1
|
Kustanovich A, Schwartz R, Peretz T, Grinshpun A. Life and death of circulating cell-free DNA. Cancer Biol Ther 2019; 20:1057-1067. [PMID: 30990132 PMCID: PMC6606043 DOI: 10.1080/15384047.2019.1598759] [Citation(s) in RCA: 358] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/24/2019] [Accepted: 03/12/2019] [Indexed: 12/18/2022] Open
Abstract
Tumor-specific, circulating cell-free DNA in liquid biopsies is a promising source of biomarkers for minimally invasive serial monitoring of treatment responses in cancer management. We will review the current understanding of the origin of circulating cell-free DNA and different forms of DNA release (including various types of cell death and active secretion processes) and clearance routes. The dynamics of extracellular DNA in blood during therapy and the role of circulating DNA in pathophysiological processes (tumor-associated inflammation, NETosis, and pre-metastatic niche development) provide insights into the mechanisms that contribute to tumor development and metastases formation. Better knowledge of circulating tumor-specific cell-free DNA could facilitate the development of new therapeutic and diagnostic options for cancer management.
Collapse
|
Review |
6 |
358 |
2
|
Strickler JH, Loree JM, Ahronian LG, Parikh AR, Niedzwiecki D, Pereira AAL, McKinney M, Korn WM, Atreya CE, Banks KC, Nagy RJ, Meric-Bernstam F, Lanman RB, Talasaz A, Tsigelny IF, Corcoran RB, Kopetz S. Genomic Landscape of Cell-Free DNA in Patients with Colorectal Cancer. Cancer Discov 2018; 8:164-173. [PMID: 29196463 PMCID: PMC5809260 DOI: 10.1158/2159-8290.cd-17-1009] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/14/2017] [Accepted: 11/29/2017] [Indexed: 01/10/2023]
Abstract
"Liquid biopsy" approaches analyzing cell-free DNA (cfDNA) from the blood of patients with cancer are increasingly utilized in clinical practice. However, it is not yet known whether cfDNA sequencing from large cohorts of patients with cancer can detect genomic alterations at frequencies similar to those observed by direct tumor sequencing, and whether this approach can generate novel insights. Here, we report next-generation sequencing data from cfDNA of 1,397 patients with colorectal cancer. Overall, frequencies of genomic alterations detected in cfDNA were comparable to those observed in three independent tissue-based colorectal cancer sequencing compendia. Our analysis also identified a novel cluster of extracellular domain (ECD) mutations in EGFR, mediating resistance by blocking binding of anti-EGFR antibodies. Patients with EGFR ECD mutations displayed striking tumor heterogeneity, with 91% harboring multiple distinct resistance alterations (range, 1-13; median, 4). These results suggest that cfDNA profiling can effectively define the genomic landscape of cancer and yield important biological insights.Significance: This study provides one of the first examples of how large-scale genomic profiling of cfDNA from patients with colorectal cancer can detect genomic alterations at frequencies comparable to those observed by direct tumor sequencing. Sequencing of cfDNA also generated insights into tumor heterogeneity and therapeutic resistance and identified novel EGFR ectodomain mutations. Cancer Discov; 8(2); 164-73. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 127.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
210 |
3
|
Hong DK, Blauwkamp TA, Kertesz M, Bercovici S, Truong C, Banaei N. Liquid biopsy for infectious diseases: sequencing of cell-free plasma to detect pathogen DNA in patients with invasive fungal disease. Diagn Microbiol Infect Dis 2018; 92:210-213. [PMID: 30017314 DOI: 10.1016/j.diagmicrobio.2018.06.009] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/21/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023]
Abstract
Diagnosis of life-threatening deep-seated infections currently requires invasive sampling of the infected tissue to provide a microbiologic diagnosis. These procedures can lead to high morbidity in patients and add to healthcare costs. Here we describe a novel next-generation sequencing assay that was used to detect pathogen-derived cell-free DNA in peripheral blood of patients with biopsy-proven invasive fungal infections. The noninvasive nature of this approach could provide rapid, actionable treatment information for invasive fungal infections when a biopsy is not possible.
Collapse
|
Journal Article |
7 |
145 |
4
|
Zhang Y, Li A, Dai T, Li F, Xie H, Chen L, Wen D. Cell-free DNA: A Neglected Source for Antibiotic Resistance Genes Spreading from WWTPs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:248-257. [PMID: 29182858 DOI: 10.1021/acs.est.7b04283] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cell-associated ARGs in wastewater treatment plants (WWTPs) has been concerned, however, cell-free ARGs in WWTPs was rarely studied. In this study, the abundances of four representative ARGs, sulII, tetC, blaPSE-1, and ermB, in a large municipal WWTP were investigated in both cell-associated and cell-free fractions. Cell-associated ARGs was the dominant ARGs fraction in the raw wastewater. After biological treatment, sludge settling, membrane filtration, and disinfection, cell-associated ARGs were substantially reduced, though the ratios of ARG/16S rRNA gene were increased with disinfection. Cell-free ARGs persisted in the WWTP with a removal of 0.36 log to 2.68 logs, which was much lower than the removal of cell-associated ARGs (3.21 logs to 4.14 logs). Therefore, the abundance ratio of cell-free ARGs to cell-associated ARGs increased from 0.04-1.59% to 2.00-1895.08% along the treatment processes. After 25-day-storage, cell-free ARGs in both biological effluent and disinfection effluent increased by 0.14 log to 1.99 logs and 0.12 log to 1.77 logs respectively, reflecting the persistence and low decay rate of cell-free ARGs in the discharge water. Therefore, cell-free ARGs might be a kind of important but previously neglected pollutant from WWTPs, which added potential risks to the effluent receiving environments.
Collapse
|
|
7 |
135 |
5
|
McCoach CE, Blakely CM, Banks KC, Levy B, Chue BM, Raymond VM, Le AT, Lee CE, Diaz J, Waqar SN, Purcell WT, Aisner DL, Davies KD, Lanman RB, Shaw AT, Doebele RC. Clinical Utility of Cell-Free DNA for the Detection of ALK Fusions and Genomic Mechanisms of ALK Inhibitor Resistance in Non-Small Cell Lung Cancer. Clin Cancer Res 2018; 24:2758-2770. [PMID: 29599410 PMCID: PMC6157019 DOI: 10.1158/1078-0432.ccr-17-2588] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/06/2018] [Accepted: 03/20/2018] [Indexed: 01/01/2023]
Abstract
Purpose: Patients with advanced non-small cell lung cancer (NSCLC) whose tumors harbor anaplastic lymphoma kinase (ALK) gene fusions benefit from treatment with ALK inhibitors (ALKi). Analysis of cell-free circulating tumor DNA (cfDNA) may provide a noninvasive way to identify ALK fusions and actionable resistance mechanisms without an invasive biopsy.Patients and Methods: The Guardant360 (G360; Guardant Health) deidentified database of NSCLC cases was queried to identify 88 consecutive patients with 96 plasma-detected ALK fusions. G360 is a clinical cfDNA next-generation sequencing (NGS) test that detects point mutations, select copy number gains, fusions, insertions, and deletions in plasma.Results: Identified fusion partners included EML4 (85.4%), STRN (6%), and KCNQ, KLC1, KIF5B, PPM1B, and TGF (totaling 8.3%). Forty-two ALK-positive patients had no history of targeted therapy (cohort 1), with tissue ALK molecular testing attempted in 21 (5 negative, 5 positive, and 11 tissue insufficient). Follow-up of 3 of the 5 tissue-negative patients showed responses to ALKi. Thirty-one patients were tested at known or presumed ALKi progression (cohort 2); 16 samples (53%) contained 1 to 3 ALK resistance mutations. In 13 patients, clinical status was unknown (cohort 3), and no resistance mutations or bypass pathways were identified. In 6 patients with known EGFR-activating mutations, an ALK fusion was identified on progression (cohort 4; 4 STRN, 1 EML4; one both STRN and EML4); five harbored EGFR T790M.Conclusions: In this cohort of cfDNA-detected ALK fusions, we demonstrate that comprehensive cfDNA NGS provides a noninvasive means of detecting targetable alterations and characterizing resistance mechanisms on progression. Clin Cancer Res; 24(12); 2758-70. ©2018 AACR.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
120 |
6
|
Schrag D, Beer TM, McDonnell CH, Nadauld L, Dilaveri CA, Reid R, Marinac CR, Chung KC, Lopatin M, Fung ET, Klein EA. Blood-based tests for multicancer early detection (PATHFINDER): a prospective cohort study. Lancet 2023; 402:1251-1260. [PMID: 37805216 PMCID: PMC11027492 DOI: 10.1016/s0140-6736(23)01700-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Multicancer early detection (MCED) blood tests can detect a cancer signal from circulating cell-free DNA (cfDNA). PATHFINDER was a prospective cohort study investigating the feasibility of MCED testing for cancer screening. METHODS In this prospective cohort study done in oncology and primary care outpatient clinics at seven US health networks, a convenience sample of adults aged 50 years or older without signs or symptoms of cancer consented to MCED testing. We collected blood, analysed cfDNA, and returned results to participants' doctors. If a methylation signature indicative of cancer was detected, predicted cancer signal origin(s) informed diagnostic assessment. The primary outcome was time to, and extent of, diagnostic testing required to confirm the presence or absence of cancer. This trial is registered at ClinicalTrials.gov, NCT04241796, and is completed. FINDINGS Between Dec 12, 2019, and Dec 4, 2020, we recruited 6662 participants. 4204 (63·5%) of 6621 participants with analysable results were women, 2417 (36·5%) were men, and 6071 (91·7%) were White. A cancer signal was detected in 92 (1·4%) of 6621 participants with analysable results. 35 (38%) participants were diagnosed with cancer (true positives) and 57 (62%) had no cancer diagnosis (false positives). Excluding two participants whose diagnostic assessments began before MCED test results were reported, median time to diagnostic resolution was 79 days (IQR 37-219): 57 days (33-143) in true-positive and 162 days (44-248) in false-positive participants. Most participants had both laboratory tests (26 [79%] of 33 with true-positive results and 50 [88%] of 57 with false-positive results) and imaging (30 [91%] of 33 with true-positive results and 53 [93%] of 57 with false-positive results). Fewer procedures were done in participants with false-positive results (17 [30%] of 57) than true-positive results (27 [82%] of 33) and few had surgery (one with a false-positive result and three with a true-positive result). INTERPRETATION This study supports the feasibility of MCED screening for cancer and underscores the need for further research investigating the test's clinical utility. FUNDING GRAIL.
Collapse
|
research-article |
2 |
110 |
7
|
Shi C, Dawulieti J, Shi F, Yang C, Qin Q, Shi T, Wang L, Hu H, Sun M, Ren L, Chen F, Zhao Y, Liu F, Li M, Mu L, Liu D, Shao D, Leong KW, She J. A nanoparticulate dual scavenger for targeted therapy of inflammatory bowel disease. SCIENCE ADVANCES 2022; 8:eabj2372. [PMID: 35089791 PMCID: PMC8797786 DOI: 10.1126/sciadv.abj2372] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A therapeutic strategy that targets multiple proinflammatory factors in inflammatory bowel disease (IBD) with minimal systemic side effects would be attractive. Here, we develop a drug-free, biodegradable nanomedicine that acts against IBD by scavenging proinflammatory cell-free DNA (cfDNA) and reactive oxygen species (ROS). Polyethylenimine (PEI) was conjugated to antioxidative diselenide-bridged mesoporous organosilica nanoparticles (MONs) to formulate nanoparticles (MON-PEI) that exhibited high cfDNA binding affinity and ROS-responsive degradation. In ulcerative colitis and Crohn's disease mouse colitis models, orally administered MON-PEI accumulated preferentially in the inflamed colon and attenuated colonic and peritoneal inflammation by alleviating cfDNA- and ROS-mediated inflammatory responses, allowing a reduced dose frequency and ameliorating colitis even after delayed treatment. This work suggests a new nanomedicine strategy for IBD treatment.
Collapse
|
research-article |
3 |
103 |
8
|
Dawulieti J, Sun M, Zhao Y, Shao D, Yan H, Lao YH, Hu H, Cui L, Lv X, Liu F, Chi CW, Zhang Y, Li M, Zhang M, Tian H, Chen X, Leong KW, Chen L. Treatment of severe sepsis with nanoparticulate cell-free DNA scavengers. SCIENCE ADVANCES 2020; 6:eaay7148. [PMID: 32523983 PMCID: PMC7259927 DOI: 10.1126/sciadv.aay7148] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/25/2020] [Indexed: 05/20/2023]
Abstract
Severe sepsis represents a common, expensive, and deadly health care issue with limited therapeutic options. Gaining insights into the inflammatory dysregulation that causes sepsis would help develop new therapeutic strategies against severe sepsis. In this study, we identified the crucial role of cell-free DNA (cfDNA) in the regulation of the Toll-like receptor 9-mediated proinflammatory pathway in severe sepsis progression. Hypothesizing that removing cfDNA would be beneficial for sepsis treatment, we used polyethylenimine (PEI) and synthesized PEI-functionalized, biodegradable mesoporous silica nanoparticles with different charge densities as cfDNA scavengers. These nucleic acid-binding nanoparticles (NABNs) showed superior performance compared with their nucleic acid-binding polymer counterparts on inhibition of cfDNA-induced inflammation and subsequent multiple organ injury caused by severe sepsis. Furthermore, NABNs exhibited enhanced accumulation and retention in the inflamed cecum, along with a more desirable in vivo safety profile. Together, our results revealed a key contribution of cfDNA in severe sepsis and shed a light on the development of NABN-based therapeutics for sepsis therapy, which currently remains intractable.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
95 |
9
|
Stites E, Kumar D, Olaitan O, John Swanson S, Leca N, Weir M, Bromberg J, Melancon J, Agha I, Fattah H, Alhamad T, Qazi Y, Wiseman A, Gupta G. High levels of dd-cfDNA identify patients with TCMR 1A and borderline allograft rejection at elevated risk of graft injury. Am J Transplant 2020; 20:2491-2498. [PMID: 32056331 PMCID: PMC7496411 DOI: 10.1111/ajt.15822] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 01/25/2023]
Abstract
The clinical importance of subclinical, early T cell-mediated rejection (Banff TCMR 1A and borderline lesions) remains unclear, due, in part to the fact that histologic lesions used to characterize early TCMR can be nonspecific. Donor-derived cell-free DNA (dd-cfDNA) is an important molecular marker of active graft injury. Over a study period from June 2017 to May 2019, we assessed clinical outcomes in 79 patients diagnosed with TCMR 1A/borderline rejection across 11 US centers with a simultaneous measurement of dd-cfDNA. Forty-two patients had elevated dd-cfDNA (≥0.5%) and 37 patients had low levels (<0.5%). Elevated levels of dd-cfDNA predicted adverse clinical outcomes: among patients with elevated cfDNA, estimated glomerular filtration rate declined by 8.5% (interquartile rate [IQR] -16.22% to -1.39%) (-3.50 mL/min/1.73 m2 IQR -8.00 to -1.00) vs 0% (-4.92%, 4.76%) in low dd-cfDNA patients (P = .004), de novo donor-specific antibody formation was seen in 40% (17/42) vs 2.7% (P < .0001), and future or persistent rejection occurred in 9 of 42 patients (21.4%) vs 0% (P = .003). The use of dd-cfDNA may complement the Banff classification and to risk stratify patients with borderline/TCMR 1A identified on biopsy.
Collapse
|
research-article |
5 |
85 |
10
|
Berlanga P, Pierron G, Lacroix L, Chicard M, Adam de Beaumais T, Marchais A, Harttrampf AC, Iddir Y, Larive A, Soriano Fernandez A, Hezam I, Chevassus C, Bernard V, Cotteret S, Scoazec JY, Gauthier A, Abbou S, Corradini N, André N, Aerts I, Thebaud E, Casanova M, Owens C, Hladun-Alvaro R, Michiels S, Delattre O, Vassal G, Schleiermacher G, Geoerger B. The European MAPPYACTS Trial: Precision Medicine Program in Pediatric and Adolescent Patients with Recurrent Malignancies. Cancer Discov 2022; 12:1266-1281. [PMID: 35292802 PMCID: PMC9394403 DOI: 10.1158/2159-8290.cd-21-1136] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 02/07/2022] [Indexed: 01/07/2023]
Abstract
ABSTRACT MAPPYACTS (NCT02613962) is an international prospective precision medicine trial aiming to define tumor molecular profiles in pediatric patients with recurrent/refractory malignancies in order to suggest the most adapted salvage treatment. From February 2016 to July 2020, 787 patients were included in France, Italy, Ireland, and Spain. At least one genetic alteration leading to a targeted treatment suggestion was identified in 436 patients (69%) with successful sequencing; 10% of these alterations were considered "ready for routine use." Of 356 patients with follow-up beyond 12 months, 107 (30%) received one or more matched targeted therapies-56% of them within early clinical trials-mainly in the AcSé-ESMART platform trial (NCT02813135). Overall, matched treatment resulted in a 17% objective response rate, and of those patients with ready for routine use alterations, it was 38%. In patients with extracerebral tumors, 76% of actionable alterations detected in tumor tissue were also identified in circulating cell-free DNA (cfDNA). SIGNIFICANCE MAPPYACTS underlines the feasibility of molecular profiling at cancer recurrence in children on a multicenter, international level and demonstrates benefit for patients with selected key drivers. The use of cfDNA deserves validation in prospective studies. Our study highlights the need for innovative therapeutic proof-of-concept trials that address the underlying cancer complexity. This article is highlighted in the In This Issue feature, p. 1171.
Collapse
|
Multicenter Study |
3 |
77 |
11
|
Bohers E, Viailly PJ, Becker S, Marchand V, Ruminy P, Maingonnat C, Bertrand P, Etancelin P, Picquenot JM, Camus V, Menard AL, Lemasle E, Contentin N, Leprêtre S, Lenain P, Stamatoullas A, Lanic H, Libraire J, Vaudaux S, Pepin LF, Vera P, Tilly H, Jardin F. Non-invasive monitoring of diffuse large B-cell lymphoma by cell-free DNA high-throughput targeted sequencing: analysis of a prospective cohort. Blood Cancer J 2018; 8:74. [PMID: 30069017 PMCID: PMC6070497 DOI: 10.1038/s41408-018-0111-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/28/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022] Open
Abstract
From a liquid biopsy, cell-free DNA (cfDNA) can provide information regarding basal tumoral genetic patterns and changes upon treatment. In a prospective cohort of 30 diffuse large B-cell lymphomas (DLBCL), we determined the clinical relevance of cfDNA using targeted next-generation sequencing and its correlation with PET scan imaging at the time of diagnosis and during treatment. Using a dedicated DLBCL panel, mutations were identified at baseline for 19 cfDNAs and profiles were consistent with expected DLBCL patterns. Tumor burden-related clinical and PET scan features (LDH, IPI, and metabolic tumor volume) were significantly correlated with the quantity of tumoral cfDNA. Among the four patients presenting additional mutations in their cfDNAs, three had high metabolic tumor volumes, suggesting that cfDNA more accurately reflects tumor heterogeneity than tissues biopsy itself. Mid-treatment, four patients still had basal mutations in their cfDNAs, including three in partial response according to their Deauville scores. Our study highlights the major interests in liquid biopsy, in particular in the context of bulky tumors where cfDNA allows capturing the entire tumoral mutation profile. Therefore, cfDNA analysis in DLBCL represents a complementary approach to PET scan imaging.
Collapse
|
research-article |
7 |
70 |
12
|
Mouliere F, Smith CG, Heider K, Su J, van der Pol Y, Thompson M, Morris J, Wan JCM, Chandrananda D, Hadfield J, Grzelak M, Hudecova I, Couturier D, Cooper W, Zhao H, Gale D, Eldridge M, Watts C, Brindle K, Rosenfeld N, Mair R. Fragmentation patterns and personalized sequencing of cell-free DNA in urine and plasma of glioma patients. EMBO Mol Med 2021; 13:e12881. [PMID: 34291583 PMCID: PMC8350897 DOI: 10.15252/emmm.202012881] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Glioma-derived cell-free DNA (cfDNA) is challenging to detect using liquid biopsy because quantities in body fluids are low. We determined the glioma-derived DNA fraction in cerebrospinal fluid (CSF), plasma, and urine samples from patients using sequencing of personalized capture panels guided by analysis of matched tumor biopsies. By sequencing cfDNA across thousands of mutations, identified individually in each patient's tumor, we detected tumor-derived DNA in the majority of CSF (7/8), plasma (10/12), and urine samples (10/16), with a median tumor fraction of 6.4 × 10-3 , 3.1 × 10-5 , and 4.7 × 10-5 , respectively. We identified a shift in the size distribution of tumor-derived cfDNA fragments in these body fluids. We further analyzed cfDNA fragment sizes using whole-genome sequencing, in urine samples from 35 glioma patients, 27 individuals with non-malignant brain disorders, and 26 healthy individuals. cfDNA in urine of glioma patients was significantly more fragmented compared to urine from patients with non-malignant brain disorders (P = 1.7 × 10-2 ) and healthy individuals (P = 5.2 × 10-9 ). Machine learning models integrating fragment length could differentiate urine samples from glioma patients (AUC = 0.80-0.91) suggesting possibilities for truly non-invasive cancer detection.
Collapse
|
research-article |
4 |
61 |
13
|
Yang Z, LaRiviere MJ, Ko J, Till JE, Christensen T, Yee SS, Black TA, Tien K, Lin A, Shen H, Bhagwat N, Herman D, Adallah A, O'Hara MH, Vollmer CM, Katona BW, Stanger BZ, Issadore D, Carpenter EL. A Multianalyte Panel Consisting of Extracellular Vesicle miRNAs and mRNAs, cfDNA, and CA19-9 Shows Utility for Diagnosis and Staging of Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2020; 26:3248-3258. [PMID: 32299821 PMCID: PMC7334066 DOI: 10.1158/1078-0432.ccr-19-3313] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE To determine whether a multianalyte liquid biopsy can improve the detection and staging of pancreatic ductal adenocarcinoma (PDAC). EXPERIMENTAL DESIGN We analyzed plasma from 204 subjects (71 healthy, 44 non-PDAC pancreatic disease, and 89 PDAC) for the following biomarkers: tumor-associated extracellular vesicle miRNA and mRNA isolated on a nanomagnetic platform that we developed and measured by next-generation sequencing or qPCR, circulating cell-free DNA (ccfDNA) concentration measured by qPCR, ccfDNA KRAS G12D/V/R mutations detected by droplet digital PCR, and CA19-9 measured by electrochemiluminescence immunoassay. We applied machine learning to training sets and subsequently evaluated model performance in independent, user-blinded test sets. RESULTS To identify patients with PDAC versus those without, we generated a classification model using a training set of 47 subjects (20 PDAC and 27 noncancer). When applied to a blinded test set (N = 136), the model achieved an AUC of 0.95 and accuracy of 92%, superior to the best individual biomarker, CA19-9 (89%). We next used a cohort of 20 patients with PDAC to train our model for disease staging and applied it to a blinded test set of 25 patients clinically staged by imaging as metastasis-free, including 9 subsequently determined to have had occult metastasis. Our workflow achieved significantly higher accuracy for disease staging (84%) than imaging alone (accuracy = 64%; P < 0.05). CONCLUSIONS Algorithmically combining blood-based biomarkers may improve PDAC diagnostic accuracy and preoperative identification of nonmetastatic patients best suited for surgery, although larger validation studies are necessary.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
60 |
14
|
Huang X, Sun L, Wen S, Deng D, Wan F, He X, Tian L, Liang L, Wei C, Gao K, Fu Q, Li Y, Jiang J, Zhai R, He M. RNA sequencing of plasma exosomes revealed novel functional long noncoding RNAs in hepatocellular carcinoma. Cancer Sci 2020; 111:3338-3349. [PMID: 32506598 PMCID: PMC7469810 DOI: 10.1111/cas.14516] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
Exosomal long noncoding RNA (lncRNA) has been found to be associated with the development of cancers. However, the expression characteristics and the biological roles of exosomal lncRNAs in hepatocellular carcinoma (HCC) remain unknown. Here, by RNA sequencing, we found 9440 mRNAs and 8572 lncRNAs were differentially expressed (DE-) in plasma exosomes between HCC patients and healthy controls. Exosomal DE-lncRNAs displayed higher expression levels and tissue specificity, lower expression variability and splicing efficiency than DE-mRNAs. Six candidate DE-lncRNAs (fold change 6 or more, P ≤ .01) were high in HCC cells and cell exosomes. The knockdown of these candidate DE-lncRNAs significantly affected the migration, proliferation, and apoptosis in HCC cells. In particular, a novel DE-lncRNA, RP11-85G21.1 (lnc85), promoted HCC cellular proliferation and migration by targeted binding and regulating of miR-324-5p. More importantly, the level of serum lnc85 was highly expressed in both Alpha-fetoprotein (AFP)-positive and AFP-negative HCC patients and allowed distinguishing AFP-negative HCC from healthy control and liver cirrhosis (area under the receiver operating characteristic curve, 0.869; sensitivity, 80.0%; specificity, 76.5%) with high accuracy. Our finding offers a new insight into the association between the dysregulation of exosomal lncRNA and HCC, suggesting that lnc85 could be a potential biomarker of HCC.
Collapse
|
research-article |
5 |
59 |
15
|
Van Loon E, Gazut S, Yazdani S, Lerut E, de Loor H, Coemans M, Noël LH, Thorrez L, Van Lommel L, Schuit F, Sprangers B, Kuypers D, Essig M, Gwinner W, Anglicheau D, Marquet P, Naesens M. Development and validation of a peripheral blood mRNA assay for the assessment of antibody-mediated kidney allograft rejection: A multicentre, prospective study. EBioMedicine 2019; 46:463-472. [PMID: 31378695 PMCID: PMC6710906 DOI: 10.1016/j.ebiom.2019.07.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
Background Antibody-mediated rejection, a leading cause of renal allograft graft failure, is diagnosed by histological assessment of invasive allograft biopsies. Accurate non-invasive biomarkers are not available. Methods In the multicentre, prospective BIOMARGIN study, blood samples were prospectively collected at time of renal allograft biopsies between June 2011 and August 2016 and analyzed in three phases. The discovery and derivation phases of the study (N = 117 and N = 183 respectively) followed a case-control design and included whole genome transcriptomics and targeted mRNA expression analysis to construct and lock a multigene model. The primary end point was the diagnostic accuracy of the locked multigene assay for antibody-mediated rejection in a third validation cohort of serially collected blood samples (N = 387). This trial is registered with ClinicalTrials.gov, number NCT02832661. Findings We identified and locked an 8-gene assay (CXCL10, FCGR1A, FCGR1B, GBP1, GBP4, IL15, KLRC1, TIMP1) in blood samples from the discovery and derivation phases for discrimination between cases with (N = 49) and without (N = 134) antibody-mediated rejection. In the validation cohort, this 8-gene assay discriminated between cases with (N = 41) and without antibody-mediated rejection (N = 346) with good diagnostic accuracy (ROC AUC 79·9%; 95% CI 72·6 to 87·2, p < 0·0001). The diagnostic accuracy of the 8-gene assay was retained both at time of stable graft function and of graft dysfunction, within the first year and also later after transplantation. The 8-gene assay is correlated with microvascular inflammation and transplant glomerulopathy, but not with the histological lesions of T-cell mediated rejection. Interpretation We identified and validated a novel 8-gene expression assay that can be used for non-invasive diagnosis of antibody-mediated rejection. Funding The Seventh Framework Programme (FP7) of the European Commission.
Collapse
|
Multicenter Study |
6 |
59 |
16
|
Hill JA, Dalai SC, Hong DK, Ahmed AA, Ho C, Hollemon D, Blair L, Maalouf J, Keane-Candib J, Stevens-Ayers T, Boeckh M, Blauwkamp TA, Fisher CE. Liquid Biopsy for Invasive Mold Infections in Hematopoietic Cell Transplant Recipients With Pneumonia Through Next-Generation Sequencing of Microbial Cell-Free DNA in Plasma. Clin Infect Dis 2021; 73:e3876-e3883. [PMID: 33119063 PMCID: PMC8664431 DOI: 10.1093/cid/ciaa1639] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Noninvasive diagnostic options are limited for invasive mold infections (IMIs). We evaluated the performance of a plasma microbial cell-free DNA sequencing (mcfDNA-Seq) test for diagnosing pulmonary IMI after hematopoietic cell transplant (HCT). METHODS We retrospectively assessed the diagnostic performance of plasma mcfDNA-Seq next-generation sequencing in 114 HCT recipients with pneumonia after HCT who had stored plasma obtained within 14 days of diagnosis of proven/probable Aspergillus IMI (n = 51), proven/probable non-Aspergillus IMI (n = 24), possible IMI (n = 20), and non-IMI controls (n = 19). Sequences were aligned to a database including >400 fungi. Organisms above a fixed significance threshold were reported. RESULTS Among 75 patients with proven/probable pulmonary IMI, mcfDNA-Seq detected ≥1 pathogenic mold in 38 patients (sensitivity, 51% [95% confidence interval {CI}, 39%-62%]). When restricted to samples obtained within 3 days of diagnosis, sensitivity increased to 61%. McfDNA-Seq had higher sensitivity for proven/probable non-Aspergillus IMI (sensitivity, 79% [95% CI, 56%-93%]) compared with Aspergillus IMI (sensitivity, 31% [95% CI, 19%-46%]). McfDNA-Seq also identified non-Aspergillus molds in an additional 7 patients in the Aspergillus subgroup and Aspergillus in 1 patient with possible IMI. Among 19 non-IMI pneumonia controls, mcfDNA-Seq was negative in all samples, suggesting a high specificity (95% CI, 82%-100%) and up to 100% positive predictive value (PPV) with estimated negative predictive values (NPVs) of 81%-99%. The mcfDNA-Seq assay was complementary to serum galactomannan index testing; in combination, they were positive in 84% of individuals with proven/probable pulmonary IMI. CONCLUSIONS Noninvasive mcfDNA-Seq had moderate sensitivity and high specificity, NPV, and PPV for pulmonary IMI after HCT, particularly for non-Aspergillus species.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
58 |
17
|
Kang Z, Stevanović S, Hinrichs CS, Cao L. Circulating Cell-free DNA for Metastatic Cervical Cancer Detection, Genotyping, and Monitoring. Clin Cancer Res 2017; 23:6856-6862. [PMID: 28899967 PMCID: PMC7885032 DOI: 10.1158/1078-0432.ccr-17-1553] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/02/2017] [Accepted: 09/01/2017] [Indexed: 01/06/2023]
Abstract
Purpose: Circulating cell-free (ccf) human papillomavirus (HPV) DNA may serve as a unique tumor marker for HPV-associated malignancies, including cervical cancer. We developed a method to genotype and quantify circulating HPV DNA in patients with HPV16- or HPV18-positive metastatic cervical cancer for potential disease monitoring and treatment-related decision making.Experimental Design: In this retrospective study, HPV ccfDNA was measured in serum samples from 19 metastatic cervical cancer patients by duplex digital droplet PCR (ddPCR). Nine patients had received tumor-infiltrating lymphocyte (TIL) immunotherapy. ccfDNA data were aligned with the tumor HPV genotype, drug treatment, and clinical outcome.Results: In blinded tests, HPV ccfDNA was detected in 19 of 19 (100%) patients with HPV-positive metastatic cervical cancer but not in any of the 45 healthy blood donors. The HPV genotype harbored in the patients' tumors was correctly identified in 87 of 87 (100%) sequential patient serum samples from 9 patients who received TIL immunotherapy. In three patients who experienced objective cancer regression after TIL treatment, a transient HPV ccfDNA peak was detected 2-3 days after TIL infusion. Furthermore, persistent clearance of HPV ccfDNA was only observed in two patients who experienced complete response (CR) after TIL immunotherapy.Conclusions: HPV ccfDNA represents a promising tumor marker for noninvasive HPV genotyping and may be used in selecting patients for HPV type-specific T-cell-based immunotherapies. It may also have value in detecting antitumor activity of therapeutic agents and in the long-term follow-up of cervical cancer patients in remission. Clin Cancer Res; 23(22); 6856-62. ©2017 AACR.
Collapse
|
research-article |
8 |
56 |
18
|
Lodewijk I, Dueñas M, Rubio C, Munera-Maravilla E, Segovia C, Bernardini A, Teijeira A, Paramio JM, Suárez-Cabrera C. Liquid Biopsy Biomarkers in Bladder Cancer: A Current Need for Patient Diagnosis and Monitoring. Int J Mol Sci 2018; 19:E2514. [PMID: 30149597 PMCID: PMC6163729 DOI: 10.3390/ijms19092514] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023] Open
Abstract
Bladder Cancer (BC) represents a clinical and social challenge due to its high incidence and recurrence rates, as well as the limited advances in effective disease management. Currently, a combination of cytology and cystoscopy is the routinely used methodology for diagnosis, prognosis and disease surveillance. However, both the poor sensitivity of cytology tests as well as the high invasiveness and big variation in tumour stage and grade interpretation using cystoscopy, emphasizes the urgent need for improvements in BC clinical guidance. Liquid biopsy represents a new non-invasive approach that has been extensively studied over the last decade and holds great promise. Even though its clinical use is still compromised, multiple studies have recently focused on the potential application of biomarkers in liquid biopsies for BC, including circulating tumour cells and DNA, RNAs, proteins and peptides, metabolites and extracellular vesicles. In this review, we summarize the present knowledge on the different types of biomarkers, their potential use in liquid biopsy and clinical applications in BC.
Collapse
|
Review |
7 |
52 |
19
|
Katsman E, Orlanski S, Martignano F, Fox-Fisher I, Shemer R, Dor Y, Zick A, Eden A, Petrini I, Conticello SG, Berman BP. Detecting cell-of-origin and cancer-specific methylation features of cell-free DNA from Nanopore sequencing. Genome Biol 2022; 23:158. [PMID: 35841107 PMCID: PMC9283844 DOI: 10.1186/s13059-022-02710-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
The Oxford Nanopore (ONT) platform provides portable and rapid genome sequencing, and its ability to natively profile DNA methylation without complex sample processing is attractive for point-of-care real-time sequencing. We recently demonstrated ONT shallow whole-genome sequencing to detect copy number alterations (CNAs) from the circulating tumor DNA (ctDNA) of cancer patients. Here, we show that cell type and cancer-specific methylation changes can also be detected, as well as cancer-associated fragmentation signatures. This feasibility study suggests that ONT shallow WGS could be a powerful tool for liquid biopsy.
Collapse
|
research-article |
3 |
51 |
20
|
Sandulache VC, Williams MD, Lai SY, Lu C, William WN, Busaidy NL, Cote GJ, Singh RR, Luthra R, Cabanillas ME. Real-Time Genomic Characterization Utilizing Circulating Cell-Free DNA in Patients with Anaplastic Thyroid Carcinoma. Thyroid 2017; 27:81-87. [PMID: 27785980 PMCID: PMC5704769 DOI: 10.1089/thy.2016.0076] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Anaplastic thyroid carcinoma (ATC) is an aggressive disease that requires rapid diagnosis and multimodality treatment. Recent advances in targeted therapeutics have provided ATC patients with previously unavailable treatment options, which may improve clinical outcomes in the coming years. Continued development of high-throughput next-generation sequencing provides clinicians with an unparalleled ability to characterize the genomic background of tumors in order to guide treatment selection and clinical trial enrollment. METHODS Twenty-three patients with ATC treated at the University of Texas MD Anderson Cancer Center between August 2015 and April 2016 were evaluated. All patients underwent next-generation sequencing using an institutional tissue-based DNA platform (50 genes) and a commercially available cell-free circulating DNA (cfDNA) platform (70 genes). RESULTS Sequencing data were successfully obtained for both platforms on all patients. The most commonly mutated genes noted on both platforms were TP53 (15/23; 65%) and BRAF (11/23; 48%). Concordance between the tumor and cfDNA data was high for BRAF, PIK3CA, NRAS, and PTEN and moderate for TP53. Concordance was highest in patients who underwent dual-platform sequencing prior to initiation of definitive treatment, and lowest in patients who underwent cfDNA analysis following treatment. Nineteen patients had treatment at the University of Texas MD Anderson Cancer Center following cfDNA sequencing. One patient was observed, and three patients opted for hospice. At the time of last contact, 15/23 (65%) patients were alive. CONCLUSIONS Next-generation sequencing platforms offer clinicians an opportunity to identify targetable oncogenic events in ATC. To the authors' knowledge, this is the largest sequential cohort of ATC patients who have undergone targeted genomic profiling. Based on these data, utilization of both tumor-based and cfDNA analysis in the context of clinical-trial development and application is recommended. Integration of these or similar platforms in clinical-trial implementation may have the potential to transform clinical outcomes for patients with ATC.
Collapse
|
research-article |
8 |
51 |
21
|
Abbosh C, Swanton C, Birkbak NJ. Clonal haematopoiesis: a source of biological noise in cell-free DNA analyses. Ann Oncol 2019; 30:358-359. [PMID: 30649226 PMCID: PMC6442654 DOI: 10.1093/annonc/mdy552] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
Editorial |
6 |
51 |
22
|
Maresca A, Del Dotto V, Romagnoli M, La Morgia C, Di Vito L, Capristo M, Valentino ML, Carelli V. Expanding and validating the biomarkers for mitochondrial diseases. J Mol Med (Berl) 2020; 98:1467-1478. [PMID: 32851462 PMCID: PMC7524861 DOI: 10.1007/s00109-020-01967-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Mitochondrial diseases are highly heterogeneous metabolic disorders caused by genetic alterations in the mitochondrial DNA (mtDNA) or in the nuclear genome. In this study, we investigated a panel of blood biomarkers in a cohort of 123 mitochondrial patients, with prominent neurological and muscular manifestations. These biomarkers included creatine, fibroblast growth factor 21 (FGF21) and growth/differentiation factor 15 (GDF-15), and the novel cell free circulating-mtDNA (ccf-mtDNA). All biomarkers were significantly increased in the patient group. After stratification by the specific phenotypes, ccf-mtDNA was significantly increased in the Mitochondrial Encephalomyopathy Lactic Acidosis Stroke-like episodes syndrome (MELAS) group, and FGF21 and GDF-15 were significantly elevated in patients with MELAS and Myoclonic Epilepsy Ragged Red Fibers syndrome. On the contrary, in our cohort, creatine was not associated to a specific clinical phenotype. Longitudinal assessment in four MELAS patients showed increased levels of ccf-mtDNA in relation to acute events (stroke-like episodes/status epilepticus) or progression of neurodegeneration. Our results confirm the association of FGF21 and GDF-15 with mitochondrial translation defects due to tRNA mutations. Most notably, the novel ccf-mtDNA was strongly associated with MELAS and may be used for monitoring the disease course or to evaluate the efficacy of therapies, especially in the acute phase. KEY MESSAGES: • FGF21/GDF15 efficiently identifies mitochondrial diseases due to mutations in tRNA genes. • The novel ccf-mtDNA is associated with MELAS and increases during acute events. • Creatine only discriminates severe mitochondrial patients. • FGF21, GDF-15, and ccf-mtDNA are possibly useful for monitoring therapy efficacy.
Collapse
|
research-article |
5 |
49 |
23
|
Vorperian SK, Moufarrej MN, Quake SR. Cell types of origin of the cell-free transcriptome. Nat Biotechnol 2022; 40:855-861. [PMID: 35132263 PMCID: PMC9200634 DOI: 10.1038/s41587-021-01188-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Abstract
Cell-free RNA from liquid biopsies can be analyzed to determine disease tissue of origin. We extend this concept to identify cell types of origin using the Tabula Sapiens transcriptomic cell atlas as well as individual tissue transcriptomic cell atlases in combination with the Human Protein Atlas RNA consensus dataset. We define cell type signature scores, which allow the inference of cell types that contribute to cell-free RNA for a variety of diseases.
Collapse
|
research-article |
3 |
49 |
24
|
Casagrande GMS, Silva MDO, Reis RM, Leal LF. Liquid Biopsy for Lung Cancer: Up-to-Date and Perspectives for Screening Programs. Int J Mol Sci 2023; 24:2505. [PMID: 36768828 PMCID: PMC9917347 DOI: 10.3390/ijms24032505] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 01/31/2023] Open
Abstract
Lung cancer is the deadliest cancer worldwide. Tissue biopsy is currently employed for the diagnosis and molecular stratification of lung cancer. Liquid biopsy is a minimally invasive approach to determine biomarkers from body fluids, such as blood, urine, sputum, and saliva. Tumor cells release cfDNA, ctDNA, exosomes, miRNAs, circRNAs, CTCs, and DNA methylated fragments, among others, which can be successfully used as biomarkers for diagnosis, prognosis, and prediction of treatment response. Predictive biomarkers are well-established for managing lung cancer, and liquid biopsy options have emerged in the last few years. Currently, detecting EGFR p.(Tyr790Met) mutation in plasma samples from lung cancer patients has been used for predicting response and monitoring tyrosine kinase inhibitors (TKi)-treated patients with lung cancer. In addition, many efforts continue to bring more sensitive technologies to improve the detection of clinically relevant biomarkers for lung cancer. Moreover, liquid biopsy can dramatically decrease the turnaround time for laboratory reports, accelerating the beginning of treatment and improving the overall survival of lung cancer patients. Herein, we summarized all available and emerging approaches of liquid biopsy-techniques, molecules, and sample type-for lung cancer.
Collapse
|
Review |
2 |
44 |
25
|
Nimir M, Ma Y, Jeffreys SA, Opperman T, Young F, Khan T, Ding P, Chua W, Balakrishnar B, Cooper A, De Souza P, Becker TM. Detection of AR-V7 in Liquid Biopsies of Castrate Resistant Prostate Cancer Patients: A Comparison of AR-V7 Analysis in Circulating Tumor Cells, Circulating Tumor RNA and Exosomes. Cells 2019; 8:cells8070688. [PMID: 31288377 PMCID: PMC6678978 DOI: 10.3390/cells8070688] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022] Open
Abstract
Detection of androgen receptor (AR) variant 7 (AR-V7) is emerging as a clinically important biomarker in castrate resistant prostate cancer (CRPC). Detection is possible from tumor tissue, which is often inaccessible in the advanced disease setting. With recent progress in detecting AR-V7 in circulating tumor cells (CTCs), circulating tumor RNA (ctRNA) and exosomes from prostate cancer patients, liquid biopsies have emerged as an alternative to tumor biopsy. Therefore, it is important to clarify whether these approaches differ in sensitivity in order to achieve the best possible biomarker characterization for the patient. In this study, blood samples from 44 prostate cancer patients were processed for CTCs and ctRNA with subsequent AR-V7 testing, while exosomal RNA was isolated from 16 samples and tested. Detection of AR and AR-V7 was performed using a highly sensitive droplet digital PCR-based assay. AR and AR-V7 RNA were detectable in CTCs, ctRNA and exosome samples. AR-V7 detection from CTCs showed higher sensitivity and has proven specificity compared to detection from ctRNA and exosomes. Considering that CTCs are almost always present in the advanced prostate cancer setting, CTC samples should be considered the liquid biopsy of choice for the detection of this clinically important biomarker.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Alternative Splicing
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Cell-Free Nucleic Acids
- Exosomes
- Humans
- Liquid Biopsy/methods
- Male
- Middle Aged
- Neoplastic Cells, Circulating/chemistry
- Prostatic Neoplasms, Castration-Resistant/blood
- Prostatic Neoplasms, Castration-Resistant/diagnosis
- Prostatic Neoplasms, Castration-Resistant/pathology
- Protein Isoforms/blood
- Protein Isoforms/genetics
- RNA, Neoplasm/blood
- RNA, Neoplasm/genetics
- Receptors, Androgen/blood
- Receptors, Androgen/genetics
- Sensitivity and Specificity
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
44 |