1
|
Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J Med Chem 2010; 53:7902-17. [PMID: 20804202 PMCID: PMC2988972 DOI: 10.1021/jm100762r] [Citation(s) in RCA: 1214] [Impact Index Per Article: 80.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
Research Support, N.I.H., Extramural |
15 |
1214 |
2
|
Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2006; 2:541-53. [PMID: 16489364 PMCID: PMC1201314 DOI: 10.1602/neurorx.2.4.541] [Citation(s) in RCA: 1023] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Fundamental physiochemical features of CNS drugs are related to their ability to penetrate the blood-brain barrier affinity and exhibit CNS activity. Factors relevant to the success of CNS drugs are reviewed. CNS drugs show values of molecular weight, lipophilicity, and hydrogen bond donor and acceptor that in general have a smaller range than general therapeutics. Pharmacokinetic properties can be manipulated by the medicinal chemist to a significant extent. The solubility, permeability, metabolic stability, protein binding, and human ether-ago-go-related gene inhibition of CNS compounds need to be optimized simultaneously with potency, selectivity, and other biological parameters. The balance between optimizing the physiochemical and pharmacokinetic properties to make the best compromises in properties is critical for designing new drugs likely to penetrate the blood brain barrier and affect relevant biological systems. This review is intended as a guide to designing CNS therapeutic agents with better drug-like properties.
Collapse
|
Review |
19 |
1023 |
3
|
Kelder J, Grootenhuis PD, Bayada DM, Delbressine LP, Ploemen JP. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res 1999; 16:1514-9. [PMID: 10554091 DOI: 10.1023/a:1015040217741] [Citation(s) in RCA: 590] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To study oral absorption and brain penetration as a function of polar molecular surface area. METHODS Measured brain penetration data of 45 drug molecules were investigated. The dynamic polar surface areas were calculated and correlated with the brain penetration data. Also the static polar surface areas of 776 orally administered CNS drugs that have reached at least Phase II efficacy studies were calculated. The same was done for a series of 1590 orally administered non-CNS drugs that have reached at least Phase II efficacy studies. RESULTS A linear relationship between brain penetration and dynamic polar surface area (A2) was found (n = 45, R = 0.917, F1,43 = 229). Brain penetration decreases with increasing polar surface area. A clear difference between the distribution of the polar surface area of the 776 CNS and 1590 non-CNS drugs was found. It was deduced that orally active drugs that are transported passively by the transcellular route should not exceed a polar surface area of about 120 A2. They can be tailored to brain penetration by decreasing the polar surface to <60-70 A2. This conclusion is supported by the inverse linear relationship between experimental brain penetration data and the dynamic polar surface area of 45 drug molecules. CONCLUSIONS The polar molecular surface area is a dominating determinant for oral absorption and brain penetration of drugs that are transported by the transcellular route. This property should be considered in the early phase of drug screening.
Collapse
|
|
26 |
590 |
4
|
Wanka L, Iqbal K, Schreiner PR. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem Rev 2013; 113:3516-604. [PMID: 23432396 PMCID: PMC3650105 DOI: 10.1021/cr100264t] [Citation(s) in RCA: 465] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
Research Support, N.I.H., Extramural |
12 |
465 |
5
|
Wager TT, Chandrasekaran RY, Hou X, Troutman MD, Verhoest PR, Villalobos A, Will Y. Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes. ACS Chem Neurosci 2010; 1:420-34. [PMID: 22778836 PMCID: PMC3368653 DOI: 10.1021/cn100007x] [Citation(s) in RCA: 347] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 03/02/2010] [Indexed: 01/20/2023] Open
Abstract
As part of our effort to increase survival of drug candidates and to move our medicinal chemistry design to higher probability space for success in the Neuroscience therapeutic area, we embarked on a detailed study of the property space for a collection of central nervous system (CNS) molecules. We carried out a thorough analysis of properties for 119 marketed CNS drugs and a set of 108 Pfizer CNS candidates. In particular, we focused on understanding the relationships between physicochemical properties, in vitro ADME (absorption, distribution, metabolism, and elimination) attributes, primary pharmacology binding efficiencies, and in vitro safety data for these two sets of compounds. This scholarship provides guidance for the design of CNS molecules in a property space with increased probability of success and may lead to the identification of druglike candidates with favorable safety profiles that can successfully test hypotheses in the clinic.
Collapse
|
research-article |
15 |
347 |
6
|
Hansch C, Björkroth JP, Leo A. Hydrophobicity and central nervous system agents: on the principle of minimal hydrophobicity in drug design. J Pharm Sci 1987; 76:663-87. [PMID: 11002801 DOI: 10.1002/jps.2600760902] [Citation(s) in RCA: 324] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The problem of getting drugs across the so-called blood-brain barrier (BBB) has long been under extensive investigation; however, the other side of the problem, that of keeping drugs out of the central nervous system (CNS), has not been studied so intently. As we strive to make more and more refined drugs with fewer side effects, the problem of keeping drugs out of the CNS has possibly become more important than getting them in. The role of lipophilicity has long been recognized as being important in CNS penetration by chemicals, but we believe that not enough attention has been devoted to just exactly what is meant when it is said that "a lipophilic drug is needed for CNS penetration." How lipophilic? Can hydrophilic properties keep drugs out of the CNS? How hydrophilic should they be? There are other reasons for making drugs hydrophilic. Hydrophobic drugs, other factors being equal, are more inhibitory of biochemical systems than hydrophilic congeners. Evidence is beginning to show that cytochrome P450 is induced in direct proportion to hydrophobicity by a variety of compounds, and cytochrome P450 may produce modifications in lipophilic molecules in the body. Hydrophobic drugs are more slowly eliminated. This report discusses these problems in terms of the octanol-water (log P) hydrophobic scale. The principle is proposed that, without convincing evidence to the contrary, drugs should be made as hydrophilic as possible without loss of efficacy. Antihistamines are discussed in terms of what kind of hydrophobic-hydrophilic balance is best to avoid CNS-related problems.
Collapse
|
|
38 |
324 |
7
|
Neubig RR, Siderovski DP. Regulators of G-protein signalling as new central nervous system drug targets. Nat Rev Drug Discov 2002; 1:187-97. [PMID: 12120503 DOI: 10.1038/nrd747] [Citation(s) in RCA: 307] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
G-protein-coupled receptors (GPCRs) are major targets for drug discovery. The regulator of G-protein signalling (RGS)-protein family has important roles in GPCR signal transduction. RGS proteins contain a conserved RGS-box, which is often accompanied by other signalling regulatory elements. RGS proteins accelerate the deactivation of G proteins to reduce GPCR signalling; however, some also have an effector function and transmit signals. Combining GPCR agonists with RGS inhibitors should potentiate responses, and could markedly increase the agonist's regional specificity. The diversity of RGS proteins with highly localized and dynamically regulated distributions in brain makes them attractive targets for pharmacotherapy of central nervous system disorders.
Collapse
|
Review |
23 |
307 |
8
|
Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM. Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. NeuroRx 2005; 2:554-71. [PMID: 16489365 PMCID: PMC1201315 DOI: 10.1602/neurorx.2.4.554] [Citation(s) in RCA: 304] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The worldwide market for therapies for CNS disorders is worth more than 50 billion dollars and is set to grow substantially in the years ahead. This is because: 1) the incidence of many CNS disorders (e.g., Alzheimer's disease, stroke, and Parkinson's disease) increase exponentially after age 65 and 2) the number of people in the world over 65 is about to increase sharply because of a marked rise in fertility after World War II. However, CNS research and development are associated with significant challenges: it takes longer to get a CNS drug to market (12-16 years) compared with a non-CNS drug (10-12 years) and there is a higher attrition rate for CNS drug candidates than for non-CNS drug candidates. This is attributable to a variety of factors, including the complexity of the brain, the liability of CNS drugs to cause CNS side effects, and the requirement of CNS drugs to cross the blood-brain barrier (BBB). This review focuses on BBB penetration, along with pharmacokinetics and drug metabolism, in the process of the discovery and development of safe and effective medicines for CNS disorders.
Collapse
|
Review |
20 |
304 |
9
|
Kreuter J. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2004; 4:484-488. [PMID: 15503433 DOI: 10.1166/jnn.2003.077] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Poly(alkyl cyanoacrylate) nanoparticles enable the delivery of a number of drugs, including doxorubicin, loperamide, tubocurarine, the NMDA receptor antagonist MRZ 2/576, and the peptides dalargin and kytorphin across the blood-brain barrier (BBB) after coating with surfactants. However, only the surfactants polysorbate (Tween) 20, 40, 60 and 80, and some poloxamers (Pluronic F 68) can induce this uptake. The mechanism for the delivery across the BBB most likely is endocytosis via the LDL receptor by the endothelial cells lining the brain blood capillaries after injection of the nanoparticles into the blood stream. This endocytotic uptake seems to be mediated by the adsorption of apolipoprotein B and/or E adsorption from the blood. Thus, the nanoparticles could mimic lipoprotein particles and act as "Trojan Horses." The drug, then, may be released either within these cells followed by passive diffusion into the brain or be transported into the brain by transcytosis.
Collapse
|
Review |
21 |
230 |
10
|
Conn PJ, Lindsley CW, Meiler J, Niswender CM. Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nat Rev Drug Discov 2014; 13:692-708. [PMID: 25176435 PMCID: PMC4208620 DOI: 10.1038/nrd4308] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Novel allosteric modulators of G protein-coupled receptors (GPCRs) are providing fundamental advances in the development of GPCR ligands with high subtype selectivity and novel modes of efficacy that have not been possible with traditional approaches. As new allosteric modulators are advancing as drug candidates, we are developing an increased understanding of the major advantages and broad range of activities that can be achieved with these agents through selective modulation of specific signalling pathways, differential effects on GPCR homodimers versus heterodimers, and other properties. This understanding creates exciting opportunities, as well as unique challenges, in the optimization of novel therapeutic agents for disorders of the central nervous system.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
211 |
11
|
Abstract
Library design is an important and difficult task. In this paper we describe one possible solution to designing a CNS-active library. CNS-actives and -inactives were selected from the CMC and the MDDR databases based on whether they were described as having some kind of CNS activity in the databases. This classification scheme results in over 15 000 actives and over 50 000 inactives. Each molecule is described by 7 1D descriptors (molecular weight, number of donors, number of acceptors, etc.) and 166 2D descriptors (presence/absence of functional groups such as NH(2)). A neural network trained using Bayesian methods can correctly predict about 75% of the actives and 65% of the inactives using the 7 1D descriptors. The performance improves to a prediction accuracy on the active set of 83% and 79% on the inactives on adding the 2D descriptors. On a database with 275 compounds where the CNS activity is known (from the literature) for each compound, we achieve 92% and 71% accuracy on the actives and inactives, respectively. The models we construct can therefore be used as a "filter" to examine any set of proposed molecules in a chemical library. As an example of the utility of our method, we describe the generation of a small library of potentially CNS-active molecules that would be amenable to combinatorial chemistry. This was done by building and analyzing a large database of a million compounds constructed from frameworks and side chains frequently found in drug molecules.
Collapse
|
|
26 |
203 |
12
|
Heitzman ME, Neto CC, Winiarz E, Vaisberg AJ, Hammond GB. Ethnobotany, phytochemistry and pharmacology of Uncaria (Rubiaceae). PHYTOCHEMISTRY 2005; 66:5-29. [PMID: 15649507 DOI: 10.1016/j.phytochem.2004.10.022] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 10/22/2004] [Indexed: 05/24/2023]
Abstract
The Uncaria genus is an important source of medicinal natural products, particularly alkaloids and triterpenes. The collected information is an attempt to cover the more recent developments in the ethnobotany, pharmacology and phytochemistry of this genus. During the past 20 years, alkaloids, terpenes, quinovic acid glycosides, flavonoids and coumarins have been isolated from Uncaria. Fifty-three novel structures are reported in this review. The species in which the largest number of compounds has been identified is the Peruvian Uncaria tomentosa or 'cat's claw.' Pharmacological studies are described according to cytotoxicity, anti-inflammatory, antiviral, immunostimulation, antioxidant, CNS-related response, vascular, hypotensive, mutagenicity and antibacterial properties. The potential for development of leads from Uncaria continues to grow, particularly in the area of immunomodulatory, anti-inflammatory and vascular-related conditions. The information summarized here is intended to serve as a reference tool to practitioners in the fields of ethnopharmacology and natural products chemistry.
Collapse
|
Review |
20 |
196 |
13
|
Moghadamtousi SZ, Fadaeinasab M, Nikzad S, Mohan G, Ali HM, Kadir HA. Annona muricata (Annonaceae): A Review of Its Traditional Uses, Isolated Acetogenins and Biological Activities. Int J Mol Sci 2015; 16:15625-58. [PMID: 26184167 PMCID: PMC4519917 DOI: 10.3390/ijms160715625] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/21/2015] [Accepted: 05/29/2015] [Indexed: 11/27/2022] Open
Abstract
Annona muricata is a member of the Annonaceae family and is a fruit tree with a long history of traditional use. A. muricata, also known as soursop, graviola and guanabana, is an evergreen plant that is mostly distributed in tropical and subtropical regions of the world. The fruits of A. muricata are extensively used to prepare syrups, candies, beverages, ice creams and shakes. A wide array of ethnomedicinal activities is contributed to different parts of A. muricata, and indigenous communities in Africa and South America extensively use this plant in their folk medicine. Numerous investigations have substantiated these activities, including anticancer, anticonvulsant, anti-arthritic, antiparasitic, antimalarial, hepatoprotective and antidiabetic activities. Phytochemical studies reveal that annonaceous acetogenins are the major constituents of A. muricata. More than 100 annonaceous acetogenins have been isolated from leaves, barks, seeds, roots and fruits of A. muricata. In view of the immense studies on A. muricata, this review strives to unite available information regarding its phytochemistry, traditional uses and biological activities.
Collapse
|
Review |
10 |
183 |
14
|
Khan KM, Collier AD, Meshalkina DA, Kysil EV, Khatsko SL, Kolesnikova T, Morzherin YY, Warnick JE, Kalueff AV, Echevarria DJ. Zebrafish models in neuropsychopharmacology and CNS drug discovery. Br J Pharmacol 2017; 174:1925-1944. [PMID: 28217866 PMCID: PMC5466539 DOI: 10.1111/bph.13754] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/11/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
Despite the high prevalence of neuropsychiatric disorders, their aetiology and molecular mechanisms remain poorly understood. The zebrafish (Danio rerio) is increasingly utilized as a powerful animal model in neuropharmacology research and in vivo drug screening. Collectively, this makes zebrafish a useful tool for drug discovery and the identification of disordered molecular pathways. Here, we discuss zebrafish models of selected human neuropsychiatric disorders and drug-induced phenotypes. As well as covering a broad range of brain disorders (from anxiety and psychoses to neurodegeneration), we also summarize recent developments in zebrafish genetics and small molecule screening, which markedly enhance the disease modelling and the discovery of novel drug targets.
Collapse
|
Review |
8 |
136 |
15
|
Chan RYK, Chen WF, Dong A, Guo D, Wong MS. Estrogen-like activity of ginsenoside Rg1 derived from Panax notoginseng. J Clin Endocrinol Metab 2002; 87:3691-5. [PMID: 12161497 DOI: 10.1210/jcem.87.8.8717] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ginsenosides have demonstrated pharmacological effects in the central nervous, cardiovascular, and endocrine systems. We hypothesize that ginsenosides might mediate some of their actions by binding to the estrogen receptor, as they share many of the protective actions of estrogen in various physiological systems. The present study is aimed to determine whether ginsenoside Rg1 can act like an estrogen analog in stimulating human breast cancer cell growth as well as in the activation of estrogen response element-luciferase activity in HeLa cell. Rg1, but not its aglycone, stimulates [methyl-(3)H] thymidine incorporation in estrogen receptor-positive MCF-7 in a dose-dependent manner (10(-15)-10(-7) M). The stimulation of MCF-7 cell proliferation by 3 x 10(-13) M Rg1 can be blocked by 10(-6) M of the estrogen antagonist ICI 182780. Moreover, Rg1 stimulates estrogen response element-luciferase reporter gene activity in HeLa cells with an optimal dose of 3 x 10(-10) M. Such stimulation can also be blocked by 10(-6) M ICI 182780. In addition, Rg1 has no effect on [methyl-(3)H]thymidine incorporation in estrogen receptor-negative human breast cancer cells (MDA-MB-231). Furthermore, Rg1 failed to displace the specific binding of [(3)H]17 beta-estradiol to MCF-7 cell lysates, suggesting that no direct interaction of Rg1 with estrogen receptor is needed for its estrogenic action. Our results indicate that ginsenosides Rg1 has estrogen-like activity and should be classified as a novel class of potent phytoestrogen.
Collapse
|
|
23 |
124 |
16
|
Marder M, Viola H, Wasowski C, Fernández S, Medina JH, Paladini AC. 6-methylapigenin and hesperidin: new valeriana flavonoids with activity on the CNS. Pharmacol Biochem Behav 2003; 75:537-45. [PMID: 12895671 DOI: 10.1016/s0091-3057(03)00121-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Valerian is an ancient tranquillizing drug obtained from the underground organs of several Valeriana species. Its active principles were assumed to be terpenoids in the form of valepotriates and/or as components of the essential oil. However, unknown active compounds were not discarded and synergic effects were suspected. We have recently isolated 6-methylapigenin (MA) from Valeriana wallichii and proved that it is a benzodiazepine binding site (BDZ-bs) ligand [Planta Med. 68 (2002) 934]. The present paper is the first report of the presence of 2S(-)-hesperidin in valeriana and describes that it has sedative and sleep-enhancing properties. MA, in turn, was found to have anxiolytic properties and was able to potentiate the sleep-enhancing properties of hesperidin (HN).MA and HN are new members of the growing family of natural flavonoids with activity on the CNS, and their properties suggest that they are promising drug leads in the field.
Collapse
|
Comparative Study |
22 |
121 |
17
|
Wan H, Rehngren M, Giordanetto F, Bergström F, Tunek A. High-throughput screening of drug-brain tissue binding and in silico prediction for assessment of central nervous system drug delivery. J Med Chem 2007; 50:4606-15. [PMID: 17725338 DOI: 10.1021/jm070375w] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A high-throughput method for rapid screening of in vitro drug-brain homogenate binding is presented. The method is based on a straightforward sample pooling approach combining equilibrium dialysis with liquid chromatography mass spectrometry (LCMS). A strong correlation of fraction unbound in brain (fu) between single compound measurements and 25-pooled compounds (R2 = 0.906) was obtained for a selection of structurally diverse CNS compounds with a wide range of fractions unbound. Effects of brain homogenate dilution and dialysis time were investigated. To the best of our knowledge, it was the first time that we have demonstrated consistent fraction unbound in mouse and rat brain homogenate, revealing the drug-tissue partitioning mechanism predominated by hydrophobic interaction. On the basis of this finding, a generic approach to estimate drug binding to various tissues is proposed. A robust and interpretable QSAR for fu prediction is also presented by statistical modeling.
Collapse
|
Journal Article |
18 |
106 |
18
|
Kuhl A, Hahn MG, Dumić M, Mittendorf J. Alicyclic β-amino acids in Medicinal Chemistry. Amino Acids 2005; 29:89-100. [PMID: 15986181 DOI: 10.1007/s00726-005-0212-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Accepted: 04/19/2005] [Indexed: 10/25/2022]
Abstract
The structural element of alicyclic beta-amino acids shows some remarkable biological effects: For some 5- and 6-membered beta-amino acids a unique anti fungal activity has been observed, 7-membered beta-amino acid derivatives have been investigated for neurological disorders. The application of 5-, 6- and 7-membered alicyclic beta-amino acids in Medicinal Chemistry will be reported. [structure: see text]
Collapse
|
|
20 |
103 |
19
|
Cowart M, Faghih R, Curtis MP, Gfesser GA, Bennani YL, Black LA, Pan L, Marsh KC, Sullivan JP, Esbenshade TA, Fox GB, Hancock AA. 4-(2-[2-(2(R)-Methylpyrrolidin-1-yl)ethyl]benzofuran-5-yl)benzonitrile and Related 2-Aminoethylbenzofuran H3 Receptor Antagonists Potently Enhance Cognition and Attention. J Med Chem 2004; 48:38-55. [PMID: 15634000 DOI: 10.1021/jm040118g] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
H(3) receptor antagonists based on a 2-aminoethylbenzofuran skeleton have been discovered, which are potent in vitro at human and rat H(3) receptors, with K(i) values of 0.1-5.8 nM. Analogues were discovered with potent (0.01-1 mg/kg) cognition and attention enhancing properties in animal models. One compound in particular, 4-(2-[2-(2(R)-methylpyrrolidin-1-yl)ethyl]benzofuran-5-yl)benzonitrile (ABT-239), combined potent and selective H(3) receptor antagonism and excellent pharmacokinetic and metabolic properties across species, with full efficacy in two behavioral models: a five-trial inhibitory avoidance acquisition model in rat pups at 0.1 mg/kg and a social recognition memory model in adult rats at 0.01 mg/kg. Furthermore, this compound did not stimulate locomotor activity and showed high selectivity for the induction of behavioral efficacy versus central nervous system based side effects. The potency and selectivity of this compound and of analogues from this class support the potential of H(3) receptor antagonists for the treatment of cognitive dysfunction.
Collapse
|
|
21 |
99 |
20
|
Javadzadeh Y, Jafari-Navimipour B, Nokhodchi A. Liquisolid technique for dissolution rate enhancement of a high dose water-insoluble drug (carbamazepine). Int J Pharm 2007; 341:26-34. [PMID: 17498898 DOI: 10.1016/j.ijpharm.2007.03.034] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 03/23/2007] [Accepted: 03/26/2007] [Indexed: 11/24/2022]
Abstract
Different liquisolid formulations of carbamazepine were accomplished by dissolving the drug in the non-toxic hydrophilic liquids, and adsorbing the solution onto the surface of silica. In order to reduce the amounts of carrier and aerosil in liquisolid formulations, some additives namely polyvinylpyrrolidone (PVP), hydroxypropyle methylcellulose (HPMC) and polyethylene glycol (PEG 35000) were added to liquid medication to increase loading factor. The effects of various ratios of carrier to coating material, PVP concentration, effect of aging and type of the carrier on dissolution rate of liquisolid compacts were studied. X-ray crystallography and differential scanning calorimetery (DSC) were used for evaluation of physicochemical properties of carbamazepine in liquisolid formulations. The results showed that the drug loading factor was increased significantly in the presence of additives. Liquisolid formulations containing PVP as additive, exhibited significantly higher drug dissolution rates compared to the compacts prepared by the direct compression technique. It was shown that microcrystalline cellulose had more liquid retention potential in comparison with lactose, and the formulations containing microcrystalline cellulose as carrier, showed higher dissolution rate. By decreasing the ratio of microcrystalline cellulose to silica from 20 to 10, an improvement in dissolution rate was observed. Further decrease in the ratio of microcrystalline cellulose:silica from 10 to 5 resulted in a significant reduction in dissolution rate. Increasing of PVP concentration in liquid medication caused a dramatic increase in dissolution rate at first 30min. The results showed that the dissolution rate of liquisolid tablets was not significantly affected by storing the tablets at 25 degrees C/75% relative humidity for a period of 6 months. The results of DSC and X-ray crystallography did not show any changes in crystallinity of the drug and interaction between carbamazepine and exipients during the process.
Collapse
|
Journal Article |
18 |
98 |
21
|
Manfredini S, Pavan B, Vertuani S, Scaglianti M, Compagnone D, Biondi C, Scatturin A, Tanganelli S, Ferraro L, Prasad P, Dalpiaz A. Design, synthesis and activity of ascorbic acid prodrugs of nipecotic, kynurenic and diclophenamic acids, liable to increase neurotropic activity. J Med Chem 2002; 45:559-62. [PMID: 11806707 DOI: 10.1021/jm015556r] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To improve the entry of certain drugs into brain, ascorbic acid (AA) conjugates of these drugs were synthesized and their capacity to interact with SVCT2 ascorbate transporters was explored. Kinetic studies clearly indicate that all of the conjugates were able to competitively inhibit ascorbate transport in human retinal pigment epithelial cells (HRPE). In vivo studies, in a mouse model system, demonstrate that conjugate 3 is better absorbed compared to the nonconjugated parent drug.
Collapse
|
|
23 |
87 |
22
|
Blanco MM, Costa CARA, Freire AO, Santos JG, Costa M. Neurobehavioral effect of essential oil of Cymbopogon citratus in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2009; 16:265-70. [PMID: 17561386 DOI: 10.1016/j.phymed.2007.04.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Tea obtained from leaves of Cymbopogon citratus (DC) Stapf is used for its anxiolytic, hypnotic and anticonvulsant properties in Brazilian folk medicine. Essential oil (EO) from fresh leaves was obtained by hydrodistillation and orally administered to Swiss male mice 30 min before experimental procedures. EO at 0.5 or 1.0 g/kg was evaluated for sedative/hypnotic activity through pentobarbital sleeping time, anxiolytic activity by elevated plus maze and light/dark box procedures and anticonvulsant activity through seizures induced by pentylenetetrazole and maximal electroshock. EO was effective in increasing the sleeping time, the percentage of entries and time spent in the open arms of the elevated plus maze as well as the time spent in the light compartment of light/dark box. In addition, EO delayed clonic seizures induced by pentylenetetrazole and blocked tonic extensions induced by maximal electroshock, indicating the elevation of the seizure threshold and/or blockage of seizures spread. These effects were observed in the absence of motor impairment evaluated on the rotarod and open field test. Our results are in accord with the ethnopharmacological use of Cymbopogon citratus, and after complementary toxicological studies it can support investigations assessing their use as anxiolytic, sedative or anticonvulsive agent.
Collapse
|
|
16 |
87 |
23
|
Vashist A, Kaushik A, Vashist A, Bala J, Nikkhah-Moshaie R, Sagar V, Nair M. Nanogels as potential drug nanocarriers for CNS drug delivery. Drug Discov Today 2018; 23:1436-1443. [PMID: 29775669 PMCID: PMC6598698 DOI: 10.1016/j.drudis.2018.05.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/20/2018] [Accepted: 05/10/2018] [Indexed: 01/19/2023]
Abstract
Hydrogel-based drug delivery systems (DDSs) have versatile applications such, as tissue engineering, scaffolds, drug delivery, and regenerative medicines. The drawback of higher size and poor stability in such DDSs are being addressed by developing nano-sized hydrogel particles, known as nanogels, to achieve the desired biocompatibility and encapsulation efficiency for better efficacy than conventional bulk hydrogels. In this review, we describe advances in the development of nanogels and their promotion as nanocarriers to deliver therapeutic agents to the central nervous system (CNS). We also discuss the challenges, possible solutions, and future prospects for the use of nanogel-based DDSs for CNS therapies.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
87 |
24
|
Xie W, Zhang X, Wang T, Hu J. Botany, traditional uses, phytochemistry and pharmacology of Apocynum venetum L. (Luobuma): A review. JOURNAL OF ETHNOPHARMACOLOGY 2012; 141:1-8. [PMID: 22421379 DOI: 10.1016/j.jep.2012.02.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/02/2012] [Accepted: 02/02/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Apocynum venetum L. (Apocynaceae, Luobuma ) has a long history as a Chinese traditional medicine with uses to calm the liver, soothe the nerves, dissipate heat, and promote diuresis. Recently, Luobuma tea has been commercialized as a sedative and anti-aging supplement that has become increasingly popular in North American and East Asian health food markets. AIMS OF THE REVIEW The aim of this review is to provide an up-to-date and comprehensive overview of the botany, chemical constituents, traditional uses, pharmacological activities and safety aspects of Apocynum venetum in order to assess its ethnopharmacological use and to explore its therapeutic potentials and future opportunities for research. BACKGROUND AND METHODS The accessible literature on Apocynum venetum written in English, Chinese and Japanese were collected and analyzed. The literatures included ancient Chinese herbal classics, pharmacopoeias and articles that included in Pubmed, Web of Science, Google Scholar and Wanfang. KEY FINDINGS Modern pharmacological studies demonstrated that Apocynum venetum possess wide pharmacological activities that include antihypertensive, cardiotonic, hepatoprotective, antioxidant, lipid-lowering, antidepressant and anxiolytic effects, which can be explained by the presence of various flavonoid compounds in this plant. The traditional (Lop Nor region) use of Apocynum venetum with tobacco as an agent to detoxify nicotine may receive interest as a possible therapeutic option to detoxify the body from smoking. Based on animal studies and clinical trials, Apocynum venetum causes no severe side effects, even in a stable daily dosage (50mg/person/day) for more than three years. CONCLUSIONS Apocynum venetum potentially has therapeutic potential in the prevention and treatment for the cardiovascular and neurological diseases, especially for high blood pressure, high cholesterol, neurasthenia, depression and anxiety. Further investigations are needed to explore individual bioactive compounds responsible for these in vitro and in vivo pharmacological effects and the mode of actions. Further safety assessments and clinical trials should be performed before it can be integrated into medicinal practices.
Collapse
|
Review |
13 |
84 |
25
|
Enna SJ, Williams M. Challenges in the search for drugs to treat central nervous system disorders. J Pharmacol Exp Ther 2009; 329:404-11. [PMID: 19182069 DOI: 10.1124/jpet.108.143420] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The history of drug discovery spans approximately 200,000 years. For much of this time, the identification of therapeutic agents was empirical, with the shift to a more hypothesis-driven approach occurring in the late 19th century. Since then, the objective has changed from identifying an active drug and its mechanism of action to determining therapeutic potential only after identifying drug-like compounds that interact with a target site. Although the emphasis on target identification, or "targephilia," has yielded novel drugs, overall it appears to have slowed the drug discovery process, especially for compounds used in treating central nervous system (CNS) disorders. This is because the "targephilic" approach requires a good understanding of target physiology and its integration with the target organ, with a hierarchical integration from in vitro cellular and functional tissue studies to animal models that reasonably predict human responses. Because the majority of CNS drugs were discovered empirically, drug discovery in this area appears less amenable to target-based approaches than it seems for other types of therapeutics. Improving the success rate in CNS drug discovery requires a more pharmacometric-based approach, with a renewed emphasis on defining basic CNS function in intact animals and a more systematic in vivo screening of novel structures. Efforts must also be directed toward defining the sites of action of existing CNS drugs to aid in the design of second-generation agents with improved efficacy and safety.
Collapse
|
|
16 |
75 |