1
|
DeMarini DJ, Adams AE, Fares H, De Virgilio C, Valle G, Chuang JS, Pringle JR. A septin-based hierarchy of proteins required for localized deposition of chitin in the Saccharomyces cerevisiae cell wall. J Cell Biol 1997; 139:75-93. [PMID: 9314530 PMCID: PMC2139831 DOI: 10.1083/jcb.139.1.75] [Citation(s) in RCA: 258] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/1997] [Revised: 06/17/1997] [Indexed: 02/05/2023] Open
Abstract
Just before bud emergence, a Saccharomyces cerevisiae cell forms a ring of chitin in its cell wall; this ring remains at the base of the bud as the bud grows and ultimately forms part of the bud scar marking the division site on the mother cell. The chitin ring seems to be formed largely or entirely by chitin synthase III, one of the three known chitin synthases in S. cerevisiae. The chitin ring does not form normally in temperature-sensitive mutants defective in any of four septins, a family of proteins that are constituents of the "neck filaments" that lie immediately subjacent to the plasma membrane in the mother-bud neck. In addition, a synthetic-lethal interaction was found between cdc12-5, a temperature-sensitive septin mutation, and a mutant allele of CHS4, which encodes an activator of chitin synthase III. Two-hybrid analysis revealed no direct interaction between the septins and Chs4p but identified a novel gene, BNI4, whose product interacts both with Chs4p and Cdc10p and with one of the septins, Cdc10p; this analysis also revealed an interaction between Chs4p and Chs3p, the catalytic subunit of chitin synthase III. Bni4p has no known homologues; it contains a predicted coiled-coil domain, but no other recognizable motifs. Deletion of BNI4 is not lethal, but causes delocalization of chitin deposition and aberrant cellular morphology. Overexpression of Bni4p also causes delocalization of chitin deposition and produces a cellular morphology similar to that of septin mutants. Immunolocalization experiments show that Bni4p localizes to a ring at the mother-bud neck that lies predominantly on the mother-cell side (corresponding to the predominant site of chitin deposition). This localization depends on the septins but not on Chs4p or Chs3p. A GFP-Chs4p fusion protein also localizes to a ring at the mother-bud neck on the mother-cell side. This localization is dependent on the septins, Bni4p, and Chs3p. Chs3p, whose normal localization is similar to that of Chs4p, does not localize properly in bni4, chs4, or septin mutant strains or in strains that accumulate excess Bni4p. In contrast, localization of the septins is essentially normal in bni4, chs4, and chs3 mutant strains and in strains that accumulate excess Bni4p. Taken together, these results suggest that the normal localization of chitin synthase III activity is achieved by assembly of a complex in which Chs3p is linked to the septins via Chs4p and Bni4p.
Collapse
|
research-article |
28 |
258 |
2
|
Devine WP, Lubarsky B, Shaw K, Luschnig S, Messina L, Krasnow MA. Requirement for chitin biosynthesis in epithelial tube morphogenesis. Proc Natl Acad Sci U S A 2005; 102:17014-9. [PMID: 16287975 PMCID: PMC1283532 DOI: 10.1073/pnas.0506676102] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many organs are composed of branched networks of epithelial tubes that transport vital fluids or gases. The proper size and shape of tubes are crucial for their transport function, but the molecular processes that govern tube size and shape are not well understood. Here we show that three genes required for tracheal tube morphogenesis in Drosophila melanogaster encode proteins involved in the synthesis and accumulation of chitin, a polymer of N-acetyl-beta-D-glucosamine that serves as a scaffold in the rigid extracellular matrix of insect cuticle. In all three mutants, developing tracheal tubes bud and extend normally, but the epithelial walls of the tubes do not expand uniformly, and the resultant tubes are grossly misshapen, with constricted and distended regions all along their lengths. The genes are expressed in tracheal cells during the expansion process, and chitin accumulates in the lumen of tubes, forming an expanding cylinder that we propose coordinates the behavior of the surrounding tracheal cells and stabilizes the expanding epithelium. These findings show that chitin regulates epithelial tube morphogenesis, in addition to its classical role protecting mature epithelia.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
117 |
3
|
Specht CA, Liu Y, Robbins PW, Bulawa CE, Iartchouk N, Winter KR, Riggle PJ, Rhodes JC, Dodge CL, Culp DW, Borgia PT. The chsD and chsE genes of Aspergillus nidulans and their roles in chitin synthesis. Fungal Genet Biol 1996; 20:153-67. [PMID: 8810520 DOI: 10.1006/fgbi.1996.0030] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Two chitin synthase genes, chsD and chsE, were identified from the filamentous ascomycete Aspergillus nidulans. In a region that is conserved among chitin synthases, the deduced amino acid sequences of chsD and chsE have greater sequence identity to the polypeptides encoded by the Saccharomyces cerevisiae CHS3 gene (also named CSD2, CAL1, DIT101, and KTI1) and the Candida albicans CHSE gene than to other chitin synthases. chsE is more closely related to the CHS3 genes, and this group constitutes the class IV chitin synthases. chsD differs sufficiently from the other classes of fungal chitin synthase genes to constitute a new class, class V. Each of the wild-type A. nidulans genes was replaced by a copy that had a substantial fraction of its coding region replaced by the A. nidulans argB gene. Hyphae from both chsD and chsE disruptants contain about 60-70% of the chitin content of wild-type hyphae. The morphology and development of chsE disruptants are indistinguishable from those of wild type. Nearly all of the conidia of chsD disruption strains swell excessively and lyse when germinated in low osmotic strength medium. Conidia that do not lyse produce hyphae that initially have normal morphology but subsequently lyse at subapical locations and show ballooned walls along their length. The lysis of germinating conidia and hyphae of chsD disruptants is prevented by the presence of osmotic stabilizers in the medium. Conidiophore vesicles from chsD disruption strains frequently swell excessively and lyse, resulting in colonies that show reduced conidiation. These properties indicate that chitin synthesized by the chsD-encoded isozyme contributes to the rigidity of the walls of germinating conidia, of the subapical region of hyphae, and of conidiophore vesicles, but is not necessary for normal morphology of these cells. The phenotypes of chsD and chsE disruptants indicate that the chitin synthesized by each isozyme serves a distinct function. The propensity of a chsD disruptant for osmotically induced lysis was compared to that of strains carrying two other mutations (tsE6 and orlA::trpC) which also result in reduced chitin content vegetative cell lysis. The concentration of osmotic stabilizer necessary to remedy the lysis of strains carrying the three mutations is inversely related to the chitin content of each strain. This finding directly demonstrates the importance of chitin to the integrity of the cell wall and indicates that agents that inhibit the chsD-encoded chitin synthase could be useful anti-Aspergillus drugs.
Collapse
|
|
29 |
108 |
4
|
Yarden O, Yanofsky C. Chitin synthase 1 plays a major role in cell wall biogenesis in Neurospora crassa. Genes Dev 1991; 5:2420-30. [PMID: 1836444 DOI: 10.1101/gad.5.12b.2420] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In filamentous fungi, chitin is a structural component of morphologically distinct structures assembled during various phases of growth and development. To investigate the role of chitin synthase in cell wall biogenesis in Neurospora crassa, we cloned a chitin synthase structural gene and examined the consequences of its inactivation. Using degenerate oligonucleotide mixtures designed on the basis of conserved sequences of the Saccharomyces cerevisiae CHS1 and CHS2 polypeptides, a DNA fragment encoding a similar predicted amino acid sequence was amplified from N. crassa genomic DNA. This product was used to probe N. crassa libraries for a gene homologous to one of the yeast genes. Full-length genomic and partial cDNA clones were identified, isolated, and sequenced. The amino acid sequence deduced from a cloned 3.4-kb gene [designated chitin synthase 1 (chs-1)] was very similar to that of the S. cerevisiae CHS1 and CHS2 and the Candida albicans CHS1 polypeptides. Inactivation of the N. crassa chs-1 gene by repeat-induced point mutation produced slow-growing progeny that formed hyphae with morphologic abnormalities. The chs-1RIP phenotype was correlated with a significant reduction in chitin synthase activity. Calcofluor staining of the chs-1RIP strain cross-walls, residual chitin synthase activity, and the increased sensitivity of the chs-1RIP strain to Nikkomycin Z suggest that N. crassa produces additional chitin synthase that can participate in cell wall formation.
Collapse
|
|
34 |
104 |
5
|
Werner S, Sugui JA, Steinberg G, Deising HB. A chitin synthase with a myosin-like motor domain is essential for hyphal growth, appressorium differentiation, and pathogenicity of the maize anthracnose fungus Colletotrichum graminicola. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1555-1567. [PMID: 17990963 DOI: 10.1094/mpmi-20-12-1555] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Chitin synthesis contributes to cell wall biogenesis and is essential for invasion of solid substrata and pathogenicity of filamentous fungi. In contrast to yeasts, filamentous fungi contain up to 10 chitin synthases (CHS), which might reflect overlapping functions and indicate their complex lifestyle. Previous studies have shown that a class VI CHS of the maize anthracnose fungus Colletotrichum graminicola is essential for cell wall synthesis of conidia and vegetative hyphae. Here, we report on cloning and characterization of three additional CHS genes, CgChsI, CgChsIII, and CgChsV, encoding class I, III, and V CHS, respectively. All CHS genes are expressed during vegetative and pathogenic development. DeltaCgChsI and DeltaCgChsIII mutants did not differ significantly from the wild-type isolate with respect to hyphal growth and pathogenicity. In contrast, null mutants in the CgChsV gene, which encodes a CHS with an N-terminal myosin-like motor domain, are strongly impaired in vegetative growth and pathogenicity. Even in osmotically stabilized media, vegetative hyphae of DeltaCgChsV mutants exhibited large balloon-like swellings, appressorial walls appeared to disintegrate during maturation, and infection cells were nonfunctional. Surprisingly, DeltaCgChsV mutants were able to form dome-shaped hyphopodia that exerted force and showed host cell wall penetration rates comparable with the wild type. However, infection hyphae that formed within the plant cells exhibited severe swellings and were not able to proceed with plant colonization efficiently. Consequently, DeltaCgChsV mutants did not develop macroscopically visible anthracnose disease symptoms and, thus, were nonpathogenic.
Collapse
|
|
18 |
89 |
6
|
Hagen S, Marx F, Ram AF, Meyer V. The antifungal protein AFP from Aspergillus giganteus inhibits chitin synthesis in sensitive fungi. Appl Environ Microbiol 2007; 73:2128-34. [PMID: 17277210 PMCID: PMC1855660 DOI: 10.1128/aem.02497-06] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antifungal protein AFP from Aspergillus giganteus is highly effective in restricting the growth of major human- and plant-pathogenic filamentous fungi. However, a fundamental prerequisite for the use of AFP as an antifungal drug is a complete understanding of its mode of action. In this study, we performed several analyses focusing on the assumption that the chitin biosynthesis of sensitive fungi is targeted by AFP. Here we show that the N-terminal domain of AFP (amino acids 1 to 33) is sufficient for efficient binding of AFP to chitin but is not adequate for inhibition of the growth of sensitive fungi. AFP susceptibility tests and SYTOX Green uptake experiments with class III and class V chitin synthase mutants of Fusarium oxysporum and Aspergillus oryzae showed that deletions made the fungi less sensitive to AFP and its membrane permeabilization effect. In situ chitin synthase activity assays revealed that chitin synthesis is specifically inhibited by AFP in sensitive fungi, indicating that AFP causes cell wall stress and disturbs cell integrity. Further evidence that there was AFP-induced cell wall stress was obtained by using an Aspergillus niger reporter strain in which the cell wall integrity pathway was strongly induced by AFP.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
77 |
7
|
Aufauvre-Brown A, Mellado E, Gow NA, Holden DW. Aspergillus fumigatus chsE: a gene related to CHS3 of Saccharomyces cerevisiae and important for hyphal growth and conidiophore development but not pathogenicity. Fungal Genet Biol 1997; 21:141-52. [PMID: 9126623 DOI: 10.1006/fgbi.1997.0959] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Aspergillus fumigatus chsE (AfchsE) gene was isolated from an A. fumigatus DNA library on the basis of hybridization to a segment of Saccharomyces cerevisiae CHS3 (ScCHS3). The amino acid sequence derived from AfchsE is 28% identical with ScCHS3 and 80% identical with the product of Aspergillus nidulans chsD (AnchsD). A mutant strain constructed by disruption of AfchsE has reduced levels of mycelial chitin, periodic swellings along the length of hyphae, and a block in conidiation that can be partially restored by growth in osmotic stabilizer. This phenotype is different from that reported for an AnchsD mutant, in which germinating conidia and hyphal tips undergo lysis and the colonial growth rate is significantly reduced. Despite the defects associated with the AfchsE- strain, its virulence was not significantly reduced when compared with the wild-type parental strain in a mouse model of pulmonary aspergillosis.
Collapse
|
|
28 |
74 |
8
|
Liu H, Kauffman S, Becker JM, Szaniszlo PJ. Wangiella (Exophiala) dermatitidis WdChs5p, a class V chitin synthase, is essential for sustained cell growth at temperature of infection. EUKARYOTIC CELL 2004; 3:40-51. [PMID: 14871935 PMCID: PMC329517 DOI: 10.1128/ec.3.1.40-51.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chitin synthase structural gene WdCHS5 was isolated from the black fungal pathogen of humans Wangiella dermatitidis. Sequence analysis revealed that the gene has a myosin motor-like-encoding region at its 5' end and a chitin synthase (class V)-encoding region at its 3' end. Northern blotting showed that WdCHS5 is expressed at high levels under conditions of stress. Analysis of the 5' upstream region of WdCHS5 fused to a reporter gene indicated that one or more of the potential regulatory elements present may have contributed to the high expression levels. Disruption of WdCHS5 produced mutants that grow normally at 25 degrees C but have severe growth and cellular abnormalities at 37 degrees C. Osmotic stabilizers, such as sorbitol and sucrose, rescued the wild-type phenotype, which indicated that the loss of WdChs5p causes cell wall integrity defects. Animal survival tests with a mouse model of acute infection showed that all wdchs5Delta mutants are less virulent than the parental strain. Reintroduction of the WdCHS5 gene into the wdchs5Delta mutants abolished the temperature-sensitive phenotype and reestablished their virulence. We conclude that the product of WdCHS5 is required for the sustained growth of W. dermatitidis at 37 degrees C and is of critical importance to its virulence.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
65 |
9
|
Sanchatjate S, Schekman R. Chs5/6 complex: a multiprotein complex that interacts with and conveys chitin synthase III from the trans-Golgi network to the cell surface. Mol Biol Cell 2006; 17:4157-66. [PMID: 16855022 PMCID: PMC1635352 DOI: 10.1091/mbc.e06-03-0210] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Saccharomyces cerevisiae, the polysaccharide chitin is deposited at the mother bud junction by an integral membrane enzyme, chitin synthase 3 (Chs3p). The traffic of Chs3p to the cell surface from the trans-Golgi network (TGN) depends on two proteins, Chs5p and Chs6p, which sort selected cargo proteins into secretory vesicles. We have found that Chs5p forms a large higher-order complex of around 1 MDa with Chs6p and three Chs6 paralogs: Bch1p, Bud7p, and Bch2p. The Chs5/6 complex transiently interacts with its cargo, Chs3p, and the presence of Chs3p in the complex is dependent on every subunit. Chs5p and Chs6p have unique and crucial roles in Chs3p transport because either a chs5delta or chs6delta mutant drastically reduces the level of Chs3p bound to the remaining subunits of the complex. Bch1p and Bud7p appear to have a redundant function in Chs3p transport because deletion of both is necessary to displace Chs3p from the complex. The role of Bch2p in Chs3p binding is the least important. Chs5p is essential for structural integrity of the Chs5/6 complex and may act as a scaffold through which the other subunits assemble. Our results suggest a model of protein sorting at the TGN that involves a peripheral, possibly coat, complex that includes multiple related copies of a specificity determining subunit.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
64 |
10
|
Parry JM, Velarde NV, Lefkovith AJ, Zegarek MH, Hang JS, Ohm J, Klancer R, Maruyama R, Druzhinina MK, Grant BD, Piano F, Singson A. EGG-4 and EGG-5 Link Events of the Oocyte-to-Embryo Transition with Meiotic Progression in C. elegans. Curr Biol 2010; 19:1752-7. [PMID: 19879147 DOI: 10.1016/j.cub.2009.09.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 11/19/2022]
Abstract
The molecular underpinnings of the oocyte-to-embryo transition are poorly understood. Here we show that two protein tyrosine phosphatase-like (PTPL) family proteins, EGG-4 and EGG-5, are required for key events of the oocyte-to-embryo transition in Caenorhabditis elegans. The predicted EGG-4 and EGG-5 amino acid sequences are 99% identical and their functions are redundant. In embryos lacking EGG-4 and EGG-5, we observe defects in meiosis, polar body formation, the block to polyspermy, F-actin dynamics, and eggshell deposition. During oogenesis, EGG-4 and EGG-5 assemble at the oocyte cortex with the previously identified regulators or effectors of the oocyte-to-embryo transition EGG-3, CHS-1, and MBK-2 [1, 2]. All of these molecules share a complex interdependence with regards to their dynamics and subcellular localization. Shortly after fertilization, EGG-4 and EGG-5 are required to properly coordinate a redistribution of CHS-1 and EGG-3 away from the cortex during meiotic anaphase I. Therefore, EGG-4 and EGG-5 are not only required for critical events of the oocyte-to-embryo transition but also link the dynamics of the regulatory machinery with the advancing cell cycle.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
62 |
11
|
Martín-Udíroz M, Madrid MP, Roncero MIG. Role of chitin synthase genes in Fusarium oxysporum. MICROBIOLOGY-SGM 2005; 150:3175-87. [PMID: 15470098 DOI: 10.1099/mic.0.27236-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Three structural chitin synthase genes, chs1, chs2 and chs3, were identified in the genome of Fusarium oxysporum f. sp. lycopersici, a soilborne pathogen causing vascular wilt disease in tomato plants. Based on amino acid identities with related fungal species, chs1, chs2 and chs3 encode structural chitin synthases (CSs) of class I, class II and class III, respectively. A gene (chs7) encoding a chaperone-like protein was identified by comparison of the deduced protein with Chs7p from Saccharomyces cerevisiae, an endoplasmic reticulum (ER) protein required for the export of ScChs3p (class IV) from the ER. So far no CS gene belonging to class IV has been isolated from F. oxysporum, although it probably contains more than one gene of this class, based on the genome data of the closely related species Fusarium graminearum. F. oxysporum chs1-, chs2- and chs7-deficient mutants were constructed through targeted gene disruption by homologous recombination. No compensatory mechanism seems to exist between the CS genes studied, since chitin content determination and expression analysis of the chs genes showed no differences between the disruption mutants and the wild-type strain. By fluorescence microscopy using Calcofluor white and DAPI staining, the wild-type strain and Deltachs2 and Deltachs7 mutants showed similar septation and even nuclear distribution, with each hyphal compartment containing only one nucleus, whereas the Deltachs1 mutant showed compartments containing up to four nuclei. Pathogenicity assays on tomato plants indicated reduced virulence of Deltachs2 and Deltachs7 null mutants. Stress conditions affected normal development in Deltachs2 but not in Deltachs1 or Deltachs7 disruptants, and the three chs-deficient mutants showed increased hyphal hydrophobicity compared to the wild-type strain when grown in sorbitol-containing medium. The chitin synthase mutants will be useful for elucidating cell wall biogenesis in F. oxysporum and the relationship between fungal cell wall integrity and pathogenicity.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
58 |
12
|
Soulié MC, Perino C, Piffeteau A, Choquer M, Malfatti P, Cimerman A, Kunz C, Boccara M, Vidal-Cros A. Botrytis cinerea virulence is drastically reduced after disruption of chitin synthase class III gene (Bcchs3a). Cell Microbiol 2006; 8:1310-21. [PMID: 16882034 DOI: 10.1111/j.1462-5822.2006.00711.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Botrytis cinerea is an important phytopathogenic fungus requiring new methods of control. Chitin biosynthesis, which involves seven classes of chitin synthases, could be an attractive target. A fragment encoding one of the class III enzymes was used to disrupt the corresponding Bcchs3a gene in the B. cinerea genome. The resulting mutant exhibited a 39% reduction in its chitin content and an 89% reduction in its in vitro chitin synthase activity, compared with the wild-type strain. Bcchs3a mutant was not affected in its growth in liquid medium, neither in its production of sclerotia, micro- and macroconidia. In contrast, the mutant Bcchs3a was severely impaired in its growth on solid medium. Counterbalancing this defect in radial growth, Bcchs3a mutant presented a large increase in hyphal ramification, resulting in an enhanced aerial growth. Observations by different techniques of microscopy revealed a thick extracellular matrix around the hyphal tips. Moreover, Bcchs3a mutant had a largely reduced virulence on Vitis vinifera and Arabidopsis thaliana leaves.
Collapse
|
Journal Article |
19 |
58 |
13
|
Soulié MC, Piffeteau A, Choquer M, Boccara M, Vidal-Cros A. Disruption of Botrytis cinerea class I chitin synthase gene Bcchs1 results in cell wall weakening and reduced virulence. Fungal Genet Biol 2003; 40:38-46. [PMID: 12948512 DOI: 10.1016/s1087-1845(03)00065-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To get a better insight into the relationship between cell wall integrity and pathogenicity of the fungus Botrytis cinerea, we have constructed chitin synthase mutants. A 620 bp class I chitin synthase gene fragment (Bcchs1) obtained by PCR amplification was used to disrupt the corresponding gene in the genome. Disruption of Bcchs1 occurred at a frequency of 8%. Nine independent mutants were obtained and the Bcchs1 mutant phenotype compared to that of transformants in which the gene was not disrupted. These disruption mutants were dramatically reduced in their in vitro Mg2+, Mn2+, and Co2+-dependent chitin synthase activity. Chitin content was reduced by 30%, indicating that Bcchs1p contributes substantially to cell wall composition. Enzymatic degradation by a cocktail of glucanases revealed cell wall weakening in the mutant. Bcchs1 was transcribed at a constant level during vegetative exponential growth, suggesting that it was necessary throughout hyphal development. Bcchs1 mutant growth was identical to undisrupted control transformant growth, however, the mutant exhibited reduced pathogenicity on vine leaves. It can be assumed that disruption of Bcchs1 leads to cell wall weakening which might slow down in planta fungal progression.
Collapse
|
|
22 |
58 |
14
|
Lee JI, Yu YM, Rho YM, Park BC, Choi JH, Park HM, Maeng PJ. Differential expression of thechsEgene encoding a chitin synthase ofAspergillus nidulansin response to developmental status and growth conditions. FEMS Microbiol Lett 2005; 249:121-9. [PMID: 16006063 DOI: 10.1016/j.femsle.2005.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 06/03/2005] [Indexed: 11/13/2022] Open
Abstract
Expression of chsE encoding one of the five chitin synthases of Aspergillus nidulans was analyzed. Expression of chsE was moderate in conidiophores, but somewhat weaker in vegetative mycelia. During sexual development, chsE was expressed strongly in young cleistothecia and hülle cells, but little in mature sexual structures. Deletion of chsE caused a significant decrease in the chitin content of the cell wall during early sexual development. Expression of chsE was increased by substituting glucose with lactose or by addition of 0.6M KCl or NaCl, but affected little by substituting glucose with sodium acetate. Consequently, chsE was shown to have a mode of expression distinct from those of the other chitin synthase genes, chsA, chsB and chsC.
Collapse
|
|
20 |
43 |
15
|
Motoyama T, Fujiwara M, Kojima N, Horiuchi H, Ohta A, Takagi M. The Aspergillus nidulans genes chsA and chsD encode chitin synthases which have redundant functions in conidia formation [corrected and republished article originally appeared in Mol Gen Genet 1996 Jun; 251(4):442-50]. MOLECULAR & GENERAL GENETICS : MGG 1997; 253:520-8. [PMID: 9037115 DOI: 10.1007/s004380050353] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We previously isolated three chitin synthase genes (chsA, chsB, and chsC) from Aspergillus nidulans. In the present work, we describe the isolation and characterization of another chitin synthase gene, named chsD, from A. nidulans. Its deduced amino acid sequence shows 56.7% and 55.9% amino acid identity, respectively, with Cal1 of Saccharomyces cerevisiae and Chs3 of Candida albicans. Disruption of chsD caused no defect in cell growth or morphology during the asexual cycle and caused no decrease in chitin content in hyphae. However, double disruption of chsA and chsD caused a remarkable decrease in the efficiency of conidia formation, while double disruption of chsC and chsD caused no defect. Thus it appears that chsA and chsD serve redundant functions in conidia formation.
Collapse
|
Corrected and Republished Article |
28 |
41 |
16
|
Garcerá-Teruel A, Xoconostle-Cázares B, Rosas-Quijano R, Ortiz L, León-Ramírez C, Specht CA, Sentandreu R, Ruiz-Herrera J. Loss of virulence in Ustilago maydis by Umchs6 gene disruption. Res Microbiol 2004; 155:87-97. [PMID: 14990260 DOI: 10.1016/j.resmic.2003.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Accepted: 11/13/2003] [Indexed: 10/26/2022]
Abstract
A gene encoding a sixth chitin synthase (Umchs6, sequence GenBank accession No. ) from the plant pathogenic hemibasidiomycete Ustilago maydis (DC.) Cda. was isolated and characterized. The predicted protein is 1103 amino acids in length with a calculated molecular mass of 123.5 kDa. a2b2 null mutants were obtained by substitution of a central fragment of the Umchs6 gene with the hygromycin resistance cassette, and a1b1 null mutants were obtained by genetic recombination in plants of an a2b2deltach6 and a wild-type a1b1 strain. The mutation had no effect on the dimorphic transition in vitro or on mating, and growth rate of the mutants was only slightly reduced. On the other hand, they displayed important alterations in cell morphology, particularly at the mycelial stage, and in the staining pattern with calcofluor white. Levels of chitin synthase activity in vitro and chitin content were reduced. The most noticeable characteristic of the mutants was their almost complete loss of virulence to maize (Zea mays L.). This was a recessive character. Microscopic observations during the infectious process suggest that chitin synthase 6 activity is very important for growth of the fungus into the plant. Transformation of a2b2deltach6 mutants with an autonomous replicating plasmid carrying the full Umchs6 gene restored their normal morphological phenotype and virulence. These results are evidence that the mutation in the Umchs6 gene was solely responsible for the phenotypic alterations observed.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
38 |
17
|
Motoyama T, Sudoh M, Horiuchi H, Ohta A, Takagi M. Isolation and characterization of two chitin synthase genes of Rhizopus oligosporus. Biosci Biotechnol Biochem 1994; 58:1685-93. [PMID: 7765484 DOI: 10.1271/bbb.58.1685] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two chitin synthase genes (chs1 and chs2) were isolated from Rhizopus oligosporus by plaque hybridization probed with the chitin synthase 2 gene of Saccharomyces cerevisiae. From their deduced amino acid sequences, they were both class II chitin synthases according to the classification proposed by Bowen et al. The expression of these genes was controlled differently in each stage of differentiation. It was suggested that the gene products of chs1 and chs2 function mainly in the hyphae growing stage but not in the late stage of spore formation. When each of these genes was expressed in S. cerevisiae, elevation of chitin synthase activity was observed in both cases.
Collapse
|
|
31 |
24 |
18
|
Sanz M, Castrejón F, Durán A, Roncero C. Saccharomyces cerevisiae Bni4p directs the formation of the chitin ring and also participates in the correct assembly of the septum structure. Microbiology (Reading) 2004; 150:3229-41. [PMID: 15470103 DOI: 10.1099/mic.0.27352-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Saccharomyces cerevisiae cytokinesis is efficiently achieved when a concerted series of events take place at the neck region, leading to septum formation. Here it is shown that Bni4p plays a crucial role in this process. Deltabni4 mutants contain normal amounts of chitin and show normal chitin synthase III (CSIII) activity, but are partially resistant to Calcofluor White (CFW), probably due to the striking pattern of chitin distribution. CFW vital staining shows that chitin is synthesized in daughter cells and that it is also asymmetrically deposited at the mother-side of the neck in large-budded cells. This specific pattern coincides with that of Chs4p and Chs3p proteins. Alternatively, staining of unbudded cultures confirmed that Bni4p directs early chitin ring assembly, but is no longer required for the chitin deposition that occurs late in the cell cycle at cytokinesis. Consequently, this work provides a strategy to genetically discriminate between the absence of chitin synthesis (Deltachs3 mutant) and failure in chitin ring assembly (Deltabni4 mutants). The characterization of double mutants affected in chitin synthesis and primary septum (PS) assembly (Deltamyo1 and Deltachs2) provides evidence for the cooperation of Bni4p in PS formation besides its role in chitin ring assembly. In addition, it is shown that the chitin ring, but not the late deposition of chitin, cooperates in the correct assembly of the actomyosin ring and the PS when the biological function of the septins is compromised. We conclude that Bni4p is not only required for the assembly of the chitin ring, but is also involved in septum architecture and the maintenance of neck integrity.
Collapse
|
|
21 |
24 |
19
|
Ichinomiya M, Horiuchi H, Ohta A. Different functions of the class I and class II chitin synthase genes, chsC and chsA, are revealed by repression of chsB expression in Aspergillus nidulans. Curr Genet 2002; 42:51-8. [PMID: 12420146 DOI: 10.1007/s00294-002-0329-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2002] [Revised: 08/05/2002] [Accepted: 08/12/2002] [Indexed: 11/29/2022]
Abstract
The filamentous fungus, Aspergillus nidulans, genome contains at least five chitin synthase-encoding genes. chsB is essential for normal hyphal growth. chsA and chsC are likely to be cooperatively required for hyphal wall integrity. In this study, we constructed chsA chsB and chsC chsB double mutants, in which chsB expression was under a repressible promoter [ alcA(p)]. While chsA or chsC single mutants did not show obvious growth defects, the chsA chsB and chsC chsB double mutants showed different phenotypes from the chsB single mutant and from each other under alcA(p)-repressing conditions. The chsA chsB double mutant produced fewer aerial hyphae and the chsC chsB double mutant showed reduced cell mass. These observations support the idea that chsA and chsC each play a different role in hyphal morphogenesis. In addition, the chitin contents of these double mutants were higher than those of the chsB single mutant. When chsA was expressed ectopically under the chsB promoter in the chsB mutant, the growth defects caused by chsB repression were not remedied at all, although an increased level of chsA mRNA was observed. Thus, it is suggested that the gene products of chsA and chsB themselves have different functions in hyphal morphogenesis.
Collapse
|
|
23 |
20 |
20
|
Ortiz D, Novick PJ. Ypt32p regulates the translocation of Chs3p from an internal pool to the plasma membrane. Eur J Cell Biol 2005; 85:107-16. [PMID: 16303210 DOI: 10.1016/j.ejcb.2005.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 10/07/2005] [Indexed: 12/30/2022] Open
Abstract
The transport of the chitin synthase III, Chs3p, to the plasma membrane is temporally and spatially regulated. Chs3p is delivered to the plasma membrane at the beginning of the cell cycle, forming chitin rings, and at the end of the cell cycle, forming the primary septum. During the rest of the cell cycle, it is maintained in intracellular compartments, termed chitosomes that share characteristics with the late Golgi and the early endosomes. Chs5p and Chs6p are required for the cell cycle-dependent delivery of Chs3p to the cell surface, but the mechanisms underlying the temporal regulation are still unknown. The Rab proteins, Ypt31/32p, are required for exit of secretory vesicles from the late Golgi and for recycling of proteins between the late Golgi and early endosomes. Either gain of Ypt32p function, by overexpression, or loss-of-function mutations alter the localization of Chs3p-GFP. Moreover, cells overexpressing Ypt32p accumulate chitin at the cell surface independent of Chs5p. Overexpression of Ypt32p also disrupts the localization of the late Golgi protein Sec7. We propose that Ypt31/32p have a role in regulating the delivery of Chs3p to the plasma membrane and deposition of chitin at the cell surface.
Collapse
|
Journal Article |
20 |
19 |
21
|
Martín-García R, Valdivieso MH. The fission yeast Chs2 protein interacts with the type-II myosin Myo3p and is required for the integrity of the actomyosin ring. J Cell Sci 2006; 119:2768-79. [PMID: 16772338 DOI: 10.1242/jcs.02998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Schizosaccharomyces pombe cytokinesis requires the function of a contractile actomyosin ring. Fission yeast Chs2p is a transmembrane protein structurally similar to chitin synthases that lacks such enzymatic activity. Chs2p localisation and assembly into a ring that contracts during division requires the general system for polarised secretion, some components of the actomyosin ring, and an active septation initiation network. Chs2p interacts physically with the type-II myosin Myo3p revealing a physical link between the plasma membrane and the ring. In chs2Delta mutants, actomyosin ring integrity is compromised during the last stages of contraction and it remains longer in the midzone. In synchronous cultures, chs2Delta cells exhibit a delay in septation with respect to the control strain. All these results show that Chs2p participates in the correct functioning of the medial ring.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
18 |
22
|
Chang R, Yeager AR, Finney NS. Probing the mechanism of a fungal glycosyltransferase essential for cell wall biosynthesis. UDP-chitobiose is not a substrate for chitin synthase. Org Biomol Chem 2003; 1:39-41. [PMID: 12929388 DOI: 10.1039/b208953j] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chitin synthase is responsible for the biosynthesis of chitin, an essential component of the fungal cell wall. There is a long-standing question as to whether "processive" transferases such as chitin synthase operate in the same manner as non-processive transferases. The question arises from analysis of the polysaccharide structure--in chitin, for instance, each sugar residue is rotated approximately 180 degrees relative to the preceding sugar in the chain. This requires that the enzyme account for the alternating "up/down" configuration during biosynthesis. An enzyme with a single active site, analogous to the non-processive transferases--would have to accommodate a distorted glycosidic linkage at every other synthetic step. An alternative proposal is that the enzyme might assemble the disaccharide donor, addressing the "up/down" conformational problem prior to polymer synthesis. We present compelling evidence that this latter hypothesis is incorrect.
Collapse
|
|
22 |
18 |
23
|
Qu M, Yang Q. Physiological significance of alternatively spliced exon combinations of the single-copy gene class A chitin synthase in the insect Ostrinia furnacalis (Lepidoptera). INSECT MOLECULAR BIOLOGY 2012; 21:395-404. [PMID: 22607200 DOI: 10.1111/j.1365-2583.2012.01145.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Insect chitin synthase is an essential enzyme involved in chitin biosynthesis in insects. Chitin synthase A (CHSA) is expressed in different insect tissues during different developmental stages. CHSA contains alternative-splicing exons that allow tissue- and development-specific chitin synthesis. Here, we report that OfCHSA from the lepidopteran Ostrinia furnacalis contains two alternative-splicing exons, exons 2a and 2b and exons 19a and 19b. Although four combinations of these exons are theoretically possible, we found that transcripts containing exon 2a were dominant during most developmental stages, including embryonic development, larval-larval moulting, the larval-pupal transition and pupal-adult metamorphosis. Unexpectedly, 2b-containing transcripts were much more responsive to 20-hydroxyecdysone regulation than 2a-containing ones, suggesting that although OfCHSA isoforms encoded by 2b-containing transcripts are normally expressed at very low levels, they play unique roles. Spliced exons 2a and 2b have also been observed in Bombyx mori; therefore, this work provides new insights into the regulation of insect chitin synthase, particularly in lepidopteran insects.
Collapse
|
|
13 |
14 |
24
|
Zheng L, Mendoza L, Wang Z, Liu H, Park C, Kauffman S, Becker JM, Szaniszlo PJ. WdChs1p, a class II chitin synthase, is more responsible than WdChs2p (Class I) for normal yeast reproductive growth in the polymorphic, pathogenic fungus Wangiella (Exophiala) dermatitidis. Arch Microbiol 2006; 185:316-29. [PMID: 16544168 PMCID: PMC1482791 DOI: 10.1007/s00203-006-0101-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 02/18/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
The chitin synthase gene WdCHS1 was isolated from a partial genomic DNA library of the pathogenic polymorphic fungus Wangiella dermatitidis. Sequencing showed that WdCHS1 encoded a class II chitin synthase composed of 988 amino acids. Disruption of WdCHS1 produced strains that were hyperpigmented in rich media, grew as yeast at wild-type rates at both 25 and 37 degrees C and were as virulent as the wild type in a mouse model. However, detailed morphological and cytological studies of the wdchs1Delta mutants showed that yeast cells often failed to separate, tended to be enriched with chitin in septal regions and, sometimes, were enlarged with multiple nuclei, had broader mother cell-daughter bud regions and had other cell wall defects seen considerably less often than in the wild type or wdchs2 Delta strains. Disruption of WdCHS1 and WdCHS2 in the same background revealed that WdChs1p had functions synergistic to those of WdChs2p, because mutants devoid of both isozymes produced growth that was very abnormal at 25 degrees C and was not viable at 37 degrees C unless osmotically stabilized. These results suggested that WdChs1p was more responsible than WdChs2p for normal yeast cell reproductive growth because strains with defects in the latter exhibited no morphological abnormalities, whereas those with defects in WdChs1p were frequently impaired in one or more yeast developmental processes.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
11 |
25
|
Schmidt M, Strenk ME, Boyer MP, Fritsch BJ. Importance of cell wall mannoproteins for septum formation in Saccharomyces cerevisiae. Yeast 2005; 22:715-23. [PMID: 16034811 DOI: 10.1002/yea.1242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The mannosyltransferase mutants mnn9 and mnn10 were isolated in a genetic screen for septation defects in Saccharomyces cerevisiae. Ultrastructural examination of mutant cell walls revealed markedly thin septal structures and occasional failure to construct trilaminar septa, which then led to the formation of bulky default septa at the bud neck. In the absence of a functional septation apparatus, mnn10 mutants are unable to complete cytokinesis and die as cell chains with incompletely separated cytoplasms, indicating that mannosylation defects impair the ability to form remedial septa. We could not detect N-linked glycosylation of the beta(1,3)glucan synthase Fks1p and mnn10 defects do not change the molecular weight or abundance of the protein. We discuss a model explaining the pleiotropic effects of impaired N-linked protein glycosylation on septation in S. cerevisiae.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
9 |