kinases resulted in a failure of neutrophils to migrate through 1-microm pore size Transwells. Among MAPKs, phosphorylation of ERK1/2 was not different, phosphorylation of p38 was only partially affected, and phosphorylation of JNK was markedly decreased in fMLP-stimulated hck-/-fgr-/- neutrophils and in human neutrophils incubated with PP2. An increase in intracellular Ca(2+) concentration and phosphorylation of Akt/PKB occurred normally in fMLP-stimulated hck-/-fgr-/- neutrophils, indicating that activation of both phosphoinositide-specific phospholipase C and PI3K is independent of Hck and Fgr. In contrast, phosphorylation of the Rho/Rac guanine nucleotide exchange factor Vav1 and the Rac target p21-activated kinases were markedly reduced in both hck-/-fgr-/- neutrophils and human neutrophils incubated with a PP2. Consistent with these findings, PP2 inhibited Rac2 activation in human neutrophils. We suggest that Hck and Fgr act within a signaling pathway triggered by fMLP receptors that involves Vav1 and p21-activated kinases, leading to respiratory burst and F-actin polymerization.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
83 |
13
|
Fish SC, Donaldson DD, Goldman SJ, Williams CMM, Kasaian MT. IgE generation and mast cell effector function in mice deficient in IL-4 and IL-13. THE JOURNAL OF IMMUNOLOGY 2005; 174:7716-24. [PMID: 15944273 DOI: 10.4049/jimmunol.174.12.7716] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IL-4 and IL-13 are potent cytokines that drive production of IgE, which is critical to the development of atopic disease. In this study, we directly compared IgE generation and IgE-dependent mast cell effector function in mouse strains lacking IL-4, IL-13, IL-4 + IL-13, or their common receptor component, IL-4Ralpha. Although serum IgE was undetectable under resting conditions in most animals deficient in one or both cytokines, peritoneal mast cells from mice lacking IL-4 or IL-13 had only partial reductions in surface IgE level. In contrast, peritoneal mast cells from IL-4/13(-/-) and IL-4Ralpha(-/-) animals were severely deficient in surface IgE, and showed no detectable degranulation following treatment with anti-IgE in vitro. Surprisingly, however, intradermal challenge with high concentrations of anti-IgE Ab induced an ear-swelling response in these strains, implying some capacity for IgE-mediated effector function in tissue mast cells. Furthermore, upon specific immunization with OVA, both IL-4/IL-13(-/-) and IL-4Ralpha(-/-) mice produced detectable levels of serum IgE and Ag-specific IgG1, and generated strong ear-swelling responses to intradermal administration of anti-IgE. These findings suggest that a mechanism for IgE production exists in vivo that is independent of IL-4 or IL-13.
Collapse
|
Journal Article |
20 |
82 |
14
|
Miyazaki D, Nakamura T, Toda M, Cheung-Chau KW, Richardson RM, Ono SJ. Macrophage inflammatory protein-1alpha as a costimulatory signal for mast cell-mediated immediate hypersensitivity reactions. J Clin Invest 2005; 115:434-42. [PMID: 15650768 PMCID: PMC544033 DOI: 10.1172/jci18452] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2003] [Accepted: 11/30/2004] [Indexed: 11/17/2022] Open
Abstract
Regulation of the immune response requires the cooperation of multiple signals in the activation of effector cells. For example, T cells require signals emanating from both the TCR for antigen (upon recognition of MHC/antigenic peptide) and receptors for costimulatory molecules (e.g., CD80 and CD60) for full activation. Here we show that IgE-mediated reactions in the conjunctiva also require multiple signals. Immediate hypersensitivity reactions in the conjunctiva were inhibited in mice deficient in macrophage inflammatory protein-1alpha (MIP-1alpha) despite normal numbers of tissue mast cells and no decrease in the levels of allergen-specific IgE. Treatment of sensitized animals with neutralizing antibodies with specificity for MIP-1alpha also inhibited hypersensitivity in the conjunctiva. In both cases (MIP-1alpha deficiency and antibody treatment), the degranulation of mast cells in situ was affected. In vitro sensitization assays showed that MIP-1alpha is indeed required for optimal mast cell degranulation, along with cross-linking of the high-affinity IgE receptor, FcepsilonRI. The data indicate that MIP-1alpha constitutes an important second signal for mast cell degranulation in the conjunctiva in vivo and consequently for acute-phase disease. Antagonizing the interaction of MIP-1alpha with its receptor CC chemokine receptor 1 (CCR1) or signal transduction from CCR1 may therefore prove to be effective as an antiinflammatory therapy on the ocular surface.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- B7-1 Antigen/immunology
- Cell Degranulation/drug effects
- Cell Degranulation/genetics
- Cell Degranulation/physiology
- Chemokine CCL3
- Chemokine CCL4
- Conjunctiva/immunology
- Conjunctiva/pathology
- Conjunctivitis, Allergic/chemically induced
- Conjunctivitis, Allergic/drug therapy
- Conjunctivitis, Allergic/genetics
- Conjunctivitis, Allergic/immunology
- Conjunctivitis, Allergic/pathology
- Histocompatibility Antigens/immunology
- Immunoglobulin E/immunology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Macrophage Inflammatory Proteins/genetics
- Macrophage Inflammatory Proteins/immunology
- Mast Cells/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Peptides/administration & dosage
- Peptides/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, CCR1
- Receptors, Chemokine/immunology
- Receptors, IgE/immunology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
|
Journal Article |
20 |
79 |
15
|
Muntasell A, López-Montañés M, Vera A, Heredia G, Romo N, Peñafiel J, Moraru M, Vila J, Vilches C, López-Botet M. NKG2C zygosity influences CD94/NKG2C receptor function and the NK-cell compartment redistribution in response to human cytomegalovirus. Eur J Immunol 2013; 43:3268-78. [PMID: 24030638 DOI: 10.1002/eji.201343773] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/18/2013] [Accepted: 09/09/2013] [Indexed: 01/26/2023]
Abstract
Human cytomegalovirus (HCMV) infection promotes a persistent expansion of a functionally competent NK-cell subset expressing the activating CD94/NKG2C receptor. Factors underlying the wide variability of this effect observed in HCMV-seropositive healthy individuals and exacerbated in immunocompromized patients are uncertain. A deletion of the NKG2C gene has been reported, and an apparent relation of NKG2C genotype with circulating NKG2C(+) NK-cell numbers was observed in HCMV(+) children. We have assessed the influence of NKG2C gene dose on the NK-cell repertoire in a cohort of young healthy adults (N = 130, median age 19 years). Our results revealed a relation of NKG2C copy number with surface receptor levels and with NKG2C(+) NK-cell numbers in HCMV(+) subjects, independently of HLA-E dimorphism. Functional studies showed quantitative differences in signaling (i.e. iCa(2+) influx), degranulation, and IL-15-dependent proliferation, in response to NKG2C engagement, between NK cells from NKG2C(+/+) and hemizygous subjects. These observations provide a mechanistic interpretation on the way the NKG2C genotype influences steady-state NKG2C(+) NK-cell numbers, further supporting an active involvement of the receptor in the HCMV-induced reconfiguration of the NK-cell compartment. The putative implications of NKG2C zygosity over viral control and other clinical variables deserve attention.
Collapse
|
Clinical Trial |
12 |
77 |
16
|
Moriyama M, Sato T, Inoue H, Fukuyama S, Teranishi H, Kangawa K, Kano T, Yoshimura A, Kojima M. The neuropeptide neuromedin U promotes inflammation by direct activation of mast cells. ACTA ACUST UNITED AC 2005; 202:217-24. [PMID: 16009716 PMCID: PMC2213011 DOI: 10.1084/jem.20050248] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neuromedin U (NMU) is a neuropeptide that is expressed in the gastrointestinal tract and central nervous system. NMU interacts with two G protein–coupled receptors, NMU-R1 and NMU-R2. Whereas NMU-R2 localizes predominantly to nerve cells, NMU-R1 is expressed in peripheral tissues including lymphocytes and monocytes, suggesting a role of NMU in immunoregulation. However, the functions of NMU in peripheral tissues have not been clarified. In this study, using NMU-deficient mice, we first demonstrated that NMU plays an important role in mast cell-mediated inflammation. Complete Freund's adjuvant-induced mast cell degranulation as well as edema and neutrophil infiltration, which occurred weakly in mast cell–deficient WBB6F1-W/Wv mice, did not occur in NMU-deficient mice. Moreover, intraplantar injection of NMU into paws induced early inflammatory responses such as mast cell degranulation, vasodilation, and plasma extravasation in WT mice but not in WBB6F1-W/Wv mice. NMU-R1 was highly expressed in primary mast cells, and NMU induced Ca2+ mobilization and degranulation in peritoneal mast cells. These data indicate that NMU promotes mast cell–mediated inflammation; therefore, NMU receptor antagonists could be a novel target for pharmacological inhibition of mast cell–mediated inflammatory diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
77 |
17
|
Abonia JP, Friend DS, Austen WG, Moore FD, Carroll MC, Chan R, Afnan J, Humbles A, Gerard C, Knight P, Kanaoka Y, Yasuda S, Morokawa N, Austen KF, Stevens RL, Gurish MF. Mast cell protease 5 mediates ischemia-reperfusion injury of mouse skeletal muscle. THE JOURNAL OF IMMUNOLOGY 2005; 174:7285-91. [PMID: 15905575 PMCID: PMC2951006 DOI: 10.4049/jimmunol.174.11.7285] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ischemia with subsequent reperfusion (IR) injury is a significant clinical problem that occurs after physical and surgical trauma, myocardial infarction, and organ transplantation. IR injury of mouse skeletal muscle depends on the presence of both natural IgM and an intact C pathway. Disruption of the skeletal muscle architecture and permeability also requires mast cell (MC) participation, as revealed by the fact that IR injury is markedly reduced in c-kit defective, MC-deficient mouse strains. In this study, we sought to identify the pathobiologic MC products expressed in IR injury using transgenic mouse strains with normal MC development, except for the lack of a particular MC-derived mediator. Histologic analysis of skeletal muscle from BALB/c and C57BL/6 mice revealed a strong positive correlation (R(2) = 0.85) between the extent of IR injury and the level of MC degranulation. Linkage between C activation and MC degranulation was demonstrated in mice lacking C4, in which only limited MC degranulation and muscle injury were apparent. No reduction in injury was observed in transgenic mice lacking leukotriene C(4) synthase, hemopoietic PGD(2) synthase, N-deacetylase/N-sulfotransferase-2 (enzyme involved in heparin biosynthesis), or mouse MC protease (mMCP) 1. In contrast, muscle injury was significantly attenuated in mMCP-5-null mice. The MCs that reside in skeletal muscle contain abundant amounts of mMCP-5 which is the serine protease that is most similar in sequence to human MC chymase. We now report a cytotoxic activity associated with a MC-specific protease and demonstrate that mMCP-5 is critical for irreversible IR injury of skeletal muscle.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
75 |
18
|
Ma HT, Peng Z, Hiragun T, Iwaki S, Gilfillan AM, Beaven MA. Canonical transient receptor potential 5 channel in conjunction with Orai1 and STIM1 allows Sr2+ entry, optimal influx of Ca2+, and degranulation in a rat mast cell line. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:2233-9. [PMID: 18250430 PMCID: PMC2681184 DOI: 10.4049/jimmunol.180.4.2233] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Degranulation of mast cells in response to Ag or the calcium mobilizing agent, thapsigargin, is dependent on emptying of intracellular stores of Ca(2+) and the ensuing influx of external Ca(2+), also referred to as store-operated calcium entry. However, it is unlikely that the calcium release-activated calcium channel is the sole mechanism for the entry of Ca(2+) because Sr(2+) and other divalent cations also permeate and support degranulation in stimulated mast cells. In this study we show that influx of Ca(2+) and Sr(2+) as well as degranulation are dependent on the presence of the canonical transient receptor potential (TRPC) channel protein TRPC5, in addition to STIM1 and Orai1, as demonstrated by knock down of each of these proteins by inhibitory RNAs in a rat mast cell (RBL-2H3) line. Overexpression of STIM1 and Orai1, which are known to be essential components of calcium release-activated calcium channel, allows entry of Ca(2+) but not Sr(2+), whereas overexpression of STIM1 and TRPC5 allows entry of both Ca(2+) and Sr(2+). These and other observations suggest that the Sr(2+)-permeable TRPC5 associates with STIM1 and Orai1 in a stoichiometric manner to enhance entry of Ca(2+) to generate a signal for degranulation.
Collapse
|
Research Support, N.I.H., Intramural |
17 |
74 |
19
|
Lee JJ, Lee NA. Eosinophil degranulation: an evolutionary vestige or a universally destructive effector function? Clin Exp Allergy 2006; 35:986-94. [PMID: 16120079 DOI: 10.1111/j.1365-2222.2005.02302.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
Review |
19 |
73 |
20
|
Mayoral RJ, Deho L, Rusca N, Bartonicek N, Saini HK, Enright AJ, Monticelli S. MiR-221 influences effector functions and actin cytoskeleton in mast cells. PLoS One 2011; 6:e26133. [PMID: 22022537 PMCID: PMC3192147 DOI: 10.1371/journal.pone.0026133] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/20/2011] [Indexed: 02/01/2023] Open
Abstract
Mast cells have essential effector and immunoregulatory functions in IgE-associated allergic disorders and certain innate and adaptive immune responses, but the role of miRNAs in regulating mast cell functions is almost completely unexplored. To examine the role of the activation-induced miRNA miR-221 in mouse mast cells, we developed robust lentiviral systems for miRNA overexpression and depletion. While miR-221 favored mast cell adhesion and migration towards SCF or antigen in trans-well migration assays, as well as cytokine production and degranulation in response to IgE-antigen complexes, neither miR-221 overexpression, nor its ablation, interfered with mast cell differentiation. Transcriptional profiling of miR-221-overexpressing mast cells revealed modulation of many transcripts, including several associated with the cytoskeleton; indeed, miR-221 overexpression was associated with reproducible increases in cortical actin in mast cells, and with altered cellular shape and cell cycle in murine fibroblasts. Our bioinformatics analysis showed that this effect was likely mediated by the composite effect of miR-221 on many primary and secondary targets in resting cells. Indeed, miR-221-induced cellular alterations could not be recapitulated by knockdown of one of the major targets of miR-221. We propose a model in which miR-221 has two different roles in mast cells: in resting cells, basal levels of miR-221 contribute to the regulation of the cell cycle and cytoskeleton, a general mechanism probably common to other miR-221-expressing cell types, such as fibroblasts. Vice versa, upon induction in response to mast cell stimulation, miR-221 effects are mast cell-specific and activation-dependent, contributing to the regulation of degranulation, cytokine production and cell adherence. Our studies provide new insights into the roles of miR-221 in mast cell biology, and identify novel mechanisms that may contribute to mast cell-related pathological conditions, such as asthma, allergy and mastocytosis.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
71 |
21
|
Bortolotti D, Gentili V, Rizzo S, Rotola A, Rizzo R. SARS-CoV-2 Spike 1 Protein Controls Natural Killer Cell Activation via the HLA-E/NKG2A Pathway. Cells 2020; 9:E1975. [PMID: 32859121 PMCID: PMC7563485 DOI: 10.3390/cells9091975] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 01/08/2023] Open
Abstract
Natural killer cells are important in the control of viral infections. However, the role of NK cells during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has previously not been identified. Peripheral blood NK cells from SARS-CoV and SARS-CoV-2 naïve subjects were evaluated for their activation, degranulation, and interferon-gamma expression in the presence of SARS-CoV and SARS-CoV-2 spike proteins. K562 and lung epithelial cells were transfected with spike proteins and co-cultured with NK cells. The analysis was performed by flow cytometry and immune fluorescence. SARS-CoV and SARS-CoV-2 spike proteins did not alter NK cell activation in a K562 in vitro model. On the contrary, SARS-CoV-2 spike 1 protein (SP1) intracellular expression by lung epithelial cells resulted in NK cell-reduced degranulation. Further experiments revealed a concomitant induction of HLA-E expression on the surface of lung epithelial cells and the recognition of an SP1-derived HLA-E-binding peptide. Simultaneously, there was increased modulation of the inhibitory receptor NKG2A/CD94 on NK cells when SP1 was expressed in lung epithelial cells. We ruled out the GATA3 transcription factor as being responsible for HLA-E increased levels and HLA-E/NKG2A interaction as implicated in NK cell exhaustion. We show for the first time that NK cells are affected by SP1 expression in lung epithelial cells via HLA-E/NKG2A interaction. The resulting NK cells' exhaustion might contribute to immunopathogenesis in SARS-CoV-2 infection.
Collapse
|
research-article |
5 |
67 |
22
|
Menasche G, Feldmann J, Houdusse A, Desaymard C, Fischer A, Goud B, de Saint Basile G. Biochemical and functional characterization of Rab27a mutations occurring in Griscelli syndrome patients. Blood 2003; 101:2736-42. [PMID: 12446441 DOI: 10.1182/blood-2002-09-2789] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rab27a is a member of the Rab family of small GTPase proteins, and thus far is the first member to be associated with a human disease (ie, the Griscelli syndrome type 2). Mutations in the Rab27a gene cause pigment as well as cytotoxic granule transport defects, accounting for the partial albinism and severe immune disorder characteristics of this syndrome. So far, 3 Rab27a missense mutations have been identified. They open a unique opportunity to designate critical structural and functional residues of Rab proteins. We show here that the introduction of a proline residue in the alpha 4 (Ala152Pro) or beta 5 (Leu130Pro) loop, observed in 2 of these spontaneous mutants, dramatically affects both guanosine triphosphate (GTP) and guanosine diphosphate (GDP) nucleotide-binding activity of Rab27a, probably by disrupting protein folding. The third mutant, Trp73Gly, is located within an invariant hydrophobic triad at the switch interface, and was previously shown in active Rab3A to mediate rabphilin3A effector interaction. Trp73Gly is shown to display the same nucleotide-binding and GTPase characteristics as the constitutively active mutant Gln78Leu. However, in contrast to Gln78Leu, Trp73Gly mutant construct neither interacts with the Rab27a effector melanophilin nor modifies melanosome distribution and cytotoxic granule exocytosis. Substitutions introduced at the 73 position, including the leucine residue present in Ras, did not restore Rab27a protein functions. Taken together, our results characterize new critical residues of Rab proteins, and identify the Trp73 residue of Rab27a as a key position for interaction with the specific effectors of Rab27a, both in melanocytes and cytotoxic cells.
Collapse
|
|
22 |
67 |
23
|
Kitaura J, Xiao W, Maeda-Yamamoto M, Kawakami Y, Lowell CA, Kawakami T. Early divergence of Fc epsilon receptor I signals for receptor up-regulation and internalization from degranulation, cytokine production, and survival. THE JOURNAL OF IMMUNOLOGY 2004; 173:4317-23. [PMID: 15383560 DOI: 10.4049/jimmunol.173.7.4317] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cells play a critical role in IgE-dependent immediate hypersensitivity. Monomeric IgE binding to its high affinity receptor (FcepsilonRI) results in a number of biological outcomes in mouse mast cells, including increased surface expression of FcepsilonRI and enhanced survival. IgE molecules display heterogeneity in inducing cytokine production; highly cytokinergic IgEs cause extensive FcepsilonRI aggregation, leading to potent enhancement of survival and other activation events, whereas poorly cytokinergic IgEs can do so less efficiently. In this study, we demonstrate that IgE-induced receptor up-regulation is not sensitive to monovalent hapten, which can prevent receptor aggregation induced by IgE, whereas other activation events such as receptor internalization, degranulation, IL-6 production, and survival are sensitive to monovalent hapten. IgE-induced receptor up-regulation is also unique in that no Src family kinases, Syk, or Btk are required for it. By contrast, highly cytokinergic IgE-induced receptor internalization is dependent on Lyn, but not other Src family kinases, Syk, or Btk, whereas degranulation, IL-6 production, and survival require Syk. Weak to moderate stimulation with IgE plus anti-IgE or IgE plus Ag enhances survival, while stronger signals are required for degranulation and IL-6 production. Collectively, signals emanated from IgE-bound FcepsilonRI for receptor up-regulation and internalization are shown to diverge at the receptor or receptor-proximal levels from those for other biological outcomes.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
63 |
24
|
Wen R, Jou ST, Chen Y, Hoffmeyer A, Wang D. Phospholipase C gamma 2 is essential for specific functions of Fc epsilon R and Fc gamma R. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6743-52. [PMID: 12471105 DOI: 10.4049/jimmunol.169.12.6743] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phospholipase Cgamma2 (PLCgamma2) plays a critical role in the functions of the B cell receptor in B cells and of the FcRgamma chain-containing collagen receptor in platelets. Here we report that PLCgamma2 is also expressed in mast cells and monocytes/macrophages and is activated by cross-linking of Fc(epsilon)R and Fc(gamma)R. Although PLCgamma2-deficient mice have normal development and numbers of mast cells and monocytes/macrophages, we demonstrate that PLCgamma2 is essential for specific functions of Fc(epsilon)R and Fc(gamma)R. While PLCgamma2-deficient mast cells have normal mitogen-activated protein kinase activation and cytokine production at mRNA levels, the mutant cells have impaired Fc(epsilon)R-mediated Ca(2+) flux and inositol 1,4,5-trisphosphate production, degranulation, and cytokine secretion. As a physiological consequence of the effect of PLCgamma2 deficiency, the mutant mice are resistant to IgE-mediated cutaneous inflammatory skin reaction. Macrophages from PLCgamma2-deficient mice have no detectable Fc(gamma)R-mediated Ca(2+) flux; however, the mutant cells have normal Fc(gamma)R-mediated phagocytosis. Moreover, PLCgamma2 plays a nonredundant role in Fc(gamma)R-mediated inflammatory skin reaction.
Collapse
MESH Headings
- Animals
- Biological Transport/genetics
- Biological Transport/immunology
- Calcium/metabolism
- Cations, Divalent/metabolism
- Cell Degranulation/genetics
- Cell Degranulation/immunology
- Cytokines/genetics
- Cytokines/metabolism
- Enzyme Activation/genetics
- Enzyme Activation/immunology
- Immunity, Innate/genetics
- Immunoglobulin E/physiology
- Isoenzymes/deficiency
- Isoenzymes/genetics
- Isoenzymes/physiology
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Mast Cells/enzymology
- Mast Cells/immunology
- Mast Cells/metabolism
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinases/metabolism
- Passive Cutaneous Anaphylaxis
- Phagocytosis/genetics
- Phagocytosis/immunology
- Phospholipase C gamma
- Receptors, IgE/immunology
- Receptors, IgE/metabolism
- Receptors, IgE/physiology
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Receptors, IgG/physiology
- Transcription, Genetic/immunology
- Type C Phospholipases/deficiency
- Type C Phospholipases/genetics
- Type C Phospholipases/physiology
Collapse
|
|
23 |
63 |
25
|
Puri N, Kruhlak MJ, Whiteheart SW, Roche PA. Mast cell degranulation requires N-ethylmaleimide-sensitive factor-mediated SNARE disassembly. THE JOURNAL OF IMMUNOLOGY 2004; 171:5345-52. [PMID: 14607937 DOI: 10.4049/jimmunol.171.10.5345] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cells possess specialized granules that, upon stimulation of surface FcR with IgE, fuse with the plasma membrane, thereby releasing inflammatory mediators. A family of membrane fusion proteins called SNAREs, which are present on both the granule and the plasma membrane, plays a role in the fusion of these granules with the plasma membrane of mast cells. In addition to the SNAREs themselves, it is likely that the SNARE accessory protein, N-ethylmaleimide-sensitive factor (NSF), affects the composition and structure of the SNARE complex. NSF is a cytoplasmic ATPase that disassembles the SNARE complexes. To investigate the role of NSF in mast cell degranulation, we developed an assay to measure secretion from transiently transfected RBL (rat basophilic leukemia)-2H3 mast cells (a tumor analog of mucosal mast cells). RBL-2H3 cells were cotransfected with a plasmid encoding a human growth hormone secretion reporter along with either wild-type NSF or an NSF mutant that lacks ATPase activity. Human growth hormone was targeted to and released from secretory granules in RBL-2H3 cells, and coexpression with mutant NSF dramatically inhibited regulated exocytosis from the transfected cells. Biochemical analysis of SNARE complexes in these cells revealed that overexpression of the NSF mutant decreased disassembly and resulted in an accumulation of SNARE complexes. These data reveal a role for NSF in mast cell exocytosis and highlight the importance of SNARE disassembly, or priming, in regulated exocytosis from mast cells.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
61 |