1
|
Abstract
The neurons of the cochlear ganglion transmit acoustic information between the inner ear and the brain. These placodally derived neurons must produce a topographically precise pattern of connections in both the inner ear and the brain. In this review, we consider the current state of knowledge concerning the development of these neurons, their peripheral and central connections, and their influences on peripheral and central target cells. Relatively little is known about the cellular and molecular regulation of migration or the establishment of precise topographic connection to the hair cells or cochlear nucleus (CN) neurons. Studies of mice with neurotrophin deletions are beginning to yield increasing understanding of variations in ganglion cell survival and resulting innervation patterns, however. Finally, existing evidence suggests that while ganglion cells have little influence on the differentiation of their hair cell targets, quite the opposite is true in the brain. Ganglion cell innervation and synaptic activity are essential for normal development of neurons in the cochlear nucleus.
Collapse
|
Review |
23 |
429 |
2
|
Cant NB, Benson CG. Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Res Bull 2003; 60:457-74. [PMID: 12787867 DOI: 10.1016/s0361-9230(03)00050-9] [Citation(s) in RCA: 262] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cochlear nuclear complex gives rise to widespread projections to nuclei throughout the brainstem. The projections arise from separate, well-defined populations of cells. None of the cell populations in the cochlear nucleus projects to all brainstem targets, and none of the targets receives inputs from all cell types. The projections of nine distinguishable cell types in the cochlear nucleus-seven in the ventral cochlear nucleus and two in the dorsal cochlear nucleus-are described in this review. Globular bushy cells and two types of spherical bushy cells project to nuclei in the superior olivary complex that play roles in sound localization based on binaural cues. Octopus cells convey precisely timed information to nuclei in the superior olivary complex and lateral lemniscus that, in turn, send inhibitory input to the inferior colliculus. Cochlear root neurons send widespread projections to areas of the reticular formation involved in startle reflexes and autonomic functions. Type I multipolar cells may encode complex features of natural stimuli and send excitatory projections directly to the inferior colliculus. Type II multipolar cells send inhibitory projections to the contralateral cochlear nuclei. Fusiform cells in the dorsal cochlear nucleus appear to be important for the localization of sounds based on spectral cues and send direct excitatory projections to the inferior colliculus. Giant cells in the dorsal cochlear nucleus also project directly to the inferior colliculus; some of them may convey inhibitory inputs to the contralateral cochlear nucleus as well.
Collapse
|
Review |
22 |
262 |
3
|
Abstract
The shapes of the head and ears of mammals are asymmetrical top-to-bottom and front-to-back. Reflections of sounds from these structures differ with the angle of incidence, producing cues for monaural sound localization in the spectra of the stimuli at the eardrum. Neurons in the dorsal cochlear nucleus (DCN) respond specifically to spectral cues and integrate them with somatosensory, vestibular and higher-level auditory information through parallel fiber inputs in a cerebellum-like circuit. Synapses between parallel fibers and their targets show long-term potentiation (LTP) and long-term depression (LTD), whereas those between auditory nerve fibers and their targets do not. This paper discusses the integration of acoustic and the proprioceptive information in terms of possible computational roles for the DCN.
Collapse
|
|
21 |
246 |
4
|
Tzounopoulos T, Kim Y, Oertel D, Trussell LO. Cell-specific, spike timing–dependent plasticities in the dorsal cochlear nucleus. Nat Neurosci 2004; 7:719-25. [PMID: 15208632 DOI: 10.1038/nn1272] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Accepted: 05/11/2004] [Indexed: 11/08/2022]
Abstract
In the dorsal cochlear nucleus, long-term synaptic plasticity can be induced at the parallel fiber inputs that synapse onto both fusiform principal neurons and cartwheel feedforward inhibitory interneurons. Here we report that in mouse fusiform cells, spikes evoked 5 ms after parallel-fiber excitatory postsynaptic potentials (EPSPs) led to long-term potentiation (LTP), whereas spikes evoked 5 ms before EPSPs led to long-term depression (LTD) of the synapse. The EPSP-spike protocol led to LTD in cartwheel cells, but no synaptic changes resulted from the reverse sequence (spike-EPSP). Plasticity in fusiform and cartwheel cells therefore followed Hebbian and anti-Hebbian learning rules, respectively. Similarly, spikes generated by summing EPSPs from different groups of parallel fibers produced LTP in fusiform cells, and LTD in cartwheel cells. LTD could also be induced in glutamatergic inputs of cartwheel cells by pairing parallel-fiber EPSPs with depolarizing glycinergic PSPs from neighboring cartwheel cells. Thus, synaptic learning rules vary with the postsynaptic cell, and may require the interaction of different transmitter systems.
Collapse
|
|
21 |
241 |
5
|
Abstract
The objective of the present study was to determine if a neuron that expresses multiple glutamate receptors targets the same receptors to all glutamatergic postsynaptic populations, or if the receptors are differentially targeted to specific postsynaptic populations. As a model for this study, we chose the fusiform cell of the dorsal cochlear nucleus. This neuron expresses multiple glutamate receptors and receives two distinct glutamatergic inputs: parallel fibers synapse on apical dendrites, and auditory nerve fibers synapse on basal dendrites. Pre- and postembedding immunocytochemistry were combined with retrograde tracing to identify the receptors expressed on postsynaptic membranes of parallel fiber and auditory nerve synapses. Most receptors were found at both populations of synapses, but the AMPA receptor subunit, GluR4, and the metabotropic receptor, mGluR1 alpha, were found only at the auditory nerve synapse. These results demonstrate that glutamate receptors are targeted to specific postsynaptic populations of glutamatergic synapses.
Collapse
|
|
28 |
189 |
6
|
Abstract
This paper examines the relationship between different brainstem cell populations and the brainstem auditory evoked potential (BAEP). First, we present a mathematical model relating the BAEP to underlying cellular activity. Then, we identify specific cellular generators of the click-evoked BAEP in cats by combining model-derived insights with key experimental data. These data include (a) a correspondence between particular brainstem regions and specific extrema in the BAEP waveform, determined from lesion experiments, and (b) values for model parameters derived from published physiological and anatomical information. Ultimately, we conclude (with varying degrees of confidence) that: (1) the earliest extrema in the BAEP are generated by spiral ganglion cells, (2) P2 is mainly generated by cochlear nucleus (CN) globular cells, (3) P3 is partly generated by CN spherical cells and partly by cells receiving inputs from globular cells, (4) P4 is predominantly generated by medial superior olive (MSO) principal cells, which are driven by spherical cells, (5) the generators of P5 are driven by MSO principal cells, and (6) the BAEP, as a whole, is generated mainly by cells with characteristic frequencies above 2 kHz. Thus, the BAEP in cats mainly reflects cellular activity in two parallel pathways, one originating with globular cells and the other with spherical cells. Since the globular cell pathway is poorly represented in humans, we suggest that the human BAEP is largely generated by brainstem cells in the spherical cell pathway. Given our conclusions, it should now be possible to relate activity in specific cell populations to psychophysical performance since the BAEP can be recorded in behaving humans and animals.
Collapse
|
|
29 |
187 |
7
|
Oertel D, Bal R, Gardner SM, Smith PH, Joris PX. Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus. Proc Natl Acad Sci U S A 2000; 97:11773-9. [PMID: 11050208 PMCID: PMC34348 DOI: 10.1073/pnas.97.22.11773] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory nerve fibers just proximal to where the fibers leave the ventral and enter the dorsal cochlear nucleus, each octopus cell spanning about one-third of the tonotopic array. Octopus cells are excited by auditory nerve fibers through the activation of rapid, calcium-permeable, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors. Synaptic responses are shaped by the unusual biophysical characteristics of octopus cells. Octopus cells have very low input resistances (about 7 M Omega), and short time constants (about 200 microsec) as a consequence of the activation at rest of a hyperpolarization-activated mixed-cation conductance and a low-threshold, depolarization-activated potassium conductance. The low input resistance causes rapid synaptic currents to generate rapid and small synaptic potentials. Summation of small synaptic potentials from many fibers is required to bring an octopus cell to threshold. Not only does the low input resistance make individual excitatory postsynaptic potentials brief so that they must be generated within 1 msec to sum but also the voltage-sensitive conductances of octopus cells prevent firing if the activation of auditory nerve inputs is not sufficiently synchronous and depolarization is not sufficiently rapid. In vivo in cats, octopus cells can fire rapidly and respond with exceptionally well-timed action potentials to periodic, broadband sounds such as clicks. Thus both the anatomical specializations and the biophysical specializations make octopus cells detectors of the coincident firing of their auditory nerve fiber inputs.
Collapse
|
research-article |
25 |
161 |
8
|
Tzounopoulos T, Rubio ME, Keen JE, Trussell LO. Coactivation of pre- and postsynaptic signaling mechanisms determines cell-specific spike-timing-dependent plasticity. Neuron 2007; 54:291-301. [PMID: 17442249 PMCID: PMC2151977 DOI: 10.1016/j.neuron.2007.03.026] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 02/12/2007] [Accepted: 03/23/2007] [Indexed: 11/29/2022]
Abstract
Synapses may undergo long-term increases or decreases in synaptic strength dependent on critical differences in the timing between pre-and postsynaptic activity. Such spike-timing-dependent plasticity (STDP) follows rules that govern how patterns of neural activity induce changes in synaptic strength. Synaptic plasticity in the dorsal cochlear nucleus (DCN) follows Hebbian and anti-Hebbian patterns in a cell-specific manner. Here we show that these opposing responses to synaptic activity result from differential expression of two signaling pathways. Ca2+/calmodulin-dependent protein kinase II (CaMKII) signaling underlies Hebbian postsynaptic LTP in principal cells. By contrast, in interneurons, a temporally precise anti-Hebbian synaptic spike-timing rule results from the combined effects of postsynaptic CaMKII-dependent LTP and endocannabinoid-dependent presynaptic LTD. Cell specificity in the circuit arises from selective targeting of presynaptic CB1 receptors in different axonal terminals. Hence, pre- and postsynaptic sites of expression determine both the sign and timing requirements of long-term plasticity in interneurons.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
155 |
9
|
Abstract
1. Single units and evoked potentials were recorded in dorsal cochlear nucleus (DCN) in response to electrical stimulation of the somatosensory dorsal column and spinal trigeminal nuclei (together called MSN for medullary somatosensory nuclei) and for tactile somatosensory stimuli. Recordings were from paralyzed decerebrate cats. 2. DCN principal cells (type IV units) were strongly inhibited by electrical stimulation (single 50-microA bipolar pulse) in MSN or by somatosensory stimulation. Units recorded in the fusiform cell and deep layers of DCN were inhibited, suggesting that the inhibition affects both types of principal cells (i.e., both fusiform and giant cells). 3. Interneurons (type II units) that inhibit principal cells were only weakly inhibited by electrical stimulation and were never excited, demonstrating that the inhibitory effect on principal cells does not pass through the type II circuit. In the vicinity of the DCN/PVCN (posteroventral cochlear nucleus) boundary, units were encountered that were excited by electrical stimulation in MSN; some of these neurons responded to sound, and some did not. Their response properties are consistent with the hypothesis that they are deep-layer inhibitory interneurons conveying somatosensory information to the DCN. 4. Analysis of the evoked potentials produced by electrical stimulation in MSN suggests that the somatosensory inputs activate the granule cell system of the DCN molecular layer. A model based on previous work by Klee and Rall was used to show that the distribution of evoked potentials in DCN can be explained as resulting from radial currents produced in the DCN molecular and fusiform-cell layers by synchronous activation of granule cells inputs to fusiform and cartwheel cells. Current-source density analysis of the evoked potentials is consistent with this model. Thus molecular layer interneurons (cartwheel and stellate cells) are a second possible source of inhibition to principal cells. 5. With lower stimulus levels (20 microA) and pulse-pair stimuli (50- to 100-ms interstimulus interval), three components of the inhibitory response can be recognized in both fusiform cell layer and deep layer type IV units: a short-latency inhibition that begins before the start of the evoked potential; a longer-latency inhibition whose timing corresponds to the evoked potential; and an excitatory component that occurs on the rising phase of the evoked potential. The excitatory component is usually overwhelmed by the inhibitory components and could be derived from granule cell inputs; the long-latency inhibitory component could be derived from cartwheel cells or the hypothesized deep-layer inhibitory interneurons.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
|
30 |
137 |
10
|
Caspary DM, Schatteman TA, Hughes LF. Age-related changes in the inhibitory response properties of dorsal cochlear nucleus output neurons: role of inhibitory inputs. J Neurosci 2006; 25:10952-9. [PMID: 16306408 PMCID: PMC6725883 DOI: 10.1523/jneurosci.2451-05.2005] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Age-related hearing loss frequently results in a loss in the ability to discriminate speech signals, especially in noise. This is attributable, in part, to a loss in temporal resolving power and ability to adjust dynamic range. Circuits in the adult dorsal cochlear nucleus (DCN) have been shown to preserve signal in background noise. Fusiform cells, major DCN output neurons, receive focused glycinergic inputs from tonotopically aligned vertical cells that also project to the ventral cochlear nucleus. Glycine-mediated inhibition onto fusiform cells results in decreased tone-evoked activity as intensity is increased at frequencies adjacent to characteristic frequency (CF). DCN output is thus shaped by glycinergic inhibition, which can be readily assessed in recordings from fusiform cells. Previous DCN studies suggest an age-related loss of markers for glycinergic neurotransmission. The present study postulated that response properties of aged fusiform cells would show a loss of inhibition, resembling conditions observed with glycine receptor blockade. The functional impact of aging was examined by comparing response properties from units meeting fusiform-cell criteria in young and aged rats. Fusiform cells in aged animals displayed significantly higher maximum discharge rates to CF tones than those recorded from young-adult animals. Fusiform cells of aged rats displayed significantly fewer nonmonotonic CF rate-level functions and an age-related change in temporal response properties. These findings are consistent with an age-related loss of glycinergic input, likely from vertical cells, and with findings from other sensory aging studies suggesting a selective age-related decrement in inhibitory amino acid neurotransmitter function.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
132 |
11
|
Tierney TS, Russell FA, Moore DR. Susceptibility of developing cochlear nucleus neurons to deafferentation-induced death abruptly ends just before the onset of hearing. J Comp Neurol 1997; 378:295-306. [PMID: 9120067 DOI: 10.1002/(sici)1096-9861(19970210)378:2<295::aid-cne11>3.0.co;2-r] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To investigate the ability of developing cochlear nucleus (CN) neurons to survive in the absence of afferent input, left cochlear removals were performed on gerbils at 2 day intervals from postnatal (P)3 to P11, and at P18 and P93. After a 3 month postsurgical survival period, Nissl-stained frontal sections through the brainstem were analyzed under the light microscope. CN volume, anteroventral cochlear nucleus (AVCN) neuron cross-sectional area, and total number of neurons in the CN were measured on both sides of the brain. Mean volume reduction of the deafferented CN relative to the intact CN ranged between 76% in the P3 group to 33% in the P11 group and did not differ significantly between P11 and P93. Cochlear removal at all ages reduced AVCN neuron cross-sectional area by approximately 40% in the deafferented CN relative to the intact CN, except for the P93 group where neuron atrophy was significantly less severe (23% mean reduction). Massive loss of CN neurons (>50% of the intact side) was observed following cochlear removal performed during the first postnatal week. However, between P7 and P9, neurons in all areas of the CN lose susceptibility to deafferentation-induced neuron death. No significant neuron loss was observed following cochlear removal after P7. This study shows that an abrupt transition in the ability of CN neurons to survive in the absence of afferent input is coincident with events leading to the onset of hearing.
Collapse
|
|
28 |
131 |
12
|
Bender KJ, Trussell LO. Axon initial segment Ca2+ channels influence action potential generation and timing. Neuron 2009; 61:259-71. [PMID: 19186168 PMCID: PMC2730113 DOI: 10.1016/j.neuron.2008.12.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 10/30/2008] [Accepted: 12/01/2008] [Indexed: 12/31/2022]
Abstract
Although action potentials are typically generated in the axon initial segment (AIS), the timing and pattern of action potentials are thought to depend on inward current originating in somatodendritic compartments. Using two-photon imaging, we show that T- and R-type voltage-gated Ca(2+) channels are colocalized with Na(+) channels in the AIS of dorsal cochlear nucleus interneurons and that activation of these Ca(2+) channels is essential to the generation and timing of action potential bursts known as complex spikes. During complex spikes, where Na(+)-mediated spikelets fire atop slower depolarizing conductances, selective block of AIS Ca(2+) channels delays spike timing and raises spike threshold. Furthermore, AIS Ca(2+) channel block can decrease the number of spikelets within a complex spike and can even block single, simple spikes. Similar results were found in cortex and cerebellum. Thus, voltage-gated Ca(2+) channels at the site of spike initiation play a key role in generating and shaping spike bursts.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
128 |
13
|
Zhou J, Nannapaneni N, Shore S. Vessicular glutamate transporters 1 and 2 are differentially associated with auditory nerve and spinal trigeminal inputs to the cochlear nucleus. J Comp Neurol 2007; 500:777-87. [PMID: 17154258 DOI: 10.1002/cne.21208] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Projections of glutamatergic somatosensory and auditory fibers to the cochlear nucleus (CN) are mostly nonoverlapping: projections from the spinal trigeminal nucleus (Sp5) terminate primarily in the granule cell domains (GCD) of CN, whereas type I auditory nerve fibers (ANFs) project to the magnocellular areas of the VCN (VCNm) and deep layers of Dorsal CN (DCN). Vesicular glutamate transporters (VGLUTs), which selectively package glutamate into synaptic vesicles, have different isoforms associated with distinct subtypes of excitatory glutamatergic neurons. Here we examined the distributions of VGLUT1 and VGLU2 expression in the CN and their colocalization with Sp5 and ANF terminals following injections of anterograde tracers into Sp5 and the cochlea in the guinea pig. The CN regions that showed the most intense expression of VGLUT1 and VGLUT2 were largely nonoverlapping and were consistent with ANF and Sp5 projections, respectively: VGLUT1 was highly expressed in VCNm and the molecular layer of the DCN, whereas VGLUT2 was expressed predominantly in the GCD. Half (47% +/- 3%) of the Sp5 mossy fiber endings colabeled with VGLUT2, but few (2.5% +/- 1%) colabeled with VGLUT1. In contrast, ANFs colabeled predominantly with VGLUT1. The pathway-specific expression of VGLUT isoforms in the CN may be associated with the intrinsic synaptic properties that are unique to each sensory pathway.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
125 |
14
|
Raman IM, Trussell LO. The mechanism of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor desensitization after removal of glutamate. Biophys J 1995; 68:137-46. [PMID: 7711235 PMCID: PMC1281670 DOI: 10.1016/s0006-3495(95)80168-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have examined responses of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate) receptors in the chick nucleus magnocellularis to pairs of pulses of glutamate and determined the extent of desensitization and the rate of recovery. Receptors recovered from desensitization with a time constant of 16 ms, regardless of the concentration or duration of the conditioning pulse. Even with very brief conditioning pulses, evoking submaximal currents, desensitization occurred at a consistent rate after the removal of free ligand. A quantitative kinetic model based on these data shows that receptors must desensitize from a closed state. The results provide evidence that very brief exposure to glutamate, on the time scale of uniquantal synaptic transmission, will result in a significant reduction in sensitivity of postsynaptic receptors.
Collapse
|
research-article |
30 |
124 |
15
|
Nelson PC, Carney LH. A phenomenological model of peripheral and central neural responses to amplitude-modulated tones. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2004; 116:2173-86. [PMID: 15532650 PMCID: PMC1379629 DOI: 10.1121/1.1784442] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A phenomenological model with time-varying excitation and inhibition was developed to study possible neural mechanisms underlying changes in the representation of temporal envelopes along the auditory pathway. A modified version of an existing auditory-nerve model [Zhang et al., J. Acoust. Soc. Am. 109, 648-670 (2001)] was used to provide inputs to higher hypothetical processing centers. Model responses were compared directly to published physiological data at three levels: the auditory nerve, ventral cochlear nucleus, and inferior colliculus. Trends and absolute values of both average firing rate and synchrony to the modulation period were accurately predicted at each level for a wide range of stimulus modulation depths and modulation frequencies. The diversity of central physiological responses was accounted for with realistic variations of model parameters. Specifically, enhanced synchrony in the cochlear nucleus and rate-tuning to modulation frequency in the inferior colliculus were predicted by choosing appropriate relative strengths and time courses of excitatory and inhibitory inputs to postsynaptic model cells. The proposed model is fundamentally different than others that have been used to explain the representation of envelopes in the mammalian midbrain, and it provides a computational tool for testing hypothesized relationships between physiology and psychophysics.
Collapse
|
research-article |
21 |
122 |
16
|
Mostafapour SP, Cochran SL, Del Puerto NM, Rubel EW. Patterns of cell death in mouse anteroventral cochlear nucleus neurons after unilateral cochlea removal. J Comp Neurol 2000; 426:561-71. [PMID: 11027399 DOI: 10.1002/1096-9861(20001030)426:4<561::aid-cne5>3.0.co;2-g] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Developmental changes that influence the results of removal of afferent input on the survival of neurons of the anteroventral cochlear nucleus (AVCN) of mice were examined with the hope of providing a suitable model for understanding the cellular and molecular basis for these developmental changes in susceptibility. We performed unilateral cochlear ablation on wild-type mice at a variety of ages around the time of hearing onset to determine developmental changes in the sensitivity of AVCN neurons to afferent deprivation. In postnatal day 5 (P5) mice, cochlea removal resulted in 61% neuronal loss in the AVCN. By age P14, fewer than 1% of AVCN neurons were lost after this manipulation. This reveals a rather abrupt change in the sensitivity to disruption of afferent input, a critical period. We next investigated the temporal events associated with neuron loss after cochlea removal in susceptible animals. We demonstrate that significant cell loss occurs within 48 hours of cochlea removal in P7 animals. Furthermore, evidence of apoptosis was observed within 12 hours of cochlea removal, suggesting that the molecular events leading to cell loss after afferent deprivation begin to occur within hours of cochlea removal. Finally, we began to examine the role of the bcl-2 gene family in regulating afferent deprivation-induced cell death in the mouse AVCN. AVCN neurons in mature bcl-2 knockout mice demonstrate susceptibility to removal of afferent input comparable to neonatal sensitivity of wild-type controls. These data suggest that bcl-2 is one effector of cell survival as these cells switch from afferent-dependent to -independent survival mechanisms.
Collapse
|
|
25 |
117 |
17
|
Ferragamo MJ, Golding NL, Oertel D. Synaptic inputs to stellate cells in the ventral cochlear nucleus. J Neurophysiol 1998; 79:51-63. [PMID: 9425176 DOI: 10.1152/jn.1998.79.1.51] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Auditory information is carried from the cochlear nuclei to the inferior colliculi through six parallel ascending pathways, one of which is through stellate cells of the ventral cochlear nuclei (VCN) through the trapezoid body. To characterize and identify the synaptic influences on T stellate cells, intracellular recordings were made from anatomically identified stellate cells in parasagittal slices of murine cochlear nuclei. Shocks to the auditory nerve consistently evoked five types of synaptic responses in T stellate cells, which reflect sources intrinsic to the cochlear nuclear complex. 1) Monosynaptic excitatory postsynaptic potentials (EPSPs) that were blocked by 6,7-dinitroquinoxaline-2,3-dione (DNQX), an antagonist of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, probably reflected activation by auditory nerve fibers. Electrophysiological estimates indicate that about five auditory nerve fibers converge on one T stellate cell. 2) Disynaptic, glycinergic inhibitory postsynaptic potentials (IPSPs) arise through inhibitory interneurons in the VCN or in the dorsal cochlear nucleus (DCN). 3) Slow depolarizations, the source of which has not been identified, that lasted between 0.2 and 1 s and were blocked by -2-amino-5-phosphonovaleric acid (APV), the N-methyl-D-aspartate (NMDA) receptor antagonist. 4) Rapid, late glutamatergic EPSPs are polysynaptic and may arise from other T stellate cells. 5) Trains of late glycinergic IPSPs after single or repetitive shocks match the responses of D stellate cells, showing that D stellate cells are one source of glycinergic inhibition to T stellate cells. The source of late, polysynaptic EPSPs and IPSPs was assessed electrophysiologically and pharmacologically. Late synaptic responses in T stellate cells were enhanced by repetitive stimulation, indicating that the interneurons from which they arose should fire trains of action potentials in responses to trains of shocks. Late EPSPs and late IPSPs were blocked by APV and enhanced by the removal of Mg2+, indicating that the interneurons were driven at least in part through NMDA receptors. Bicuculline, a gamma-aminobutyric acid-A (GABAA) receptor antagonist, enhanced the late PSPs, indicating that GABAergic inhibition suppresses both the glycinergic interneurons responsible for the trains of IPSPs in T-stellate cells and the interneuron responsible for late EPSPs in T stellate cells. The glycinergic interneurons that mediate the series of IPSPs are intrinsic to the ventral cochlear nucleus because long series of IPSPs were recorded from T stellate cells in slices in which the DCN was removed. These experiments indicate that T stellate cells are a potential source of late EPSPs and that D stellate cells are a potential source for trains of late IPSPs.
Collapse
|
|
27 |
117 |
18
|
Abstract
Based on current literature, the afferents of the superior olivary complex (SOC) are described including those from the cochlear nucleus, inferior colliculus, thalamus, and auditory cortex. Intrinsic SOC afferents and non-auditory afferents from the serotoninergic and noradrenergic systems are also described. New data are provided that show a differential distribution of serotoninergic afferents within the SOC: serotoninergic fibers were relatively sparse in the lateral and medial superior olives and the medial nucleus of the trapezoid body and were most numerous in periolivary regions. There are variations in the density of serotoninergic fibers within periolivary regions themselves. New data is also provided on auditory and non-auditory afferents to SOC neurons, which have known targets. These include: cochlear nucleus afferents to periolivary (lateral nucleus of the trapezoid body, LNTB) cells that project to the inferior colliculus; cortical afferents to periolivary (ventral nucleus of the trapezoid body, VNTB) cells that project to the cochlear nucleus; and serotoninergic and noradrenergic afferents to periolivary (LNTB and VNTB) cells that project to the cochlear nucleus. The relationships between other types of afferents and SOC neurons with known projections are also described as functional circuits. The circuits include those that are part of the ascending auditory system (to the inferior and superior colliculi, lateral lemniscus, and medial geniculate nucleus), the descending auditory system (to the cochlea and cochlear nucleus), and the middle ear reflex circuits.
Collapse
|
Review |
25 |
112 |
19
|
Abstract
Octopus cells in the posteroventral cochlear nucleus (PVCN) of mammals are biophysically specialized to detect coincident firing in the population of auditory nerve fibers that provide their synaptic input and to convey its occurrence with temporal precision. The precision in the timing of action potentials depends on the low input resistance (approximately 6 MOmega) of octopus cells at the resting potential that makes voltage changes rapid (tau approximately 200 micros). It is the activation of voltage-dependent conductances that endows octopus cells with low input resistances and prevents repetitive firing in response to depolarization. These conductances have been examined under whole cell voltage clamp. The present study reveals the properties of two conductances that mediate currents whose reversal at or near the equilibrium potential for K(+) over a wide range of extracellular K(+) concentrations identifies them as K(+) currents. One rapidly inactivating conductance, g(KL), had a threshold of activation at -70 mV, rose steeply as a function of depolarization with half-maximal activation at -45 +/- 6 mV (mean +/- SD), and was fully activated at 0 mV. The low-threshold K(+) current (I(KL)) was largely blocked by alpha-dendrotoxin (alpha-DTX) and partially blocked by DTX-K and tityustoxin, indicating that this current was mediated through potassium channels of the Kv1 (also known as shaker or KCNA) family. The maximum low-threshold K(+) conductance (g(KL)) was large, 514 +/- 135 nS. Blocking I(KL) with alpha-DTX revealed a second K(+) current with a higher threshold (I(KH)) that was largely blocked by 20 mM tetraethylammonium (TEA). The more slowly inactivating conductance, g(KH), had a threshold for activation at -40 mV, reached half-maximal activation at -16 +/- 5 mV, and was fully activated at +30 mV. The maximum high-threshold conductance, g(KH), was on average 116 +/- 27 nS. The present experiments show that it is not the biophysical and pharmacological properties but the magnitude of the K(+) conductances that make octopus cells unusual. At the resting potential, -62 mV, g(KL) contributes approximately 42 nS to the resting conductance and mediates a resting K(+) current of 1 nA. The resting outward K(+) current is balanced by an inward current through the hyperpolarization-activated conductance, g(h), that has been described previously.
Collapse
|
|
24 |
110 |
20
|
Floris A, Diño M, Jacobowitz DM, Mugnaini E. The unipolar brush cells of the rat cerebellar cortex and cochlear nucleus are calretinin-positive: a study by light and electron microscopic immunocytochemistry. ANATOMY AND EMBRYOLOGY 1994; 189:495-520. [PMID: 7978355 DOI: 10.1007/bf00186824] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cell class-specific markers are powerful tools for the study of individual neuronal populations. The peculiar unipolar brush cells of the mammalian cerebellar cortex have only recently been definitively identified by means of the Golgi method, and we have explored markers of cerebellar neurons with the purpose of facilitating the analysis of this new cell population and, especially, its distribution and ultrastructural features. By light microscopic immunocytochemistry, we demonstrate that, in the rat, the unipolar brush cells are the cortical neurons that are most densely immunostained with antiserum to calretinin, a recently discovered calcium-binding protein. The unipolar brush cells are highly concentrated in the flocculo-nodular lobe, the ventral uvula and the ventral paraflocculus, occur at relatively high density in the lingula, at moderate-to-low density in other folia of the vermis and in the narrow intermediate cortex, and at low to very low density, with the exception of a few hot spots, in the lateral regions of the cerebellar hemispheres and in the dorsal paraflocculus. Unipolar brush cells are also found in the cochlear nucleus. In addition to the unipolar brush cells, calretinin antibody distinctly stains certain mossy fibers, and weakly to moderately stains other cerebellar elements, such as granule neurons and climbing fibers. In the lobules containing high densities of unipolar brush cells, the granule cell bodies and the parallel fibers are much less immunoreactive, and there are many more densely immunostained mossy fibers than in the lobules, where these cells are rare, which suggests some relationships between these elements. In the cerebellar nuclei, small neurons are densely immunostained, while large neurons are immunonegative. The unipolar brush cells reside nearly exclusively in the granular layer. They are small neurons, intermediate in size between granule cells and Golgi cells, and their features are remarkably similar across all lobules. They usually have a single, relatively thick dendrite of varying length that terminates in a brush-like tip consisting of several short branchlets. Utilizing a pre-embedding protocol, we have identified unipolar brush cells with the electron microscope. The cytoplasm of these cells is partially obscured by the electron dense product of calretinin immunoreaction in all regions of the soma and processes. The cells are often covered with non-synaptic appendages and contain a peculiar cytoplasmic inclusion consisting of ringlet subunits. Other characteristic components are numerous neurofilaments, mitochondria and large, dense-core vesicles. Individual brushes enter one or two glomeruli, where the dendritic branchlets establish an unusually extensive synapse with mossy fiber rosettes.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
|
31 |
110 |
21
|
Li W, Kaczmarek LK, Perney TM. Localization of two high-threshold potassium channel subunits in the rat central auditory system. J Comp Neurol 2001; 437:196-218. [PMID: 11494252 DOI: 10.1002/cne.1279] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The firing pattern of auditory neurons is determined in part by the type of voltage-sensitive potassium channels expressed. The expression patterns for two high-threshold potassium channels, Kv3.1 and Kv3.3, that differ in inactivation properties were examined in the rat auditory system. The positive activation voltage and rapid deactivation kinetics of these channels provide rapid repolarization of action potentials with little effect on action potential threshold. In situ hybridization experiments showed that Kv3.3 mRNA was highly expressed in most auditory neurons in the rat brainstem, whereas Kv3.1 was expressed in a more limited population of auditory neurons. Notably, Kv3.1 mRNA was not expressed in neurons of the medial and lateral superior olive and a subpopulation of neurons in the ventral nucleus of the lateral lemniscus. These results suggest that Kv3.3 channels may be the dominant Kv3 subfamily member expressed in brainstem auditory neurons and that, in some auditory neurons, Kv3.1 and Kv3.3 may coassemble to form functional channels. The localization of Kv3.1 protein was examined immunohistochemically. The distribution of stained somata and neuropil varied across auditory nuclei and correlated with the distribution of Kv3.1 mRNA-expressing neurons and their terminal arborizations, respectively. The intensity of Kv3.1 immunoreactivity varied across the tonotopic map in the medial nucleus of the trapezoid body with neurons responding best to high-frequency tones most intensely labeled. Thus, auditory neurons may vary the types and amount of K(+) channel expression in response to synaptic input to subtly tune their firing properties.
Collapse
|
|
24 |
109 |
22
|
Bal R, Oertel D. Hyperpolarization-activated, mixed-cation current (I(h)) in octopus cells of the mammalian cochlear nucleus. J Neurophysiol 2000; 84:806-17. [PMID: 10938307 DOI: 10.1152/jn.2000.84.2.806] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Octopus cells in the posteroventral cochlear nucleus of mammals detect the coincidence of synchronous firing in populations of auditory nerve fibers and convey the timing of that coincidence with great temporal precision. Earlier recordings in current clamp have shown that two conductances contribute to the low input resistance and therefore to the ability of octopus cells to encode timing precisely, a low-threshold K(+) conductance and a hyperpolarization-activated mixed-cation conductance, g(h). The present experiments describe the properties of g(h) in octopus cells as they are revealed under voltage clamp with whole-cell, patch recordings. The hyperpolarization-activated current, I(h), was blocked by extracellular Cs(+) (5 mM) and 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyridinium chloride (50-100 nM) but not by extracellular Ba(2+) (2 mM). The reversal potential for I(h) in octopus cells under normal physiological conditions was -38 mV. Increasing the extracellular potassium concentration from 3 to 12 mM shifted the reversal potential to -26 mV; lowering extracellular sodium concentration from 138 to 10 mM shifted the reversal potential to -77 mV. These pharmacological and ion substitution experiments show that I(h) in octopus cells is a mixed-cation current that resembles I(h) in other neurons and in heart muscle cells. Under control conditions when cells were perfused intracellularly with ATP and GTP, I(h) had an activation threshold between about -35 to -40 mV and became fully activated at -110 mV. The maximum conductance associated with hyperpolarizing voltage steps to -112 mV ranged from 87 to 212 nS [150 +/- 30 (SD) nS, n = 36]. The voltage dependence of g(h) obtained from peak tail currents is fit by a Boltzmann function with a half-activation potential of -65 +/- 3 mV and a slope factor of 7. 7 +/- 0.7. This relationship reveals that g(h) was activated 41% at the mean resting potential of octopus cells, -62 mV, and that at rest I(h) contributes a steady inward current of between 0.9 and 2.1 nA. The voltage dependence of g(h) was unaffected by the extracellular application of dibutyryl cAMP but was shifted in hyperpolarizing direction, independent of the presence or absence of dibutyryl cAMP, by the removal of intracellular ATP and GTP.
Collapse
|
|
25 |
107 |
23
|
Shore SE, Zhou J. Somatosensory influence on the cochlear nucleus and beyond. Hear Res 2006; 216-217:90-9. [PMID: 16513306 DOI: 10.1016/j.heares.2006.01.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 01/05/2006] [Accepted: 01/05/2006] [Indexed: 11/19/2022]
Abstract
Interactions between somatosensory and auditory systems occur at peripheral levels in the central nervous system. The cochlear nucleus (CN) receives innervation from trigeminal sensory structures: the ophthalmic division of the trigeminal ganglion and the caudal and interpolar regions of the spinal trigeminal nucleus (Sp5I and Sp5C). These projections terminate primarily in the granule cell domain, but also in magnocellular regions of the ventral and dorsal CN. Additionally, new evidence is presented demonstrating that cells in the lateral paragiganticular regions of the reticular formation (RF) also project to the CN. Not unlike the responses obtained from electrically stimulating the trigeminal system, stimulating RF regions can also result in excitation/inhibition of dorsal CN neurons. The origins and central connections of these projection neurons are associated with systems controlling vocalization and respiration. Electrical stimulation of trigeminal and RF projection neurons can suppress acoustically driven activity of not only CN neurons, but also neurons in the inferior colliculus. Together with the anatomical observations, these physiological observations suggest that one function of somatosensory input to the auditory system is to suppress responses to "expected" body-generated sounds such as vocalization or respiration. This would serve to enhance responses to "unexpected" externally-generated sounds, such as the vocalizations of other animals.
Collapse
|
Review |
19 |
105 |
24
|
Manis PB, Spirou GA, Wright DD, Paydar S, Ryugo DK. Physiology and morphology of complex spiking neurons in the guinea pig dorsal cochlear nucleus. J Comp Neurol 1994; 348:261-76. [PMID: 7814691 DOI: 10.1002/cne.903480208] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Intracellular recordings from the dorsal cochlear nucleus have identified cells with both simple and complex action potential waveforms. We investigated the hypothesis that cartwheel cells are a specific cell type that generates complex action potentials, based on their analogous anatomical, developmental, and biochemical similarities to cerebellar Purkinje cells, which are known to discharge complex action potentials. Intracellular recordings were made from a brain slice preparation of the guinea pig dorsal cochlear nucleus. A subpopulation of cells discharged a series of two or three action potentials riding on a slow depolarization as an all-or-none event; this discharge pattern is called a complex spike or burst. These cells also exhibited anodal break bursts, anomalous rectification, subthreshold inward rectification, and frequent inhibitory postsynaptic potentials (IPSPs). Seven complex-spiking cells were stained with intracellular dyes and subsequently identified as cartwheel neurons. In contrast, six identified simple-spiking cells recorded in concurrent experiments were pyramidal cells. The cartwheel cell bodies reside in the lower part of layer 1 and the upper part of layer 2 of the nucleus. The cells are characterized by spiny dendrites penetrating the molecular layer, a lack of basal dendritic processes, and an axonal plexus invading layers 2 and 3, and the inner regions of layer 1. The cartwheel cell axons made putative synaptic contacts at the light microscopic level with pyramidal cells and small cells, including stellate cells, granule cells, and other cartwheel cells in layers 1 and 2. The axonal plexus of individual cartwheel cells suggests that they can inhibit cells receiving input from either the same or adjacent parallel fibers and that this inhibition is distributed along the isofrequency contours of the nucleus.
Collapse
|
|
31 |
102 |
25
|
Rothman JS, Manis PB. Differential expression of three distinct potassium currents in the ventral cochlear nucleus. J Neurophysiol 2003; 89:3070-82. [PMID: 12783951 DOI: 10.1152/jn.00125.2002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the ventral cochlear nucleus (VCN), neurons transform information from auditory nerve fibers into a set of parallel ascending pathways, each emphasizing different aspects of the acoustic environment. Previous studies have shown that VCN neurons differ in their intrinsic electrical properties, including the K+ currents they express. In this study, we examine these K+ currents in more detail using whole cell voltage-clamp techniques on isolated VCN cells from adult guinea pigs at 22 degrees C. Our results show a differential expression of three distinct K+ currents. Whereas some VCN cells express only a high-threshold delayed-rectifier-like current (IHT), others express IHT in combination with a fast inactivating current (IA) and/or a slow-inactivating low-threshold current (ILT). IHT, ILT, and IA, were partially blocked by 1 mM 4-aminopyridine. In contrast, only ILT was blocked by 10-100 nM dendrotoxin-I. A surprising finding was the wide range of levels of ILT, suggesting ILT is expressed as a continuum across cell types rather than modally in a particular cell type. IA, on the other hand, appears to be expressed only in cells that show little or no ILT, the Type I cells. Boltzmann analysis shows IHT activates with 164 +/- 12 (SE) nS peak conductance, -14.3 +/- 0.7 mV half-activation, and 7.0 +/- 0.5 mV slope factor. Similar analysis shows ILT activates with 171 +/- 22 nS peak conductance, -47.4 +/- 1.0 mV half-activation, and 5.8 +/- 0.3 mV slope factor.
Collapse
|
|
22 |
90 |