1
|
Enstrom AM, Lit L, Onore CE, Gregg JP, Hansen RL, Pessah IN, Hertz-Picciotto I, Van de Water JA, Sharp FR, Ashwood P. Altered gene expression and function of peripheral blood natural killer cells in children with autism. Brain Behav Immun 2009; 23:124-33. [PMID: 18762240 PMCID: PMC2636576 DOI: 10.1016/j.bbi.2008.08.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 08/02/2008] [Accepted: 08/06/2008] [Indexed: 11/20/2022] Open
Abstract
Immune related abnormalities have repeatedly been reported in autism spectrum disorders (ASD), including evidence of immune dysregulation and autoimmune phenomena. NK cells may play an important role in neurodevelopmental disorders such as ASD. Here we performed a gene expression screen and cellular functional analysis on peripheral blood obtained from 52 children with ASD and 27 typically developing control children enrolled in the case-control CHARGE study. RNA expression of NK cell receptors and effector molecules were significantly upregulated in ASD. Flow cytometric analysis of NK cells demonstrated increased production of perforin, granzyme B, and interferon gamma (IFNgamma) under resting conditions in children with ASD (p<0.01). Following NK cell stimulation in the presence of K562 target cells, the cytotoxicity of NK cells was significantly reduced in ASD compared with controls (p<0.02). Furthermore, under similar stimulation conditions the presence of perforin, granzyme B, and IFNgamma in NK cells from ASD children was significantly lower compared with controls (p<0.001). These findings suggest possible dysfunction of NK cells in children with ASD. Abnormalities in NK cells may represent a susceptibility factor in ASD and may predispose to the development of autoimmunity and/or adverse neuroimmune interactions during critical periods of development.
Collapse
|
research-article |
16 |
177 |
2
|
Kang SS, Ebbert MTW, Baker KE, Cook C, Wang X, Sens JP, Kocher JP, Petrucelli L, Fryer JD. Microglial translational profiling reveals a convergent APOE pathway from aging, amyloid, and tau. J Exp Med 2018; 215:2235-2245. [PMID: 30082275 PMCID: PMC6122978 DOI: 10.1084/jem.20180653] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/25/2018] [Accepted: 07/20/2018] [Indexed: 01/29/2023] Open
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disease characterized by amyloidosis, tauopathy, and activation of microglia, the brain resident innate immune cells. We show that a RiboTag translational profiling approach can bypass biases due to cellular enrichment/cell sorting. Using this approach in models of amyloidosis, tauopathy, and aging, we revealed a common set of alterations and identified a central APOE-driven network that converged on CCL3 and CCL4 across all conditions. Notably, aged females demonstrated a significant exacerbation of many of these shared transcripts in this APOE network, revealing a potential mechanism for increased AD susceptibility in females. This study has broad implications for microglial transcriptomic approaches and provides new insights into microglial pathways associated with different pathological aspects of aging and AD.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
169 |
3
|
DuPré SA, Redelman D, Hunter KW. The mouse mammary carcinoma 4T1: characterization of the cellular landscape of primary tumours and metastatic tumour foci. Int J Exp Pathol 2007; 88:351-60. [PMID: 17877537 PMCID: PMC2517332 DOI: 10.1111/j.1365-2613.2007.00539.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The murine mammary carcinoma 4T1 causes a leukemoid reaction with profound granulocytosis coincident with the production of tumour-derived growth factors. Here, we study the evolving cellular landscape of primary tumours and metastatic tumour foci and correlate haematopoietic cell infiltration with the production of tumour-derived chemokines. Flow cytometric analysis of enzyme digested primary tumours at different times after transplantation revealed a progressively increasing CD45(+) haematopoietic cell infiltrate consisting predominantly of CD11b(+) myeloid cells. Most of these cells had an F4/80(+)/CD11c(+) phenotype, many of which also stained Gr-1(+). Smaller numbers of Gr-1(+)CD11b(+) granulocytes and lymphoid cells were also identified. Progressive increases in Gr-1(+) granulocytes were observed in enzymatic digests of livers and lungs with metastatic tumour foci. Cultured 4T1 tumour cells expressed mRNA transcripts for the myeloid cell chemokines RANTES, MCP-1 and KC, and enzymatically digested cells from primary 4T1 tumours partially depleted of CD45(+) cells expressed transcripts for these chemokines and also MIP-1alpha and MIP-1beta. These data demonstrate that 4T1 tumour-bearing mice have mixed myeloid cell infiltrates of primary tumours and granulocytic infiltrates of metastatic organs. This pathologic presentation correlated with the expression of tumour-derived chemokines.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
162 |
4
|
Maehara T, Mattoo H, Ohta M, Mahajan VS, Moriyama M, Yamauchi M, Drijvers J, Nakamura S, Stone JH, Pillai SS. Lesional CD4+ IFN-γ+ cytotoxic T lymphocytes in IgG4-related dacryoadenitis and sialoadenitis. Ann Rheum Dis 2017; 76:377-385. [PMID: 27358392 PMCID: PMC5435236 DOI: 10.1136/annrheumdis-2016-209139] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/11/2016] [Accepted: 05/27/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVES IgG4-related disease (IgG4-RD) is a chronic, systemic, inflammatory condition of unknown aetiology. We have recently described clonally expanded circulating CD4+ cytotoxic T lymphocytes (CTLs) in IgG4-RD that infiltrate affected tissues where they secrete interleukin (IL)-1β and transforming growth factor -β1 (TGF-β1). In this study, we sought to examine the role of CD4+ CTLs in the pathogenesis of IgG4-related dacryoadenitis and sialoadenitis (IgG4-DS) and to determine whether these cells secrete interferon-gamma (IFN-γ) at lesional sites. METHODS Salivary glands of 25 patients with IgG4-DS, 22 patients with Sjögren's syndrome (SS), 12 patients with chronic sialoadenitis (CS) and 12 healthy controls were analysed in this study. Gene expression analysis was performed on submandibular glands (SMGs) from five patients with IgG4-DS, three with CS and three healthy controls. Infiltrating CD4+ CTLs were examined by quantitative multicolour imaging in tissue samples from 20 patients with IgG4-DS, 22 patients with SS, 9 patients with CS and 9 healthy controls. RESULTS In IgG4-DS tissues, nine genes associated with CD4+ CTLs were overexpressed. The expression of granzyme A (GZMA) mRNA was significantly higher in samples from patients with IgG4-RD compared with corresponding tissues from SS and healthy controls. Quantitative imaging showed that infiltrating CD4+ GZMA+ CTLs were more abundant in patients with IgG4-DS than in the other groups. The ratio of CD4+GZMA+ CTLs in SMGs from patients with IgG4-DS correlated with serum IgG4 concentrations and the number of affected organs. A large fraction of CD4+GZMA+ CTLs in SMGs from patients with IgG4-DS secreted IFN-γ. CONCLUSIONS The pathogenesis of IgG4-DS is associated with tissue infiltration by CD4+GZMA+ CTLs that secrete IFN-γ.
Collapse
|
research-article |
8 |
136 |
5
|
Romero JM, Grünwald B, Jang GH, Bavi PP, Jhaveri A, Masoomian M, Fischer SE, Zhang A, Denroche RE, Lungu IM, De Luca A, Bartlett JMS, Xu J, Li N, Dhaliwal S, Liang SB, Chadwick D, Vyas F, Bronsert P, Khokha R, McGaha TL, Notta F, Ohashi PS, Done SJ, O'Kane GM, Wilson JM, Knox JJ, Connor A, Wang Y, Zogopoulos G, Gallinger S. A Four-Chemokine Signature Is Associated with a T-cell-Inflamed Phenotype in Primary and Metastatic Pancreatic Cancer. Clin Cancer Res 2020; 26:1997-2010. [PMID: 31964786 DOI: 10.1158/1078-0432.ccr-19-2803] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/14/2019] [Accepted: 01/15/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE The molecular drivers of antitumor immunity in pancreatic ductal adenocarcinoma (PDAC) are poorly understood, posing a major obstacle for the identification of patients potentially amenable for immune-checkpoint blockade or other novel strategies. Here, we explore the association of chemokine expression with effector T-cell infiltration in PDAC. EXPERIMENTAL DESIGN Discovery cohorts comprised 113 primary resected PDAC and 107 PDAC liver metastases. Validation cohorts comprised 182 PDAC from The Cancer Genome Atlas and 92 PDACs from the Australian International Cancer Genome Consortium. We explored associations between immune cell counts by immunohistochemistry, chemokine expression, and transcriptional hallmarks of antitumor immunity by RNA sequencing (RNA-seq), and mutational burden by whole-genome sequencing. RESULTS Among all known human chemokines, a coregulated set of four (CCL4, CCL5, CXCL9, and CXCL10) was strongly associated with CD8+ T-cell infiltration (P < 0.001). Expression of this "4-chemokine signature" positively correlated with transcriptional metrics of T-cell activation (ZAP70, ITK, and IL2RB), cytolytic activity (GZMA and PRF1), and immunosuppression (PDL1, PD1, CTLA4, TIM3, TIGIT, LAG3, FASLG, and IDO1). Furthermore, the 4-chemokine signature marked tumors with increased T-cell activation scores (MHC I presentation, T-cell/APC costimulation) and elevated expression of innate immune sensing pathways involved in T-cell priming (STING and NLRP3 inflammasome pathways, BATF3-driven dendritic cells). Importantly, expression of this 4-chemokine signature was consistently indicative of a T-cell-inflamed phenotype across primary PDAC and PDAC liver metastases. CONCLUSIONS A conserved 4-chemokine signature marks resectable and metastatic PDAC tumors with an active antitumor phenotype. This could have implications for the appropriate selection of PDAC patients in immunotherapy trials.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
105 |
6
|
Kauwe JSK, Bailey MH, Ridge PG, Perry R, Wadsworth ME, Hoyt KL, Staley LA, Karch CM, Harari O, Cruchaga C, Ainscough BJ, Bales K, Pickering EH, Bertelsen S, Fagan AM, Holtzman DM, Morris JC, Goate AM. Genome-wide association study of CSF levels of 59 alzheimer's disease candidate proteins: significant associations with proteins involved in amyloid processing and inflammation. PLoS Genet 2014; 10:e1004758. [PMID: 25340798 PMCID: PMC4207667 DOI: 10.1371/journal.pgen.1004758] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/16/2014] [Indexed: 01/25/2023] Open
Abstract
Cerebrospinal fluid (CSF) 42 amino acid species of amyloid beta (Aβ42) and tau levels are strongly correlated with the presence of Alzheimer's disease (AD) neuropathology including amyloid plaques and neurodegeneration and have been successfully used as endophenotypes for genetic studies of AD. Additional CSF analytes may also serve as useful endophenotypes that capture other aspects of AD pathophysiology. Here we have conducted a genome-wide association study of CSF levels of 59 AD-related analytes. All analytes were measured using the Rules Based Medicine Human DiscoveryMAP Panel, which includes analytes relevant to several disease-related processes. Data from two independently collected and measured datasets, the Knight Alzheimer's Disease Research Center (ADRC) and Alzheimer's Disease Neuroimaging Initiative (ADNI), were analyzed separately, and combined results were obtained using meta-analysis. We identified genetic associations with CSF levels of 5 proteins (Angiotensin-converting enzyme (ACE), Chemokine (C-C motif) ligand 2 (CCL2), Chemokine (C-C motif) ligand 4 (CCL4), Interleukin 6 receptor (IL6R) and Matrix metalloproteinase-3 (MMP3)) with study-wide significant p-values (p<1.46×10−10) and significant, consistent evidence for association in both the Knight ADRC and the ADNI samples. These proteins are involved in amyloid processing and pro-inflammatory signaling. SNPs associated with ACE, IL6R and MMP3 protein levels are located within the coding regions of the corresponding structural gene. The SNPs associated with CSF levels of CCL4 and CCL2 are located in known chemokine binding proteins. The genetic associations reported here are novel and suggest mechanisms for genetic control of CSF and plasma levels of these disease-related proteins. Significant SNPs in ACE and MMP3 also showed association with AD risk. Our findings suggest that these proteins/pathways may be valuable therapeutic targets for AD. Robust associations in cognitively normal individuals suggest that these SNPs also influence regulation of these proteins more generally and may therefore be relevant to other diseases. The use of quantitative endophenotypes from cerebrospinal fluid has led to the identification of several genetic variants that alter risk or rate of progression of Alzheimer's disease. Here we have analyzed the levels of 58 disease-related proteins in the cerebrospinal fluid for association with millions of variants across the human genome. We have identified significant, replicable associations with 5 analytes, Angiotensin-converting enzyme, Chemokine (C-C motif) ligand 2, Chemokine (C-C motif) ligand 4, Interleukin 6 receptor and Matrix metalloproteinase-3. Our results suggest that these variants play a regulatory role in the respective protein levels and are relevant to the inflammatory and amyloid processing pathways. Variants in associated with ACE and those associated with MMP3 levels also show association with risk for Alzheimer's disease in the expected directions. These associations are consistent in cerebrospinal fluid and plasma and in samples with only cognitively normal individuals suggesting that they are relevant in the regulation of these protein levels beyond the context of Alzheimer's disease.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
96 |
7
|
Williford JM, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P, Marchell TM, Potin L, Swartz MA, Hubbell JA. Recruitment of CD103 + dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. SCIENCE ADVANCES 2019; 5:eaay1357. [PMID: 31844672 PMCID: PMC6905870 DOI: 10.1126/sciadv.aay1357] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/21/2019] [Indexed: 05/10/2023]
Abstract
Although a clinical breakthrough for cancer treatment, it remains that a minority of patients respond to checkpoint inhibitor (CPI) immunotherapy. The composition of tumor-infiltrating immune cells has been identified as a key factor influencing CPI therapy success. Thus, enhancing tumor immune cell infiltration is a critical challenge. A lack of the chemokine CCL4 within the tumor microenvironment leads to the absence of CD103+ dendritic cells (DCs), a crucial cell population influencing CPI responsiveness. Here, we use a tumor stroma-targeting approach to deliver CCL4; by generating a fusion protein of CCL4 and the collagen-binding domain (CBD) of von Willebrand factor, we show that CBD fusion enhances CCL4 tumor localization. Intravenous CBD-CCL4 administration recruits CD103+ DCs and CD8+ T cells and improves the antitumor effect of CPI immunotherapy in multiple tumor models, including poor responders to CPI. Thus, CBD-CCL4 holds clinical translational potential by enhancing efficacy of CPI immunotherapy.
Collapse
|
research-article |
6 |
90 |
8
|
Zhang Z, Bryan JL, DeLassus E, Chang LW, Liao W, Sandell LJ. CCAAT/enhancer-binding protein β and NF-κB mediate high level expression of chemokine genes CCL3 and CCL4 by human chondrocytes in response to IL-1β. J Biol Chem 2010; 285:33092-33103. [PMID: 20702408 PMCID: PMC2963416 DOI: 10.1074/jbc.m110.130377] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/16/2010] [Indexed: 11/06/2022] Open
Abstract
A large set of chemokines is highly up-regulated in human chondrocytes in response to IL-1β (Sandell, L. J., Xing, X., Franz, C., Davies, S., Chang, L. W., and Patra, D. (2008) Osteoarthr. Cartil. 16, 1560-1571). To investigate the mechanism of transcriptional regulation, deletion constructs of selected chemokine gene promoters, the human CCL3 (MIP-1α) and CCL4 (MIP-1β), were transfected into human chondrocytes with or without IL-1β. The results show that an IL-1β-responsive element is located between bp -300 and -140 of the CCL3 promoter and between bp -222 and -100 of the CCL4 promoter. Because both of these elements contain CCAAT/enhancer-binding protein β (C/EBPβ) motifs, the function of C/EBPβ was examined. IL-1β stimulated the expression of C/EBPβ, and the direct binding of C/EBPβ to the C/EBPβ motif was confirmed by EMSA and ChIP analyses. The -300 bp CCL3 promoter and -222 bp CCL4 promoter were strongly up-regulated by co-transfection with the C/EBPβ expression vector. Mutation of the C/EBPβ motif and reduction of C/EBPβ expression by siRNA decreased the up-regulation. Additionally, another cytokine-related transcription factor, NF-κB, was also shown to be involved in the up-regulation of chemokines in response to IL-1β, and the binding site was identified. The regulation of C/EBPβ and NF-κB was confirmed by the inhibition by C/EBPβ and NF-κB and by transfection with C/EBPβ and NF-κB expression vectors in the presence or absence of IL-1β. Taken together, our results suggest that C/EBPβ and NF-κB are both involved in the IL-1β-responsive up-regulation of chemokine genes in human chondrocytes. Time course experiments indicated that C/EBPβ gradually and steadily induces chemokine up-regulation, whereas NF-κB activity was highest at the early stage of chemokine up-regulation.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
54 |
9
|
Everhardt Queen A, Moerdyk-Schauwecker M, McKee LM, Leamy LJ, Huet YM. Differential Expression of Inflammatory Cytokines and Stress Genes in Male and Female Mice in Response to a Lipopolysaccharide Challenge. PLoS One 2016; 11:e0152289. [PMID: 27120355 PMCID: PMC4847773 DOI: 10.1371/journal.pone.0152289] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/12/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sex plays a key role in an individual's immune response against pathogenic challenges such that females fare better when infected with certain pathogens. It is thought that sex hormones impact gene expression in immune cells and lead to sexually dimorphic responses to pathogens. We predicted that, in the presence of E. coli gram-negative lipopolysaccharide (LPS), there would be a sexually dimorphic response in proinflammatory cytokine production and acute phase stress gene expression and that these responses might vary among different mouse strains and times in a pattern opposite to that of body temperature associated with LPS-induced shock. MATERIALS AND METHODS Interleukin-6 (IL-6), macrophage inflammatory protein-Iβ (MIP-1β), tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) as well as beta-fibrinogen (Fgb) and metallothionein-1 (Mt-1) mRNA expression were measured at four time points (0, 2, 4 and 7 hours) after injection of E. coli LPS in mice from three inbred strains. RESULTS Statistical analysis using analyses of variance (ANOVAs) showed that the levels of the all six traits changed over time, generally peaking at 2 hours after LPS injection. Mt-1, Fgb, and IL-6 showed differences among strains, although these were time-specific. Sexual dimorphism was seen for Fgb and IL6, and was most pronounced at the latest time period (7 hours) where male levels exceeded those for females. Trends for all six cytokine/gene expression traits were negatively correlated with those for body temperatures. DISCUSSION The higher levels of expression of Fgb and IL6 in males compared with females are consistent with the greater vulnerability of males to infection and subsequent inflammation. Temperature appears to be a useful proxy for mortality in endotoxic shock, but sexual dimorphism in cytokine and stress gene expression levels may persist after an LPS challenge even if temperatures in the two sexes are similar and have begun to stabilize.
Collapse
|
research-article |
9 |
46 |
10
|
Naeem A, Utro F, Wang Q, Cha J, Vihinen M, Martindale S, Zhou Y, Ren Y, Tyekucheva S, Kim AS, Fernandes SM, Saksena G, Rhrissorrakrai K, Levovitz C, Danysh BP, Slowik K, Jacobs RA, Davids MS, Lederer JA, Zain R, Smith CIE, Leshchiner I, Parida L, Getz G, Brown JR. Pirtobrutinib targets BTK C481S in ibrutinib-resistant CLL but second-site BTK mutations lead to resistance. Blood Adv 2023; 7:1929-1943. [PMID: 36287227 PMCID: PMC10202739 DOI: 10.1182/bloodadvances.2022008447] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/26/2022] [Accepted: 10/09/2022] [Indexed: 11/20/2022] Open
Abstract
Covalent inhibitors of Bruton tyrosine kinase (BTK) have transformed the therapy of chronic lymphocytic leukemia (CLL), but continuous therapy has been complicated by the development of resistance. The most common resistance mechanism in patients whose disease progresses on covalent BTK inhibitors (BTKis) is a mutation in the BTK 481 cysteine residue to which the inhibitors bind covalently. Pirtobrutinib is a highly selective, noncovalent BTKi with substantial clinical activity in patients whose disease has progressed on covalent BTKi, regardless of BTK mutation status. Using in vitro ibrutinib-resistant models and cells from patients with CLL, we show that pirtobrutinib potently inhibits BTK-mediated functions including B-cell receptor (BCR) signaling, cell viability, and CCL3/CCL4 chemokine production in both BTK wild-type and C481S mutant CLL cells. We demonstrate that primary CLL cells from responding patients on the pirtobrutinib trial show reduced BCR signaling, cell survival, and CCL3/CCL4 chemokine secretion. At time of progression, these primary CLL cells show increasing resistance to pirtobrutinib in signaling inhibition, cell viability, and cytokine production. We employed longitudinal whole-exome sequencing on 2 patients whose disease progressed on pirtobrutinib and identified selection of alternative-site BTK mutations, providing clinical evidence that secondary BTK mutations lead to resistance to noncovalent BTKis.
Collapse
MESH Headings
- Humans
- Agammaglobulinaemia Tyrosine Kinase
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Chemokine CCL4/genetics
- Chemokine CCL4/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Mutation
Collapse
|
Research Support, N.I.H., Extramural |
2 |
36 |
11
|
Bharuthram A, Paximadis M, Picton ACP, Tiemessen CT. Comparison of a quantitative Real-Time PCR assay and droplet digital PCR for copy number analysis of the CCL4L genes. INFECTION GENETICS AND EVOLUTION 2014; 25:28-35. [PMID: 24727646 DOI: 10.1016/j.meegid.2014.03.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/25/2014] [Accepted: 03/24/2014] [Indexed: 02/02/2023]
Abstract
The controversy surrounding the findings that copy number variation, of the CCL3 encoding genes, influences HIV-1 infection and disease progression has been in part attributed to the variable results obtained from methods used for copy number evaluation. Like CCL3, the genes encoding the CC chemokine CCL4, also a natural ligand of the CCR5 receptor, are found to occur in population-specific multiple copy number and have been shown to play a protective role against HIV-1. This study evaluated the standard method of quantitative Real-Time PCR (qPCR) and droplet digital PCR (ddPCR) for CCL4L gene copy number determination. The CCL4 encoding genes are CCL4, occurring in two copies per diploid genome (pdg), and the non-allelic CCL4L genes, comprised of CCL4L1 and CCL4L2, which are both found in multiple copies pdg. Copy number of CCL4L, CCL4L1 and CCL4L2 was determined in a cohort of HIV-1-uninfected individuals from the South African Black (n=23) and Caucasian (n=32) population groups using qPCR and ddPCR. A stronger correlation between the number of CCL4L copies and the sum of CCL4L1 and CCL4L2 copies generated by ddPCR (r=0.99, p<0.0001) compared to qPCR (r=0.87, p<0.0001) was observed. Real-Time qPCR exhibited greater inaccuracy at higher copy numbers which is particularly relevant to our cohort of Black individuals who have a higher range of CCL4L copies (3-6) compared to Caucasians (0-4) and a higher population median (4 and 2, respectively). Medians and ranges of CCL4L1 (Black: 2, 0-4, Caucasian: 0, 0-2) and CCL4L2 (Black: 2, 1-5, Caucasian: 2, 0-3) were also higher in the Black population. Droplet digital PCR was shown to be a far superior method to qPCR for assessment of CCL4 gene copy number variation, the accuracy of which is essential for studies of the contribution of variable gene copy number to phenotypic outcomes of host infection and disease course.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
35 |
12
|
Sprokholt JK, Kaptein TM, van Hamme JL, Overmars RJ, Gringhuis SI, Geijtenbeek TBH. RIG-I-like Receptor Triggering by Dengue Virus Drives Dendritic Cell Immune Activation and T H1 Differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:4764-4771. [PMID: 28507028 DOI: 10.4049/jimmunol.1602121] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/13/2017] [Indexed: 01/07/2023]
Abstract
Dengue virus (DENV) causes 400 million infections annually and is one of several viruses that can cause viral hemorrhagic fever, which is characterized by uncontrolled immune activation resulting in high fever and internal bleeding. Although the underlying mechanisms are unknown, massive cytokine secretion is thought to be involved. Dendritic cells (DCs) are the main target cells of DENV, and we investigated their role in DENV-induced cytokine production and adaptive immune responses. DENV infection induced DC maturation and secretion of IL-1β, IL-6, and TNF. Inhibition of DENV RNA replication abrogated these responses. Notably, silencing of RNA sensors RIG-I or MDA5 abrogated DC maturation, as well as cytokine responses by DENV-infected DCs. DC maturation was induced by type I IFN responses because inhibition of IFN-α/β receptor signaling abrogated DENV-induced DC maturation. Moreover, DENV infection of DCs resulted in CCL2, CCL3, and CCL4 expression, which was abrogated after RIG-I and MDA5 silencing. DCs play an essential role in TH cell differentiation, and we show that RIG-I and MDA5 triggering by DENV leads to TH1 polarization, which is characterized by high levels of IFN-γ. Notably, cytokines IL-6, TNF, and IFN-γ and chemokines CCL2, CCL3, and CCL4 have been associated with disease severity, endothelial dysfunction, and vasodilation. Therefore, we identified RIG-I and MDA5 as critical players in innate and adaptive immune responses against DENV, and targeting these receptors has the potential to decrease hemorrhagic fever in patients.
Collapse
|
|
8 |
34 |
13
|
Goode D, Aravantinou M, Jarl S, Truong R, Derby N, Guerra-Perez N, Kenney J, Blanchard J, Gettie A, Robbiani M, Martinelli E. Sex hormones selectively impact the endocervical mucosal microenvironment: implications for HIV transmission. PLoS One 2014; 9:e97767. [PMID: 24830732 PMCID: PMC4022654 DOI: 10.1371/journal.pone.0097767] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/22/2014] [Indexed: 12/29/2022] Open
Abstract
Several studies suggest that progesterone and estrogens may affect HIV transmission in different, possibly opposing ways. Nonetheless, a direct comparison of their effects on the mucosal immune system has never been done. We hypothesize that sex hormones might impact the availability of cells and immune factors important in early stages of mucosal transmission, and, in doing so influence the risk of HIV acquisition. To test this hypothesis, we employed 15 ovarectomized rhesus macaques: 5 were treated with Depot Medroxy Progesterone Acetate (DMPA), 6 with 17-β estradiol (E2) and 4 were left untreated. All animals were euthanized 5 weeks after the initiation of hormone treatment, a time post-DMPA injection associated with high susceptibility to SIV infection. We found that DMPA-treated macaques exhibited higher expression of integrin α4β7 (α4β7) on CD4+ T cells, the gut homing receptor and a marker of cells highly susceptible to HIV, in the endocervix than did the E2-treated animals. In contrast, the frequency of CCR5+ CD4+ T cells in DMPA-treated macaques was higher than in the E2-treated group in vaginal tissue, but lower in endocervix. α4β7 expression on dendritic cells (DCs) was higher in the DMPA-treated group in the endocervical tissue, but lower in vaginal tissue and on blood DCs compared with the E2-treated animals. Soluble MAdCAM-1, the α4β7 ligand, was present in the vaginal fluids of the control and E2-treated groups, but absent in the fluids from DMPA-treated animals. Both hormones modulated the expression and release of inflammatory factors and modified the distribution of sialomucins in the endocervix. In summary, we found that sex hormones profoundly impact mucosal immune factors that are directly implicated in HIV transmission. The effect is particularly significant in the endocervix. This may increase our understanding of the potential hormone-driven modulation of HIV susceptibility and potentially guide contraceptive policies in high-risk settings.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
31 |
14
|
Sun B, Lei Y, Cao Z, Zhou Y, Sun Y, Wu Y, Wang S, Guo W, Liu C. TroCCL4, a CC chemokine of Trachinotus ovatus, is involved in the antimicrobial immune response. FISH & SHELLFISH IMMUNOLOGY 2019; 86:525-535. [PMID: 30521967 DOI: 10.1016/j.fsi.2018.11.080] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
CC chemokines are a large subfamily of chemokines that play an important role in the innate immune system. To date, several CC chemokines have been identified in fish species; however, the activities and functions of these putative chemokines remain ambiguous in teleosts, especially in the golden pompano, Trachinotus ovatus. Here, we characterized CC chemokine ligand 4 from T. ovatus (TroCCL4) and studied its functions. TroCCL4 contains a 294 bp open reading frame that encodes a putative peptide comprising 97 amino acids. TroCCL4 shares a high amino acid sequence similarity of 31.11%-78.35% with other CC chemokines sequences in humans and teleosts and has four cysteine residues that are conserved among other CC chemokines. TroCCL4 is also related to the macrophage inflammatory protein (MIP) group of CC chemokines. TroCCL4 expression was most abundant in immune organs and significantly upregulated in a time-dependent manner following Edwardsiella tarda infection. Recombinant TroCCL4 (rTroCCL4) induced the migration of peripheral blood leukocytes and the cellular proliferation of head kidney lymphocytes. In addition, rTroCCL4 inhibited the growth of Escherichia coli and E. tarda, indicating an antimicrobial function. Furthermore, the results of in vivo analysis showed that TroCCL4 overexpression in T. ovatus significantly enhanced macrophage activation; upregulated the gene expression of interleukin 1-β (IL-1β), interleukin 15 (IL15), interferon-induced Mx protein (Mx), tumor necrosis factor α (TNFα), complement C3, and major histocompatibility complex (MHC) class Iα and class IIα; and protected against bacterial infection in fish tissues. In contrast, knockdown of TroCCL4 expression resulted in increased bacterial dissemination and colonization in fish tissues. Taken together, our results provide evidence indicating that TroCCL4 has the ability to stimulate leukocytes and macrophages and enhance host immunity to defend against bacterial infection.
Collapse
|
|
6 |
30 |
15
|
Hsu YJ, Hou CY, Lin SJ, Kuo WC, Lin HT, Lin JHY. The biofunction of orange-spotted grouper (Epinephelus coioides) CC chemokine ligand 4 (CCL4) in innate and adaptive immunity. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1891-1898. [PMID: 24120504 DOI: 10.1016/j.fsi.2013.09.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 09/15/2013] [Accepted: 09/16/2013] [Indexed: 06/02/2023]
Abstract
CC chemokine (motif) ligand 4 (CCL4) is indispensable to the chemoattraction of macrophages, natural killer cells, and lymphocytes in mammals; however, it has only been cloned in a limited number of fish species and information related to its biofunction remains ambiguous with regard to teleosts. To explore the role of teleost CCL4, we first evaluated the mRNA expression of the Epinephelus coioides CCL4 (gCCL4) gene in various organs under LPS and poly (I:C) stimulated; secondary, we evaluated the immune-related genes expression of fish under the recombinant gCCL4 protein stimulated. Our results revealed an increase in the mRNA of gCCL4 in immune organs immediately following stimulation by poly (I:C); however, in LPS stimulated fish, the expression did not increase until nearly 24 h after induction. In biofunction assays, recombinant gCCL4 was found to induce chemotactic activity in the peripheral blood leukocytes of groupers and up-regulate the gene expressions of grouper TNFA1 (TNF-α1), TNFA2 (TNF-α2), IFNG (IFN-γ), MX, TBX21 (T-bet), CD8 (α and β chain). These findings indicate that grouper CCL4 attracts leukocytes, induces an inflammatory response, and drives lymphocyte differentiation into the Th1 pathway.
Collapse
|
|
12 |
30 |
16
|
Dar A, Tikoo S, Potter A, Babiuk LA, Townsend H, Gerdts V, Mutwiri G. CpG-ODNs induced changes in cytokine/chemokines genes expression associated with suppression of infectious bronchitis virus replication in chicken lungs. Vet Immunol Immunopathol 2014; 160:209-17. [PMID: 25012000 PMCID: PMC7112892 DOI: 10.1016/j.vetimm.2014.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/07/2014] [Accepted: 05/12/2014] [Indexed: 12/23/2022]
Abstract
The process of virus replication in host cells is greatly influenced by the set of cytokines, chemokines and antiviral substances activated as a result of host–virus interaction. Alteration of cytokines profiles through manipulation of the innate immune system by innate immune stimulants may be helpful in inhibiting virus replication in otherwise permissive cells. The aim of present studies was to characterize innate immune responses capable of inhibiting infectious bronchitis virus (IBV) replication in chicken lungs after in ovo administration of CpG ODN. In our experiments, CpG ODN 2007 or PBS solution was injected on 18th embryonic day (ED) via the chorioallontoic route. CpG ODN and PBS inoculated embryos were challenged with virulent IBV on the 19th ED. Lung tissue samples from experimental chicks were analysed for cytokines/chemokines gene expression at 24 h, 48 h, and 72 h, post infection. Our data showed significant differential up-regulation of IFN-γ, IL-8 (CXCLi2) and MIP-1β genes and suppression of IL-6 gene expression being associated with inhibition of IBV replication in lungs tissue retrieved from embryos pre-treated with CpG ODN. It is expected that understanding of the innate immune modulation of target tissues by the virus and innate immune stimulants will be helpful in identification of valuable targets for development of novel, safe, effective and economical control strategies against IBV infection in chickens.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
28 |
17
|
Loughrey BV, McGinty A, Young IS, McCance DR, Powell LA. Increased circulating CC chemokine levels in the metabolic syndrome are reduced by low-dose atorvastatin treatment: evidence from a randomized controlled trial. Clin Endocrinol (Oxf) 2013; 79:800-6. [PMID: 23170936 DOI: 10.1111/cen.12113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 09/18/2012] [Accepted: 11/19/2012] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Central obesity and insulin resistance are key components of the metabolic syndrome, which is associated with an increased risk of cardiovascular disease. In obesity, CC chemokines, such as monocyte chemotactic protein-1 (MCP-1), macrophage inhibitory protein-1β (MIP-1β) and eotaxin-1 and their respective receptors, are critically involved in peripheral monocyte activation and adipose tissue infiltration. The aim of the current study was to examine whether low-dose atorvastatin (10 mg/d) treatment modulated serum levels of CC chemokines in metabolic syndrome subjects. MATERIALS AND METHODS Serum levels of MCP-1, eotaxin-1, MIP-1β, C reactive protein (CRP) and interleukin-6 (IL-6) were measured in lean control and metabolic syndrome subjects at baseline, and following a 6-week randomized placebo-controlled clinical trial of atorvastatin (10 mg/d). Peripheral CD14(+) monocytes were isolated and mRNA levels of MCP-1, MIP-1 β and CCR5 determined. RESULTS Serum MCP-1 (P = 0·02), eotaxin-1 (P = 0·02) and MIP-1β (P = 0·03), CRP (P < 0·001) and IL-6 (P = 0·006) were significantly increased in metabolic syndrome in comparison with lean controls. Furthermore, CD14(+) peripheral monocyte mRNA expression of the chemokine receptor, CCR5, of which MIP-1β and eotaxin-1 are ligands, was increased two-fold in the metabolic syndrome group (P = 0·03). In addition to the expected improvements in lipid profile, atorvastatin treatment significantly reduced circulating eotaxin-1 (P < 0·05), MIP-1β (P < 0·05) levels and CD14(+) peripheral monocyte CCR5 mRNA expression (P = 0·02). CONCLUSION These results support a model whereby atorvastatin treatment, by inhibiting CD14(+) monocyte CCR5 expression, may inhibit monocyte trafficking, reduce chronic inflammation and, thus, lower circulating levels of CC chemokines.
Collapse
|
Randomized Controlled Trial |
12 |
26 |
18
|
Sung PS, Hong SH, Lee J, Park SH, Yoon SK, Chung WJ, Shin EC. CXCL10 is produced in hepatitis A virus-infected cells in an IRF3-dependent but IFN-independent manner. Sci Rep 2017; 7:6387. [PMID: 28744018 PMCID: PMC5527116 DOI: 10.1038/s41598-017-06784-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 06/19/2017] [Indexed: 01/26/2023] Open
Abstract
Acute hepatitis A caused by hepatitis A virus (HAV) infection is accompanied by severe liver injury in adult patients, and the liver injury is associated with the production of chemokines. Herein, we investigated the mechanism of how HAV infection induces the production of CXCR3 and CCR5 chemokines, such as CXCL10, CCL4 and CCL5. The production of CXCL10, CCL4 and CCL5 was markedly increased by HAV (HM-175/18f) infection in the culture of primary human hepatocytes and HepG2 cells. In particular, CXCL10 was produced in HAV-infected cells, not in neighboring uninfected cells. Moreover, these chemokines were significantly increased in the sera of acute hepatitis A patients. The production of IFN-λs was also robustly induced by HAV infection, and the blocking of secreted IFN-λs partially abrogated the production of CCL4 and CCL5 in HAV-infected cells. However, CXCL10 production was not decreased by the blocking of IFN-λs. Instead, CXCL10 production was reduced by silencing the expression of RIG-I-like receptor (RLR) signal molecules, such as mitochondrial antiviral signaling protein and interferon regulatory factor 3, in HAV-infected cells. In conclusion, HAV infection strongly induces the production of helper 1 T cell-associated chemokines, particularly CXCL10 via RLR signaling, even without secreted IFNs.
Collapse
|
research-article |
8 |
25 |
19
|
Yang DW, Qian GB, Jiang MJ, Wang P, Wang KZ. Inhibition of microRNA-495 suppresses chondrocyte apoptosis through activation of the NF-κB signaling pathway by regulating CCL4 in osteoarthritis. Gene Ther 2019; 26:217-229. [PMID: 30940879 DOI: 10.1038/s41434-019-0068-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
As a common form of arthritis, osteoarthritis (OA) represents a degenerative disease, characterized by articular cartilage damage and synovium inflammation. Recently, the role of various microRNAs (miRs) and their specific expression in OA has been highlighted. Therefore, the aim of the current study was to elucidate the role by which miR-495 and chemokine ligand 4 (CCL4) influence the development and progression of OA. OA mice models were established, after which the CCL4 and collagen levels as well as cell apoptosis were determined in cartilage tissue of OA mice. The chondrocytes of the OA mice models were subsequently treated with a series of miR-495 mimic, inhibitor, and siRNA against CCL4. Afterwards, miR-495 expressions as well as the levels of CCL4, p50, p65, and IkBa and the extent of IkBa phosphorylation in addition to the luciferase activity of NF-kB were measured accordingly. Finally, cell apoptosis and cell cycle distribution were detected. miR-495 was highly expressed while NF-κB, CCL4, and collagen II were poorly expressed. Cell apoptosis was elevated in the cartilage tissue of the OA mice. CCL4 was a potential target gene of miR-495. Downregulation of miR-495 led to accelerated chondrocyte proliferation accompanied by diminished cell apoptosis among the OA mice. Taken together, the results of the current study demonstrated that inhibition of miR-495 suppressed chondrocyte apoptosis and promoted its proliferation through activation of the NF-κB signaling pathway by up-regulation of CCL4 in OA.
Collapse
|
Retracted Publication |
6 |
24 |
20
|
Liu M, Yan M, He J, Lv H, Chen Z, Peng L, Cai W, Yao F, Chen C, Shi L, Zhang K, Zhang X, Wang DW, Wang L, Zhu Y, Ai D. Macrophage MST1/2 Disruption Impairs Post-Infarction Cardiac Repair via LTB4. Circ Res 2021; 129:909-926. [PMID: 34515499 DOI: 10.1161/circresaha.121.319687] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Chemokine CCL4/genetics
- Chemokine CCL4/metabolism
- Chemokine CXCL2/metabolism
- Female
- Leukotriene B4/metabolism
- Lipoxygenase/metabolism
- Macrophages/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Myocardial Infarction/metabolism
- Myocardium/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Leukotriene B4/antagonists & inhibitors
- Receptors, Leukotriene B4/metabolism
- Serine-Threonine Kinase 3/genetics
- Serine-Threonine Kinase 3/metabolism
Collapse
|
|
4 |
22 |
21
|
Tundup S, Srivastava L, Norberg T, Watford W, Harn D. A Neoglycoconjugate Containing the Human Milk Sugar LNFPIII Drives Anti-Inflammatory Activation of Antigen Presenting Cells in a CD14 Dependent Pathway. PLoS One 2015; 10:e0137495. [PMID: 26340260 PMCID: PMC4560409 DOI: 10.1371/journal.pone.0137495] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/18/2015] [Indexed: 12/21/2022] Open
Abstract
The milk pentasaccharide LNFPIII has therapeutic action for metabolic and autoimmune diseases and prolongs transplant survival in mice when presented as a neoglycoconjugate. Within LNFPIII is the Lewisx trisaccharide, expressed by many helminth parasites. In humans, LNFPIII is found in human milk and also known as stage-specific embryonic antigen-1. LNFPIII-NGC drives alternative activation of macrophages and dendritic cells via NFκB activation in a TLR4 dependent mechanism. However, the connection between LNFPIII-NGC activation of APCs, TLR4 signaling and subsequent MAP kinase signaling leading to anti-inflammatory activation of APCs remains unknown. In this study we determined that the innate receptor CD14 was essential for LNFPIII-NGC induction of both ERK and NFkB activation in APCs. Induction of ERK activation by LNFPIII-NGC was completely dependent on CD14/TLR4-Ras-Raf1/TPL2-MEK axis in bone marrow derived dendritic cells (BMDCs). In addition, LNFPIII-NGC preferentially induced the production of Th2 “favoring” chemokines CCL22 and matrix metalloprotease protein-9 in a CD14 dependent manner in BMDCs. In contrast, LNFPIII-NGC induces significantly lower levels of Th1 “favoring” chemokines, MIP1α, MIP1β and MIP-2 compared to levels in LPS stimulated cells. Interestingly, NGC of the identical human milk sugar LNnT, minus the alpha 1–3 linked fucose, failed to activate APCs via TLR4/MD2/CD14 receptor complex, suggesting that the alpha 1–3 linked fucose in LNFPIII and not on LNnT, is required for this process. Using specific chemical inhibitors of the MAPK pathway, we found that LNFPIII-NGC induction of CCL22, MMP9 and IL-10 production was dependent on ERK activation. Over all, this study suggests that LNFPIII-NGC utilizes CD14/TLR4-MAPK (ERK) axis in modulating APC activation to produce anti-inflammatory chemokines and cytokines in a manner distinct from that seen for the pro-inflammatory PAMP LPS. These pathways may explain the in vivo therapeutic effect of LNFPIII-NGC treatment for inflammation based diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
21 |
22
|
Covell DG, Wallqvist A, Kenney S, Vistica DT. Bioinformatic analysis of patient-derived ASPS gene expressions and ASPL-TFE3 fusion transcript levels identify potential therapeutic targets. PLoS One 2012; 7:e48023. [PMID: 23226201 PMCID: PMC3511488 DOI: 10.1371/journal.pone.0048023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/21/2012] [Indexed: 12/20/2022] Open
Abstract
Gene expression data, collected from ASPS tumors of seven different patients and from one immortalized ASPS cell line (ASPS-1), was analyzed jointly with patient ASPL-TFE3 (t(X;17)(p11;q25)) fusion transcript data to identify disease-specific pathways and their component genes. Data analysis of the pooled patient and ASPS-1 gene expression data, using conventional clustering methods, revealed a relatively small set of pathways and genes characterizing the biology of ASPS. These results could be largely recapitulated using only the gene expression data collected from patient tumor samples. The concordance between expression measures derived from ASPS-1 and both pooled and individual patient tumor data provided a rationale for extending the analysis to include patient ASPL-TFE3 fusion transcript data. A novel linear model was exploited to link gene expressions to fusion transcript data and used to identify a small set of ASPS-specific pathways and their gene expression. Cellular pathways that appear aberrantly regulated in response to the t(X;17)(p11;q25) translocation include the cell cycle and cell adhesion. The identification of pathways and gene subsets characteristic of ASPS support current therapeutic strategies that target the FLT1 and MET, while also proposing additional targeting of genes found in pathways involved in the cell cycle (CHK1), cell adhesion (ARHGD1A), cell division (CDC6), control of meiosis (RAD51L3) and mitosis (BIRC5), and chemokine-related protein tyrosine kinase activity (CCL4).
Collapse
|
Journal Article |
13 |
19 |
23
|
Parekh NJ, Krouse TE, Reider IE, Hobbs RP, Ward BM, Norbury CC. Type I interferon-dependent CCL4 is induced by a cGAS/STING pathway that bypasses viral inhibition and protects infected tissue, independent of viral burden. PLoS Pathog 2019; 15:e1007778. [PMID: 31603920 PMCID: PMC6808495 DOI: 10.1371/journal.ppat.1007778] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/23/2019] [Accepted: 09/16/2019] [Indexed: 11/18/2022] Open
Abstract
Type I interferons (T1-IFN) are critical in the innate immune response, acting upon infected and uninfected cells to initiate an antiviral state by expressing genes that inhibit multiple stages of the lifecycle of many viruses. T1-IFN triggers the production of Interferon-Stimulated Genes (ISGs), activating an antiviral program that reduces virus replication. The importance of the T1-IFN response is highlighted by the evolution of viral evasion strategies to inhibit the production or action of T1-IFN in virus-infected cells. T1-IFN is produced via activation of pathogen sensors within infected cells, a process that is targeted by virus-encoded immunomodulatory molecules. This is probably best exemplified by the prototypic poxvirus, Vaccinia virus (VACV), which uses at least 6 different mechanisms to completely block the production of T1-IFN within infected cells in vitro. Yet, mice lacking aspects of T1-IFN signaling are often more susceptible to infection with many viruses, including VACV, than wild-type mice. How can these opposing findings be rationalized? The cytosolic DNA sensor cGAS has been implicated in immunity to VACV, but has yet to be linked to the production of T1-IFN in response to VACV infection. Indeed, there are two VACV-encoded proteins that effectively prevent cGAS-mediated activation of T1-IFN. We find that the majority of VACV-infected cells in vivo do not produce T1-IFN, but that a small subset of VACV-infected cells in vivo utilize cGAS to sense VACV and produce T1-IFN to protect infected mice. The protective effect of T1-IFN is not mediated via ISG-mediated control of virus replication. Rather, T1-IFN drives increased expression of CCL4, which recruits inflammatory monocytes that constrain the VACV lesion in a virus replication-independent manner by limiting spread within the tissue. Our findings have broad implications in our understanding of pathogen detection and viral evasion in vivo, and highlight a novel immune strategy to protect infected tissue.
Collapse
|
research-article |
6 |
17 |
24
|
Jones GT, Phillips LV, Williams MJA, van Rij AM, Kabir TD. Two C-C Family Chemokines, Eotaxin and RANTES, Are Novel Independent Plasma Biomarkers for Abdominal Aortic Aneurysm. J Am Heart Assoc 2016; 5:e002993. [PMID: 27126477 PMCID: PMC4889176 DOI: 10.1161/jaha.115.002993] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/12/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND Inflammation of the aortic wall is recognised as a key pathogenesis of abdominal aortic aneurysm (AAA). This study was undertaken to determine whether inflammatory cytokines could be used as biomarkers for the presence of AAA. METHODS AND RESULTS Tissue profiles of 27 inflammatory cytokine were examined in AAA (n=14) and nonaneurysmal (n=14) aortic tissues. Three cytokines, regulated upon activation normally T-cell expressed and secreted (RANTES), eotaxin, and macrophage inflammatory protein 1 beta (MIP-1b), had increased expression in AAA, particularly within the adventitial layer of the aortic wall. Basic fibroblast growth factor (bFGF) had reduced expression in all layers of the AAA wall. Examination of the circulating plasma profiles of AAA (n=442) and AAA-free controls (n=970) suggested a (risk factor adjusted) AAA-association with eotaxin, RANTES, and high sensitivity C-reactive protein (hsCRP). A plasma inflammatory cytokine score, calculated using these three markers, suggested a strong risk association with AAA (odds ratio, 4.8; 95% CI, 3.5-6.7; P<0.0001), independent of age, sex, history of ischemic heart disease, and smoking. CONCLUSIONS Contrary to reports suggesting a distinct T helper 2-associated inflammatory profile in AAA, this current study suggests a more-generalized pattern of inflammation, albeit with some potentially distinct features, including elevated plasma eotaxin and decreased plasma RANTES. In combination with hsCRP, these markers may have potential utility as AAA biomarkers.
Collapse
|
research-article |
9 |
17 |
25
|
Yang F, Bai Y, Jiang Y. Effects of Apelin on RAW264.7 cells under both normal and hypoxic conditions. Peptides 2015; 69:133-43. [PMID: 25963277 DOI: 10.1016/j.peptides.2015.04.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/22/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
Macrophages are an important source of pro-inflammatory and pro-angiogenic factors, which can promote pathological processes involving inflammation and angiogenesis. This study investigated the effects of Apelin on macrophages under both normal and hypoxic conditions. Under normal culture conditions, Apelin down-regulated the mRNA expression levels of monocyte chemotactic protein 1 (MCP1), monocyte chemotactic protein 3 (MCP3), macrophage inflammatory protein 1 (MIP1α, MIP1β), vascular endothelial growth factor A (VEGFA), Angiopoietin 2 (Ang2) and tumor necrosis factor α (TNFα). The supernatant concentrations of MCP1, MCP3, MIP1α, MIP1β, macrophage inflammatory protein 2 (MIP2) and TNFα proteins were significantly decreased in the Apelin treated group. Hypoxia induced profound up-regulations of the angiogenic, chemokine, and inflammatory factors at both the mRNA and protein levels. Apelin suppressed the hypoxia-induced increases in MCP1, MCP3, MIP2, MIP1β and TNFα expression. The underlying mechanism of Apelin inhibit inflammation is regulating NF-κB/JNK signal pathway. Additionally, Apelin can protect macrophages from apoptosis and can enhance cell migration during hypoxia. And cleaved Caspase9/3 pathways were involved in Apelin inhibiting RAW264.7 apoptosis. In conclusion, we showed the effect of Apelin on RAW264.7 macrophage under normal and hypoxic condition, which could further influence the angiogenesis and inflammation process that promoted by macrophages.
Collapse
|
|
10 |
17 |