1
|
Pallarès I, Vendrell J, Avilés FX, Ventura S. Amyloid Fibril Formation by a Partially Structured Intermediate State of α-Chymotrypsin. J Mol Biol 2004; 342:321-31. [PMID: 15313627 DOI: 10.1016/j.jmb.2004.06.089] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 06/25/2004] [Accepted: 06/29/2004] [Indexed: 10/26/2022]
Abstract
Here we investigated the effects of 2,2,2-trifluoroethanol (TFE) on the structure of alpha-chymotrypsin. The protein aggregates maximally in 35% (v/v) TFE. Congo red and thioflavin-T binding experiments suggest that the aggregates induced by TFE have amyloid-like properties, and transmission electron microscopy data show that these aggregates have a fibrilar morphology. Fluorescence, circular dichroism, anilino-8-napthalene sulfonate binding, and Fourier-transformed infrared spectroscopy data suggest that formation of a partially structured intermediate state precedes the onset of the aggregation process. The native beta-barrel structure of alpha-chymotrypsin appears to be disrupted in the partially structured intermediate state in favour of a non-native extended beta-sheet conformation with exposed hydrophobic surfaces. The protein becomes "sticky" under these conditions and aggregates into amyloid-like structures. The data support the hypothesis that amyloid formation involves the ordered self-assembly of partially folded species that are critical soluble precursors of fibrilar aggregates.
Collapse
|
|
21 |
193 |
2
|
Ma W, Tang C, Lai L. Specificity of trypsin and chymotrypsin: loop-motion-controlled dynamic correlation as a determinant. Biophys J 2005; 89:1183-93. [PMID: 15923233 PMCID: PMC1366603 DOI: 10.1529/biophysj.104.057158] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trypsin and chymotrypsin are both serine proteases with high sequence and structural similarities, but with different substrate specificity. Previous experiments have demonstrated the critical role of the two loops outside the binding pocket in controlling the specificity of the two enzymes. To understand the mechanism of such a control of specificity by distant loops, we have used the Gaussian network model to study the dynamic properties of trypsin and chymotrypsin and the roles played by the two loops. A clustering method was introduced to analyze the correlated motions of residues. We have found that trypsin and chymotrypsin have distinct dynamic signatures in the two loop regions, which are in turn highly correlated with motions of certain residues in the binding pockets. Interestingly, replacing the two loops of trypsin with those of chymotrypsin changes the motion style of trypsin to chymotrypsin-like, whereas the same experimental replacement was shown necessary to make trypsin have chymotrypsin's enzyme specificity and activity. These results suggest that the cooperative motions of the two loops and the substrate-binding sites contribute to the activity and substrate specificity of trypsin and chymotrypsin.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
113 |
3
|
Tong L, Wengler G, Rossmann MG. Refined structure of Sindbis virus core protein and comparison with other chymotrypsin-like serine proteinase structures. J Mol Biol 1993; 230:228-47. [PMID: 8450538 DOI: 10.1006/jmbi.1993.1139] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Crystal forms 2 and 3 of Sindbis virus core protein have been refined to 2.8 A and 3.0 A resolution, respectively. The three independent molecular copies in the two crystal forms are essentially identical, except for regions where the molecules are involved in different crystal packing interactions. The overall polypeptide backbone fold of Sindbis virus core protein is similar to other chymotrypsin-like serine proteinase structures despite a lack of significant sequence homology. Detailed analysis revealed differences in the catalytic triad and the substrate binding pockets between the Sindbis virus core protein and the other serine proteinases. The catalytic aspartic acid residue (Asp163) and residue Asp214 (corresponding to Asp194 in chymotrypsin) are partially exposed to solvent in Sindbis virus core protein. Chymotrypsin Ser214, hydrogen bonded to the catalytic aspartic acid residue in all other serine proteinase structures, is changed to Leu231 in Sindbis virus core protein. Deletions in the loop regions on the surface of the protein account for the smaller size of the ordered part of Sindbis virus core protein (151 residues) as compared to chymotrypsin (236 residues), and permits the cis autocatalytic cleavage of the polyprotein to produce the viral capsid protein.
Collapse
|
Comparative Study |
32 |
73 |
4
|
Weiss WF, Hodgdon TK, Kaler EW, Lenhoff AM, Roberts CJ. Nonnative protein polymers: structure, morphology, and relation to nucleation and growth. Biophys J 2007; 93:4392-403. [PMID: 17704182 PMCID: PMC2098717 DOI: 10.1529/biophysj.107.112102] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thermally induced aggregates of alpha-chymotrypsinogen A and bovine granulocyte-colony stimulating factor in acidic solutions were characterized by a combination of static and dynamic light scattering, spectroscopy, transmission electron microscopy, and monomer loss kinetics. The resulting soluble, high-molecular weight aggregates (approximately 10(3)-10(5) kDa) are linear, semiflexible polymer chains that do not appreciably associate with one another under the conditions at which they were formed, with classic power-law scaling of the radius of gyration and hydrodynamic radius with weight-average molecular weight (M(w)). Aggregates in both systems are composed of nonnative monomers with elevated levels of beta-sheet secondary structure, and bind thioflavine T. In general, the aggregate size distributions showed low polydispersity by light scattering. Together with the inverse scaling of M(w) with protein concentration, the results clearly indicate that aggregation proceeds via nucleated (chain) polymerization. For alpha-chymotrypsinogen A, the scaling behavior is combined with the kinetics of aggregation to deduce separate values for the characteristic timescales for nucleation (tau(n)) and growth (tau(g)), as well as the stoichiometry of the nucleus (x). The analysis illustrates a general procedure to noninvasively and quantitatively determine tau(n), tau(g), and x for soluble (chain polymer) aggregates, as well as the relationship between tau(n)/tau(g) and aggregate M(w).
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
49 |
5
|
Dixon MM, Brennan RG, Matthews BW. Structure of gamma-chymotrypsin in the range pH 2.0 to pH 10.5 suggests that gamma-chymotrypsin is a covalent acyl-enzyme adduct at low pH. Int J Biol Macromol 1991; 13:89-96. [PMID: 1888717 DOI: 10.1016/0141-8130(91)90054-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Crystals of gamma-chymotrypsin (gamma-CHT) grown at pH 7.0 are stable from pH 2.0 to 11.0. Crystalline gamma-CHT therefore provides an unusually favourable system to observe the structure of a protein and its bound solvent over a broad range of pH. In this report we describe the high-resolution refined structure of gamma-CHT at pH values of 2.0, 7.0 and 10.5. The apparent tetrapeptide seen bound in the active site of gamma-CHT at pH 7.0 is also present at pH 2.0 and 10.5 although it is better defined at low pH. A comparison of the respective structures shows that there is additional electron density in the low pH structure at the point where the side-chain of Ser 195 approaches most closely to the presumptive inhibitor. This suggests that the adduct is most likely to be covalently linked to the enzyme at low pH and to be non-covalent at higher pH. As the pH is lowered from 7.0 to 2.0, the side-chain of His 40 rotates approximately 120 degrees about its C alpha-C beta bond and, in concert, the side-chain of Gln 34 also rotates approximately 140 degrees about its C alpha-C beta bond. Apart from these localized rearrangements in the vicinity of His 40, the structure of gamma-CHT at pH 2.0 is very similar to that at neutral pH. The structure of gamma-CHT at pH 10.5 is also seen to be almost identical with that at neutral pH. There is no indication that the internal salt bridge between Asp 194 and the alpha-amino group of lle 16 begins to dissociate at pH 10.5. With the exception of the vicinity of His 40, the structure of the bound solvent in the crystal structures at low, neutral and high pH is very similar.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
Comparative Study |
34 |
30 |
6
|
Kolodziej SJ, Wagenknecht T, Strickland DK, Stoops JK. The three-dimensional structure of the human alpha 2-macroglobulin dimer reveals its structural organization in the tetrameric native and chymotrypsin alpha 2-macroglobulin complexes. J Biol Chem 2002; 277:28031-7. [PMID: 12015318 DOI: 10.1074/jbc.m202714200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three-dimensional electron microscopy reconstructions of the human alpha(2)-macroglobulin (alpha(2)M) dimer and chymotrypsin-transformed alpha(2)M reveal the structural arrangement of the two dimers that comprise native and proteinase-transformed molecules. They consist of two side-by-side extended strands that have a clockwise and counterclockwise twist about their major axes in the native and transformed structures, respectively. This and other studies show that there are major contacts between the two strands at both ends of the molecule that evidently sequester the receptor binding domains. Upon proteinase cleavage of the bait domains and subsequent thiol ester cleavages, which occur near the central region of the molecule, the two strands separate by 40 A at both ends of the structure to expose the receptor binding domains and form the arm-like extensions of the transformed alpha(2)M. During the transformation of the structure, the strands untwist to expose the alpha(2)M central cavity to the proteinase. This extraordinary change in the architecture of alpha(2)M functions to completely engulf two molecules of chymotrypsin within its central cavity and to irreversibly encapsulate them.
Collapse
|
|
23 |
30 |
7
|
Werner MH, Wemmer DE. Identification of a protein-binding surface by differential amide hydrogen-exchange measurements. Application to Bowman-Birk serine-protease inhibitor. J Mol Biol 1992; 225:873-89. [PMID: 1602487 DOI: 10.1016/0022-2836(92)90407-b] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The binding surface of soybean trypsin/chymotrypsin Bowman-Birk inhibitor in contact with alpha-chymotrypsin has been identified by measurement of the change in amide hydrogen-exchange rates between free and chymotrypsin-bound inhibitor. Exchange measurements were made for the enzyme-bound form of the inhibitor at pH 7.3, 25 degrees C using fast-flow affinity chromatography and direct measurement of exchange rates in the protein complex from one-dimensional and two-dimensional nuclear magnetic resonance spectra. The interface is characterized by a broad surface of contact involving residues 39 through 48 of the anti-chymotryptic domain beta-hairpin as well as residues 32, 33 and 37 in the anti-chymotryptic domain loop of the inhibitor. A number of residues in the anti-tryptic domain of the protein also have an altered exchange rate, suggesting that there are changes in the protein conformation upon binding to chymotrypsin. These changes in amide exchange behavior are discussed in light of a model of the complex based on the X-ray crystallographic structure of turkey ovomucoid inhibitor third domain bound to a alpha-chymotrypsin, and the structure of free Bowman-Birk inhibitor determined in solution by two-dimensional nuclear magnetic resonance spectroscopy. The chymotrypsin-binding loop of Bowman-Birk inhibitor in the model is remarkably similar to the binding loop conformation in crystal structures of enzyme-bound polypeptide chymotrypsin inhibitor-I from potatoes, turkey ovomucoid inhibitor third domain, and chymotrypsin inhibitor-II from barley seeds.
Collapse
|
|
33 |
29 |
8
|
Stoddard BL, Koenigs P, Porter N, Petratos K, Petsko GA, Ringe D. Observation of the light-triggered binding of pyrone to chymotrypsin by Laue x-ray crystallography. Proc Natl Acad Sci U S A 1991; 88:5503-7. [PMID: 2062832 PMCID: PMC51905 DOI: 10.1073/pnas.88.13.5503] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Crystals of gamma-chymotrypsin inhibited with the photodissociable group trans-p-diethylamino-o-hydroxy-alpha-methylcinnamate were irradiated with a 1-msec flash from a high-energy xenon flashlamp in the presence of the mechanism-based inhibitor 3-benzyl-6-chloro-2-pyrone. The ensuing reaction was monitored by collection of sequential, single-exposure Laue x-ray diffraction patterns. The experiment was also performed in solution to verify the regeneration of catalytic activity and the subsequent inhibition of the enzyme by pyrone after photolysis. The resulting crystallographic structures show the presence of covalently bound cinnamate prior to photolysis, the generation of "free" enzyme after irradiation of the crystal, and the slow formation of a pyrone-inhibited complex several hours after photolysis. The structure of the free enzyme shows a significant proportion of the active sites in the crystal to contain a naturally occurring, noncovalently bound tetrapeptide inhibitor [Dixon, M.M. & Matthews, B.W. (1989) Biochemistry 28, 7033-7038], even after cinnamate acylation and photolysis. Data collected simultaneously with irradiation show the crystal to be slightly disordered during photolysis, leading to streaked x-ray photos. The resulting maps are suggestive of a bicyclic coumarin species produced by photolysis and deacylation; however, the electron density is difficult to model unambiguously by one unique chemical state. Nevertheless, Laue crystallography is shown to be capable of visualizing time-dependent chemical changes in the active site of an enzyme.
Collapse
|
research-article |
34 |
27 |
9
|
Sarkari M, Darrat I, Knutson BL. CO2 and fluorinated solvent-based technologies for protein microparticle precipitation from aqueous solutions. Biotechnol Prog 2003; 19:448-54. [PMID: 12675586 DOI: 10.1021/bp0255513] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Precipitation with a compressed or supercritical fluid antisolvent (PCA) has been used to produce microparticles of biologically active proteins, pharmaceuticals, and polymers. However, the application of PCA to a wider range of proteins is limited by the low mutual solubility of water (necessary to dissolve most proteins) and CO(2) (traditionally used as the compressed antisolvent). This investigation extends PCA to proteins in aqueous solutions by utilizing ethanol as a cosolvent to enhance the antisolvent properties of CO(2) toward aqueous systems. alpha-Chymotrypsin, a model protein, was precipitated from both compressed CO(2) and a liquid fluorinated antisolvent, a hydrofluoroether (HFE). The equilibrium phase behavior of the antisolvent/ethanol/water systems was examined to identify a one-phase region suitable for protein precipitation. Spherical protein microparticles with a primary particle size of approximately 0.2-0.6 microm were recovered using both the compressed CO(2) and fluorinated antisolvents. Although the proteins retained significant activity using both antisolvent systems, the HFE-precipitated chymotrypsin retained higher activity than the CO(2)-precipitated protein.
Collapse
|
Comparative Study |
22 |
23 |
10
|
Kolodziej SJ, Klueppelberg HU, Nolasco N, Ehses W, Strickland DK, Stoops JK. Three-dimensional structure of the human plasmin alpha2-macroglobulin complex. J Struct Biol 1998; 123:124-33. [PMID: 9843666 DOI: 10.1006/jsbi.1998.4027] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The three-dimensional reconstructions of the human plasmin alpha2-macroglobulin binary complex were computed from electron microscopy images of stain and frozen-hydrated specimens. The structures show excellent agreement and reveal a molecule with approximate dimensions of 170 (length) x 140 (width) x 140 A (depth). The asymmetric plasmin structure imparts significant asymmetry to the plasmin alpha2-macroglobulin complex not seen in the structures resulting from the reaction of alpha2-macroglobulin with methylamine or chymotrypsin. The structure shows, when combined with other studies, that the C-terminal catalytic domain of the rod-shaped plasmin molecule is entrapped inside of the alpha2-macroglobulin cavity, whereas its N-terminal kringle domains protrude outside one end between the two arm-like features of the transformed alpha2-macroglobulin structure. This arrangement ensures that the catalytic site of plasmin is prevented from degrading plasma proteins. The internalized C-terminal portion of the plasmin structure resides primarily on the major axis of alpha2-macroglobulin, suggesting that after the initial cleavage of the two bait domains and the thiol esters, the rod-shaped plasmin molecule enters the alpha2-macroglobulin cavity through the large openings afforded by the half-transformed structure. This mode of entrapment requires the untwisting and the separation of the two strands that constitute the alpha2-macroglobulin structure.
Collapse
|
|
27 |
18 |
11
|
Stoops JK, Schroeter JP, Kolodziej SJ, Strickland DK. Structure-function relationships of human alpha 2-macroglobulin. Three-dimensional structures of native alpha 2-macroglobulin and its methylamine and chymotrypsin derivatives. Ann N Y Acad Sci 1994; 737:212-28. [PMID: 7524398 DOI: 10.1111/j.1749-6632.1994.tb44314.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
Comparative Study |
31 |
8 |
12
|
Delain E, Barray M, Pochon F, Gliemann J, Moestrup SK. Electron microscopic visualization of the human alpha 2-macroglobulin receptor and its interaction with alpha 2-macroglobulin/chymotrypsin complex. Ann N Y Acad Sci 1994; 737:202-11. [PMID: 7524397 DOI: 10.1111/j.1749-6632.1994.tb44313.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
|
31 |
6 |
13
|
Gomis-Rüth FX, Gómez M, Ventura S, Vendrell J, Avilés FX. Crystallization and preliminary X-ray analysis of the ternary complex of procarboxypeptidase A from bovine pancreas. FEBS Lett 1995; 367:211-3. [PMID: 7607308 DOI: 10.1016/0014-5793(95)00533-f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ternary complex of procarboxypeptidase A, chymotrypsinogen C and proproteinase E from bovine pancreas has been crystallized using the sitting drop vapour diffusion method. The success in obtaining crystals has been found to be critically dependent on the prevention of autolysis of the complex. In preliminary stages, crystals twinned by merohedry were obtained from a solution containing MgCl2 and polyethylenglycol 400 as precipitating agent. Later on, untwinned ones could be grown employing CaCl2 instead of MgCl2. These latter crystals belong to the rhombohedral system and to the spacegroup R3 with cell dimensions a = b = 188.5 A and c = 82.5 A. Consideration of the possible values of Vm accounts for the presence of one ternary complex molecule-oligomere per asymmetric unit. The crystals diffract beyond 2.6 A resolution and are suitable for X-ray analysis.
Collapse
|
|
30 |
1 |