1
|
Lansbury L, Lim B, Baskaran V, Lim WS. Co-infections in people with COVID-19: a systematic review and meta-analysis. J Infect 2020; 81:266-275. [PMID: 32473235 PMCID: PMC7255350 DOI: 10.1016/j.jinf.2020.05.046] [Citation(s) in RCA: 1012] [Impact Index Per Article: 202.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/23/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVES In previous influenza pandemics, bacterial co-infections have been a major cause of mortality. We aimed to evaluate the burden of co-infections in patients with COVID-19. METHODS We systematically searched Embase, Medline, Cochrane Library, LILACS and CINAHL for eligible studies published from 1 January 2020 to 17 April 2020. We included patients of all ages, in all settings. The main outcome was the proportion of patients with a bacterial, fungal or viral co-infection. . RESULTS Thirty studies including 3834 patients were included. Overall, 7% of hospitalised COVID-19 patients had a bacterial co-infection (95% CI 3-12%, n=2183, I2=92·2%). A higher proportion of ICU patients had bacterial co-infections than patients in mixed ward/ICU settings (14%, 95% CI 5-26, I2=74·7% versus 4%, 95% CI 1-9, I2= 91·7%). The commonest bacteria were Mycoplasma pneumonia, Pseudomonas aeruginosa and Haemophilus influenzae. The pooled proportion with a viral co-infection was 3% (95% CI 1-6, n=1014, I2=62·3%), with Respiratory Syncytial Virus and influenza A the commonest. Three studies reported fungal co-infections. CONCLUSIONS A low proportion of COVID-19 patients have a bacterial co-infection; less than in previous influenza pandemics. These findings do not support the routine use of antibiotics in the management of confirmed COVID-19 infection.
Collapse
|
Meta-Analysis |
5 |
1012 |
2
|
Langford BJ, So M, Raybardhan S, Leung V, Westwood D, MacFadden DR, Soucy JPR, Daneman N. Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clin Microbiol Infect 2020; 26:1622-1629. [PMID: 32711058 PMCID: PMC7832079 DOI: 10.1016/j.cmi.2020.07.016] [Citation(s) in RCA: 970] [Impact Index Per Article: 194.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/18/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bacterial co-pathogens are commonly identified in viral respiratory infections and are important causes of morbidity and mortality. The prevalence of bacterial infection in patients infected with SARS-CoV-2 is not well understood. AIMS To determine the prevalence of bacterial co-infection (at presentation) and secondary infection (after presentation) in patients with COVID-19. SOURCES We performed a systematic search of MEDLINE, OVID Epub and EMBASE databases for English language literature from 2019 to April 16, 2020. Studies were included if they (a) evaluated patients with confirmed COVID-19 and (b) reported the prevalence of acute bacterial infection. CONTENT Data were extracted by a single reviewer and cross-checked by a second reviewer. The main outcome was the proportion of COVID-19 patients with an acute bacterial infection. Any bacteria detected from non-respiratory-tract or non-bloodstream sources were excluded. Of 1308 studies screened, 24 were eligible and included in the rapid review representing 3338 patients with COVID-19 evaluated for acute bacterial infection. In the meta-analysis, bacterial co-infection (estimated on presentation) was identified in 3.5% of patients (95%CI 0.4-6.7%) and secondary bacterial infection in 14.3% of patients (95%CI 9.6-18.9%). The overall proportion of COVID-19 patients with bacterial infection was 6.9% (95%CI 4.3-9.5%). Bacterial infection was more common in critically ill patients (8.1%, 95%CI 2.3-13.8%). The majority of patients with COVID-19 received antibiotics (71.9%, 95%CI 56.1 to 87.7%). IMPLICATIONS Bacterial co-infection is relatively infrequent in hospitalized patients with COVID-19. The majority of these patients may not require empirical antibacterial treatment.
Collapse
|
Meta-Analysis |
5 |
970 |
3
|
Zhang G, Hu C, Luo L, Fang F, Chen Y, Li J, Peng Z, Pan H. Clinical features and short-term outcomes of 221 patients with COVID-19 in Wuhan, China. J Clin Virol 2020; 127:104364. [PMID: 32311650 PMCID: PMC7194884 DOI: 10.1016/j.jcv.2020.104364] [Citation(s) in RCA: 441] [Impact Index Per Article: 88.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND In late December 2019, an outbreak of acute respiratory illness, coronavirus disease 2019 (COVID-19), emerged in Wuhan, China. We aimed to study the epidemiology, clinical features and short-term outcomes of patients with COVID-19 in Wuhan, China. METHODS We performed a single center, retrospective case series study in 221 patients with laboratory confirmed SARS-CoV-2 pneumonia at a university hospital, including 55 severe patients and 166 non-severe patients, from January 2, 2020 to February 10, 2020. RESULTS Of the 221 patients with COVID-19, the median age was 55.0 years and 48.9% were male and only 8 (3.6%) patients had a history of exposure to the Huanan Seafood Market. Compared to the non-severe pneumonia patients, the median age of the severe patients was significantly older, and they were more likely to have chronic comorbidities. Most common symptoms in severe patients were high fever, anorexia and dyspnea. On admission, 33.0% patients showed leukopenia and 73.8% showed lymphopenia. In addition, the severe patients suffered a higher rate of co-infections with bacteria or fungus and they were more likely to developing complications. As of February 15, 2020, 19.0% patients had been discharged and 5.4% patients died. 80% of severe cases received ICU (intensive care unit) care, and 52.3% of them transferred to the general wards due to relieved symptoms, and the mortality rate of severe patients in ICU was 20.5%. CONCLUSIONS Patients with elder age, chronic comorbidities, blood leukocyte/lymphocyte count, procalcitonin level, co-infection and severe complications might increase the risk of poor clinical outcomes.
Collapse
|
research-article |
5 |
441 |
4
|
Klein EY, Monteforte B, Gupta A, Jiang W, May L, Hsieh Y, Dugas A. The frequency of influenza and bacterial coinfection: a systematic review and meta-analysis. Influenza Other Respir Viruses 2016; 10:394-403. [PMID: 27232677 PMCID: PMC4947938 DOI: 10.1111/irv.12398] [Citation(s) in RCA: 348] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 12/19/2022] Open
Abstract
AIM Coinfecting bacterial pathogens are a major cause of morbidity and mortality in influenza. However, there remains a paucity of literature on the magnitude of coinfection in influenza patients. METHOD A systematic search of MeSH, Cochrane Library, Web of Science, SCOPUS, EMBASE, and PubMed was performed. Studies of humans in which all individuals had laboratory confirmed influenza, and all individuals were tested for an array of common bacterial species, met inclusion criteria. RESULTS Twenty-seven studies including 3215 participants met all inclusion criteria. Common etiologies were defined from a subset of eight articles. There was high heterogeneity in the results (I(2) = 95%), with reported coinfection rates ranging from 2% to 65%. Although only a subset of papers were responsible for observed heterogeneity, subanalyses and meta-regression analysis found no study characteristic that was significantly associated with coinfection. The most common coinfecting species were Streptococcus pneumoniae and Staphylococcus aureus, which accounted for 35% (95% CI, 14%-56%) and 28% (95% CI, 16%-40%) of infections, respectively; a wide range of other pathogens caused the remaining infections. An assessment of bias suggested that lack of small-study publications may have biased the results. CONCLUSIONS The frequency of coinfection in the published studies included in this review suggests that although providers should consider possible bacterial coinfection in all patients hospitalized with influenza, they should not assume all patients are coinfected and be sure to properly treat underlying viral processes. Further, high heterogeneity suggests additional large-scale studies are needed to better understand the etiology of influenza bacterial coinfection.
Collapse
|
Meta-Analysis |
9 |
348 |
5
|
Lythgoe KA, Hall M, Ferretti L, de Cesare M, MacIntyre-Cockett G, Trebes A, Andersson M, Otecko N, Wise EL, Moore N, Lynch J, Kidd S, Cortes N, Mori M, Williams R, Vernet G, Justice A, Green A, Nicholls SM, Ansari MA, Abeler-Dörner L, Moore CE, Peto TEA, Eyre DW, Shaw R, Simmonds P, Buck D, Todd JA, Connor TR, Ashraf S, da Silva Filipe A, Shepherd J, Thomson EC, Bonsall D, Fraser C, Golubchik T. SARS-CoV-2 within-host diversity and transmission. Science 2021; 372:eabg0821. [PMID: 33688063 PMCID: PMC8128293 DOI: 10.1126/science.abg0821] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Extensive global sampling and sequencing of the pandemic virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have enabled researchers to monitor its spread and to identify concerning new variants. Two important determinants of variant spread are how frequently they arise within individuals and how likely they are to be transmitted. To characterize within-host diversity and transmission, we deep-sequenced 1313 clinical samples from the United Kingdom. SARS-CoV-2 infections are characterized by low levels of within-host diversity when viral loads are high and by a narrow bottleneck at transmission. Most variants are either lost or occasionally fixed at the point of transmission, with minimal persistence of shared diversity, patterns that are readily observable on the phylogenetic tree. Our results suggest that transmission-enhancing and/or immune-escape SARS-CoV-2 variants are likely to arise infrequently but could spread rapidly if successfully transmitted.
Collapse
|
research-article |
4 |
264 |
6
|
Wong MCS, Huang JLW, George J, Huang J, Leung C, Eslam M, Chan HLY, Ng SC. The changing epidemiology of liver diseases in the Asia-Pacific region. Nat Rev Gastroenterol Hepatol 2019; 16:57-73. [PMID: 30158570 DOI: 10.1038/s41575-018-0055-0] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This Review presents current epidemiological trends of the most common liver diseases in Asia-Pacific countries. Hepatitis B virus (HBV) remains the primary cause of cirrhosis; despite declining prevalence in most Asian nations, this virus still poses a severe threat in some territories and regions. Mortality resulting from HBV infection is declining as a result of preventive measures and antiviral treatments. The epidemiological transition of hepatitis C virus (HCV) infection has varied in the region in the past few decades, but the medical burden of infection and the prevalence of its related cancers are increasing. The lack of licensed HCV vaccines highlights the need for novel treatment strategies. The prevalence of nonalcoholic fatty liver disease (NAFLD) has risen in the past decade, mostly owing to increasingly urbanized lifestyles and dietary changes. Alternative herbal medicine and dietary supplements are major causes of drug-induced liver injury (DILI) in some countries. Complications arising from these chronic liver diseases, including cirrhosis and liver cancer, are therefore emerging threats in the Asia-Pacific region. Key strategies to control these liver diseases include monitoring of at-risk populations, implementation of national guidelines and increasing public and physician awareness, in concert with improving access to health care.
Collapse
|
Review |
6 |
237 |
7
|
Cornberg M, Lok ASF, Terrault NA, Zoulim F. Guidance for design and endpoints of clinical trials in chronic hepatitis B - Report from the 2019 EASL-AASLD HBV Treatment Endpoints Conference ‡. J Hepatol 2020; 72:539-557. [PMID: 31730789 DOI: 10.1016/j.jhep.2019.11.003] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/07/2019] [Accepted: 11/03/2019] [Indexed: 12/11/2022]
Abstract
Representatives from academia, industry, regulatory agencies, and patient groups convened in March 2019 with the primary goal of developing agreement on chronic HBV treatment endpoints to guide clinical trials aiming to 'cure' HBV. Agreement among the conference participants was reached on some key points. 'Functional' but not sterilising cure is achievable and should be defined as sustained HBsAg loss in addition to undetectable HBV DNA 6 months post-treatment. The primary endpoint of phase III trials should be functional cure; HBsAg loss in ≥30% of patients was suggested as an acceptable rate of response in these trials. Sustained virologic suppression (undetectable serum HBV DNA) without HBsAg loss 6 months after discontinuation of treatment would be an intermediate goal. Demonstrated validity for the prediction of sustained HBsAg loss was considered the most appropriate criterion for the approval of new HBV assays to determine efficacy endpoints. Clinical trials aimed at HBV functional cure should initially focus on patients with HBeAg-positive or negative chronic hepatitis, who are treatment-naïve or virally suppressed on nucleos(t)ide analogues. A hepatitis flare associated with an increase in bilirubin or international normalised ratio should prompt temporary or permanent cessation of an investigational treatment. New treatments must be as safe as existing nucleos(t)ide analogues. The primary endpoint for phase III trials for HDV coinfection should be undetectable serum HDV RNA 6 months after stopping treatment. On treatment HDV RNA suppression associated with normalisation of alanine aminotransferase is considered an intermediate goal. In conclusion, regarding HBV 'functional cure', the primary goal is sustained HBsAg loss with undetectable HBV DNA after completion of treatment and the intermediate goal is sustained undetectable HBV DNA without HBsAg loss after stopping treatment.
Collapse
|
Review |
5 |
230 |
8
|
Syller J. Facilitative and antagonistic interactions between plant viruses in mixed infections. MOLECULAR PLANT PATHOLOGY 2012; 13:204-16. [PMID: 21726401 PMCID: PMC6638836 DOI: 10.1111/j.1364-3703.2011.00734.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mixed infections of plant viruses are common in nature, and a number of important virus diseases of plants are the outcomes of interactions between causative agents. Multiple infections lead to a variety of intrahost virus-virus interactions, many of which may result in the generation of variants showing novel genetic features, and thus change the genetic structure of the viral population. Hence, virus-virus interactions in plants may be of crucial significance for the understanding of viral pathogenesis and evolution, and consequently for the development of efficient and stable control strategies. The interactions between plant viruses in mixed infections are generally categorized as synergistic or antagonistic. Moreover, mixtures of synergistic and antagonistic interactions, creating usually unpredictable biological and epidemiological consequences, are likely to occur in plants. The mechanisms of some of these are still unknown. This review aims to bring together the current knowledge on the most commonly occurring facilitative and antagonistic interactions between related or unrelated viruses infecting the same host plant. The best characterized implications of these interactions for virus-vector-host relationships are included. The terms 'synergism' and 'helper dependence' for facilitative virus-virus interactions, and 'cross-protection' and 'mutual exclusion' for antagonistic interactions, are applied in this article.
Collapse
|
Review |
13 |
228 |
9
|
Herberg JA, Kaforou M, Wright VJ, Shailes H, Eleftherohorinou H, Hoggart CJ, Cebey-Lopez M, Carter MJ, Janes VA, Gormley S, Shimizu C, Tremoulet AH, Barendregt AM, Salas A, Kanegaye J, Pollard AJ, Faust SN, Patel S, Kuijpers T, Martinon-Torres F, Burns JC, Coin LJM, Levin M. Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs Viral Infection in Febrile Children. JAMA 2016; 316:835-45. [PMID: 27552617 PMCID: PMC5997174 DOI: 10.1001/jama.2016.11236] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IMPORTANCE Because clinical features do not reliably distinguish bacterial from viral infection, many children worldwide receive unnecessary antibiotic treatment, while bacterial infection is missed in others. OBJECTIVE To identify a blood RNA expression signature that distinguishes bacterial from viral infection in febrile children. DESIGN, SETTING, AND PARTICIPANTS Febrile children presenting to participating hospitals in the United Kingdom, Spain, the Netherlands, and the United States between 2009-2013 were prospectively recruited, comprising a discovery group and validation group. Each group was classified after microbiological investigation as having definite bacterial infection, definite viral infection, or indeterminate infection. RNA expression signatures distinguishing definite bacterial from viral infection were identified in the discovery group and diagnostic performance assessed in the validation group. Additional validation was undertaken in separate studies of children with meningococcal disease (n = 24) and inflammatory diseases (n = 48) and on published gene expression datasets. EXPOSURES A 2-transcript RNA expression signature distinguishing bacterial infection from viral infection was evaluated against clinical and microbiological diagnosis. MAIN OUTCOMES AND MEASURES Definite bacterial and viral infection was confirmed by culture or molecular detection of the pathogens. Performance of the RNA signature was evaluated in the definite bacterial and viral group and in the indeterminate infection group. RESULTS The discovery group of 240 children (median age, 19 months; 62% male) included 52 with definite bacterial infection, of whom 36 (69%) required intensive care, and 92 with definite viral infection, of whom 32 (35%) required intensive care. Ninety-six children had indeterminate infection. Analysis of RNA expression data identified a 38-transcript signature distinguishing bacterial from viral infection. A smaller (2-transcript) signature (FAM89A and IFI44L) was identified by removing highly correlated transcripts. When this 2-transcript signature was implemented as a disease risk score in the validation group (130 children, with 23 definite bacterial, 28 definite viral, and 79 indeterminate infections; median age, 17 months; 57% male), all 23 patients with microbiologically confirmed definite bacterial infection were classified as bacterial (sensitivity, 100% [95% CI, 100%-100%]) and 27 of 28 patients with definite viral infection were classified as viral (specificity, 96.4% [95% CI, 89.3%-100%]). When applied to additional validation datasets from patients with meningococcal and inflammatory diseases, bacterial infection was identified with a sensitivity of 91.7% (95% CI, 79.2%-100%) and 90.0% (95% CI, 70.0%-100%), respectively, and with specificity of 96.0% (95% CI, 88.0%-100%) and 95.8% (95% CI, 89.6%-100%). Of the children in the indeterminate groups, 46.3% (63/136) were classified as having bacterial infection, although 94.9% (129/136) received antibiotic treatment. CONCLUSIONS AND RELEVANCE This study provides preliminary data regarding test accuracy of a 2-transcript host RNA signature discriminating bacterial from viral infection in febrile children. Further studies are needed in diverse groups of patients to assess accuracy and clinical utility of this test in different clinical settings.
Collapse
|
Multicenter Study |
9 |
227 |
10
|
Simmons B, Saleem J, Hill A, Riley RD, Cooke GS. Risk of Late Relapse or Reinfection With Hepatitis C Virus After Achieving a Sustained Virological Response: A Systematic Review and Meta-analysis. Clin Infect Dis 2016; 62:683-694. [PMID: 26787172 PMCID: PMC4772843 DOI: 10.1093/cid/civ948] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/30/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Treatment for hepatitis C virus (HCV) can lead to sustained virological response (SVR) in over 90% of people. Subsequent recurrence of HCV, either from late relapse or reinfection, reverses the beneficial effects of SVR. METHODS A search identified studies analysing HCV recurrence post-SVR. The recurrence rate for each study was calculated using events/person years of follow-up (PYFU). Results were pooled using a random-effects model and used to calculate 5-year recurrence risk. Three patient groups were analysed: (1) Mono-HCV infected "low-risk" patients; (2) Mono-HCV infected "high-risk" patients (injecting drug users or prisoners); (3) human immunodeficiency virus (HIV)/HCV coinfected patients. Recurrence was defined as confirmed HCV RNA detectability post-SVR. RESULTS In the 43 studies of HCV mono-infected "low-risk" patients (n = 7969) the pooled recurrence rate was 1.85/1000 PYFU (95% confidence interval [CI], .71-3.35; I(2) = 73%) leading to a summary 5-year recurrence risk of 0.95% (95% CI, .35%-1.69%). For the 14 studies of HCV monoinfected "high-risk" patients (n = 771) the pooled recurrence rate was 22.32/1000 PYFU (95% CI, 13.07-33.46; I(2) = 27%) leading to a summary 5-year risk of 10.67% (95% CI, 6.38%-15.66%). For the 4 studies of HIV/HCV coinfected patients the pooled recurrence rate was 32.02/1000 PYFU (95% CI, .00-123.49; I(2) = 96%) leading to a summary 5-year risk of 15.02% (95% CI, .00%-48.26%). The higher pooled estimates of recurrence in the high-risk and coinfected cohorts were driven by an increase in reinfection rather than late relapse. CONCLUSIONS SVR appears durable in the majority of patients at 5 years post-treatment. The large difference in 5 year event rate by risk group is driven mainly by an increased reinfection risk.
Collapse
|
Meta-Analysis |
9 |
224 |
11
|
MacIntyre CR, Chughtai AA, Barnes M, Ridda I, Seale H, Toms R, Heywood A. The role of pneumonia and secondary bacterial infection in fatal and serious outcomes of pandemic influenza a(H1N1)pdm09. BMC Infect Dis 2018; 18:637. [PMID: 30526505 PMCID: PMC6286525 DOI: 10.1186/s12879-018-3548-0] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/23/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The aim of this study was to estimate the prevalence of pneumonia and secondary bacterial infections during the pandemic of influenza A(H1N1)pdm09. METHODS A systematic review was conducted to identify relevant literature in which clinical outcomes of pandemic influenza A(H1N1)pdm09 infection were described. Published studies (between 01/01/2009 and 05/07/2012) describing cases of fatal or hospitalised A(H1N1)pdm09 and including data on bacterial testing or co-infection. RESULTS Seventy five studies met the inclusion criteria. Fatal cases with autopsy specimen testing were reported in 11 studies, in which any co-infection was identified in 23% of cases (Streptococcus pneumoniae 29%). Eleven studies reported bacterial co-infection among hospitalised cases of A(H1N1)2009pdm with confirmed pneumonia, with a mean of 19% positive for bacteria (Streptococcus pneumoniae 54%). Of 16 studies of intensive care unit (ICU) patients, bacterial co-infection identified in a mean of 19% of cases (Streptococcus pneumoniae 26%). The mean prevalence of bacterial co-infection was 12% in studies of hospitalised patients not requiring ICU (Streptococcus pneumoniae 33%) and 16% in studies of paediatric patients hospitalised in general or pediatric intensive care unit (PICU) wards (Streptococcus pneumoniae 16%). CONCLUSION We found that few studies of the 2009 influenza pandemic reported on bacterial complications and testing. Of studies which did report on this, secondary bacterial infection was identified in almost one in four patients, with Streptococcus pneumoniae the most common bacteria identified. Bacterial complications were associated with serious outcomes such as death and admission to intensive care. Prevention and treatment of bacterial secondary infection should be an integral part of pandemic planning, and improved uptake of routine pneumococcal vaccination in adults with an indication may reduce the impact of a pandemic.
Collapse
|
Historical Article |
7 |
219 |
12
|
Bai L, Zhao Y, Dong J, Liang S, Guo M, Liu X, Wang X, Huang Z, Sun X, Zhang Z, Dong L, Liu Q, Zheng Y, Niu D, Xiang M, Song K, Ye J, Zheng W, Tang Z, Tang M, Zhou Y, Shen C, Dai M, Zhou L, Chen Y, Yan H, Lan K, Xu K. Coinfection with influenza A virus enhances SARS-CoV-2 infectivity. Cell Res 2021; 31:395-403. [PMID: 33603116 PMCID: PMC7890106 DOI: 10.1038/s41422-021-00473-1] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
The upcoming flu season in the Northern Hemisphere merging with the current COVID-19 pandemic raises a potentially severe threat to public health. Through experimental coinfection with influenza A virus (IAV) and either pseudotyped or live SARS-CoV-2 virus, we found that IAV preinfection significantly promoted the infectivity of SARS-CoV-2 in a broad range of cell types. Remarkably, in vivo, increased SARS-CoV-2 viral load and more severe lung damage were observed in mice coinfected with IAV. Moreover, such enhancement of SARS-CoV-2 infectivity was not observed with several other respiratory viruses, likely due to a unique feature of IAV to elevate ACE2 expression. This study illustrates that IAV has a unique ability to aggravate SARS-CoV-2 infection, and thus, prevention of IAV infection is of great significance during the COVID-19 pandemic.
Collapse
|
research-article |
4 |
193 |
13
|
Siegel SJ, Roche AM, Weiser JN. Influenza promotes pneumococcal growth during coinfection by providing host sialylated substrates as a nutrient source. Cell Host Microbe 2015; 16:55-67. [PMID: 25011108 DOI: 10.1016/j.chom.2014.06.005] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/07/2014] [Accepted: 05/01/2014] [Indexed: 11/15/2022]
Abstract
Much of the mortality attributed to influenza virus is due to secondary bacterial pneumonia, particularly from Streptococcus pneumoniae. However, mechanisms underlying this coinfection are incompletely understood. We find that prior influenza infection enhances pneumococcal colonization of the murine nasopharynx, which in turn promotes bacterial spread to the lungs. Influenza accelerates bacterial replication in vivo, and sialic acid, a major component of airway glycoconjugates, is identified as the host-derived metabolite that stimulates pneumococcal proliferation. Influenza infection increases sialic acid and sialylated mucin availability and enhances desialylation of host glycoconjugates. Pneumococcal genes for sialic acid catabolism are required for influenza to promote bacterial growth. Decreasing sialic acid availability in vivo by genetic deletion of the major airway mucin Muc5ac or mucolytic treatment limits influenza-induced pneumococcal replication. Our findings suggest that higher rates of disease during coinfection could stem from influenza-provided sialic acid, which increases pneumococcal proliferation, colonization, and aspiration.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
187 |
14
|
Tsalik EL, Henao R, Nichols M, Burke T, Ko ER, McClain MT, Hudson LL, Mazur A, Freeman DH, Veldman T, Langley RJ, Quackenbush EB, Glickman SW, Cairns CB, Jaehne AK, Rivers EP, Otero RM, Zaas AK, Kingsmore SF, Lucas J, Fowler VG, Carin L, Ginsburg GS, Woods CW. Host gene expression classifiers diagnose acute respiratory illness etiology. Sci Transl Med 2016; 8:322ra11. [PMID: 26791949 PMCID: PMC4905578 DOI: 10.1126/scitranslmed.aad6873] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute respiratory infections caused by bacterial or viral pathogens are among the most common reasons for seeking medical care. Despite improvements in pathogen-based diagnostics, most patients receive inappropriate antibiotics. Host response biomarkers offer an alternative diagnostic approach to direct antimicrobial use. This observational cohort study determined whether host gene expression patterns discriminate noninfectious from infectious illness and bacterial from viral causes of acute respiratory infection in the acute care setting. Peripheral whole blood gene expression from 273 subjects with community-onset acute respiratory infection (ARI) or noninfectious illness, as well as 44 healthy controls, was measured using microarrays. Sparse logistic regression was used to develop classifiers for bacterial ARI (71 probes), viral ARI (33 probes), or a noninfectious cause of illness (26 probes). Overall accuracy was 87% (238 of 273 concordant with clinical adjudication), which was more accurate than procalcitonin (78%, P < 0.03) and three published classifiers of bacterial versus viral infection (78 to 83%). The classifiers developed here externally validated in five publicly available data sets (AUC, 0.90 to 0.99). A sixth publicly available data set included 25 patients with co-identification of bacterial and viral pathogens. Applying the ARI classifiers defined four distinct groups: a host response to bacterial ARI, viral ARI, coinfection, and neither a bacterial nor a viral response. These findings create an opportunity to develop and use host gene expression classifiers as diagnostic platforms to combat inappropriate antibiotic use and emerging antibiotic resistance.
Collapse
|
Observational Study |
9 |
186 |
15
|
Martin ET, Kuypers J, Wald A, Englund JA. Multiple versus single virus respiratory infections: viral load and clinical disease severity in hospitalized children. Influenza Other Respir Viruses 2012; 6:71-7. [PMID: 21668660 PMCID: PMC3175338 DOI: 10.1111/j.1750-2659.2011.00265.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Molecular testing for viral pathogens has resulted in increasing detection of multiple viruses in respiratory secretions of ill children. The clinical impact of multiple virus infections on clinical presentation and outcome is unclear. OBJECTIVES To compare clinical characteristics and viral load between children with multiple virus versus single virus illnesses. PATIENTS/METHODS Eight hundred and ninety-three residual nasal wash samples from children treated for respiratory illness at Children's Hospital, Seattle, from September 2003 to September 2004 were evaluated by quantitative PCR for respiratory syncytial virus (RSV), human metapneumovirus (hMPV), influenza (Flu), parainfluenza, adenoviruses, and coronaviruses (CoV). Illness severity and patient characteristics were abstracted from medical charts. RESULTS Coinfections were identified in 103 (18%) of 566 virus-positive samples. Adenovirus was most commonly detected in coinfections (52%), followed by CoV (50%). Illnesses with a single virus had increased risk of oxygen requirement (P = 0·02), extended hospital stays (P = 0·002), and admissions to the inpatient (P = 0·02) or intensive care units (P = 0·04). For Adv and PIV-1, multiple virus illnesses had a significantly lower viral load (log(10) copies/ml) than single virus illnesses (4·2 versus 5·6, P = 0·007 and 4·2 versus 6·9, P < 0·001, respectively). RSV, Flu-A, PIV-3, and hMPV viral loads were consistently high whether or not another virus was detected. CONCLUSIONS Illnesses with multiple virus detections were correlated with less severe disease. The relationship between viral load and multiple virus infections was virus specific, and this may serve as a way to differentiate viruses in multiple virus infections.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
171 |
16
|
Smith AM, Adler FR, Ribeiro RM, Gutenkunst RN, McAuley JL, McCullers JA, Perelson AS. Kinetics of coinfection with influenza A virus and Streptococcus pneumoniae. PLoS Pathog 2013; 9:e1003238. [PMID: 23555251 PMCID: PMC3605146 DOI: 10.1371/journal.ppat.1003238] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 02/01/2013] [Indexed: 12/12/2022] Open
Abstract
Secondary bacterial infections are a leading cause of illness and death during epidemic and pandemic influenza. Experimental studies suggest a lethal synergism between influenza and certain bacteria, particularly Streptococcus pneumoniae, but the precise processes involved are unclear. To address the mechanisms and determine the influences of pathogen dose and strain on disease, we infected groups of mice with either the H1N1 subtype influenza A virus A/Puerto Rico/8/34 (PR8) or a version expressing the 1918 PB1-F2 protein (PR8-PB1-F2(1918)), followed seven days later with one of two S. pneumoniae strains, type 2 D39 or type 3 A66.1. We determined that, following bacterial infection, viral titers initially rebound and then decline slowly. Bacterial titers rapidly rise to high levels and remain elevated. We used a kinetic model to explore the coupled interactions and study the dominant controlling mechanisms. We hypothesize that viral titers rebound in the presence of bacteria due to enhanced viral release from infected cells, and that bacterial titers increase due to alveolar macrophage impairment. Dynamics are affected by initial bacterial dose but not by the expression of the influenza 1918 PB1-F2 protein. Our model provides a framework to investigate pathogen interaction during coinfections and to uncover dynamical differences based on inoculum size and strain. Influenza virus infected individuals often become coinfected with a bacterial pathogen and, consequently, morbidity and mortality are significantly increased. A better understanding of how these pathogens interact with each other and the host is of key importance. Here, we use data from infected mice together with mathematical modeling and quantitative analyses to understand how each pathogen influences the other, and how the 1918 influenza PB1-F2 protein and the bacterial strain and dose contribute to coinfection kinetics. We find that influenza viral titers increase when Streptococcus pneumoniae is present and that the bacteria establish and grow rapidly when influenza is present. Our model and analyses suggest that the influenza infection reduces the bacterial clearance ability of alveolar macrophages and that the subsequent S. pneumoniae infection enhances viral release from infected cells. These results provide new insights into the mechanisms of influenza coinfection and the differences in pathogenesis of influenza and S. pneumoniae strains.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
156 |
17
|
Polizzotto MN, Uldrick TS, Wyvill KM, Aleman K, Marshall V, Wang V, Whitby D, Pittaluga S, Jaffe ES, Millo C, Tosato G, Little RF, Steinberg SM, Sereti I, Yarchoan R. Clinical Features and Outcomes of Patients With Symptomatic Kaposi Sarcoma Herpesvirus (KSHV)-associated Inflammation: Prospective Characterization of KSHV Inflammatory Cytokine Syndrome (KICS). Clin Infect Dis 2016; 62:730-738. [PMID: 26658701 PMCID: PMC4772848 DOI: 10.1093/cid/civ996] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/06/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Kaposi sarcoma herpesvirus (KSHV) is the cause of Kaposi sarcoma (KS), primary effusion lymphoma (PEL), and a form of Castleman disease (KSHV-MCD). Recently a KSHV-associated inflammatory cytokine syndrome (KICS) distinct from KSHV-MCD was reported. METHODS We prospectively characterized the clinical, laboratory, virologic and immunologic features of KICS by evaluating symptomatic adults with KSHV using a prespecified definition. These features and overall survival were compared with controls from 2 prospectively characterized human immunodeficiency virus (HIV)-infected cohorts, including 1 with KSHV coinfection. RESULTS All 10 KICS subjects were HIV infected males; 5 had HIV viral load (VL) suppressed <50 copies mL (median 72, range <50-74 375); all had KS and 2 also had PEL. All had multiple severe symptoms attributable to KICS: median number of symptoms 8 (6-11), median grade of worst symptom 3 (2-4). These included gastrointestinal disturbance (present in 9); edema (9); respiratory (6); and effusions (5). Laboratory abnormalities included anemia (all); hypoalbuminemia (all) and thrombocytopenia (6). None developed KSHV-MCD; 6 died with median survival from KICS diagnosis 13.6 months. KICS subjects compared with controls had more severe symptoms; lower hemoglobin and albumin; higher C-reactive protein; higher KSHV VL; elevated interleukin (IL)-6 and IL-10; and an increased risk of death (all P < .05). Anemia and hypoalbuminemia at presentation were independently associated with early death. CONCLUSIONS KICS subjects demonstrated diverse severe symptoms, a high rate of KSHV-associated tumors, high mortality, and a distinct IL-6/IL-10 signature. KICS may be an important unrecognized cause of morbidity and mortality, including symptoms previously ascribed to HIV. Exploration of KSHV-directed therapy is warranted.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
156 |
18
|
Saito M, Goel-Apaza S, Espetia S, Velasquez D, Cabrera L, Loli S, Crabtree JE, Black RE, Kosek M, Checkley W, Zimic M, Bern C, Cama V, Gilman RH, for the Norovirus Working Group in Peru. Multiple norovirus infections in a birth cohort in a Peruvian Periurban community. Clin Infect Dis 2014; 58:483-91. [PMID: 24300042 PMCID: PMC3905757 DOI: 10.1093/cid/cit763] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/25/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Human noroviruses are among the most common enteropathogens globally, and are a leading cause of infant diarrhea in developing countries. However, data measuring the impact of norovirus at the community level are sparse. METHODS We followed a birth cohort of children to estimate norovirus infection and diarrhea incidence in a Peruvian community. Stool samples from diarrheal episodes and randomly selected nondiarrheal samples were tested by polymerase chain reaction for norovirus genogroup and genotype. Excretion duration and rotavirus coinfection were evaluated in a subset of episodes. RESULTS Two hundred twenty and 189 children were followed to 1 and 2 years of age, respectively. By 1 year, 80% (95% confidence interval [CI], 75%-85%) experienced at least 1 norovirus infection and by 2 years, 71% (95% CI, 65%-77%) had at least 1 episode of norovirus-associated diarrhea. Genogroup II (GII) infections were 3 times more frequent than genogroup 1 (GI) infections. Eighteen genotypes were found; GII genotype 4 accounted for 41%. Median excretion duration was 34.5 days for GII vs 8.5 days for GI infection (P = .0006). Repeat infections by the same genogroup were common, but repeat infections by the same genotype were rare. Mean length-for-age z score at 12 months was lower among children with prior norovirus infection compared to uninfected children (coefficient: -0.33 [95% CI, -.65 to -.01]; P = .04); the effect persisted at 24 months. CONCLUSIONS Norovirus infection occurs early in life and children experience serial infections with multiple genotypes, suggesting genotype-specific immunity. An effective vaccine would have a substantial impact on morbidity, but may need to target multiple genotypes.
Collapse
|
research-article |
11 |
152 |
19
|
Pinky L, Dobrovolny HM. Coinfections of the Respiratory Tract: Viral Competition for Resources. PLoS One 2016; 11:e0155589. [PMID: 27196110 PMCID: PMC4873262 DOI: 10.1371/journal.pone.0155589] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/02/2016] [Indexed: 12/15/2022] Open
Abstract
Studies have shown that simultaneous infection of the respiratory tract with at least two viruses is common in hospitalized patients, although it is not clear whether these infections are more or less severe than single virus infections. We use a mathematical model to study the dynamics of viral coinfection of the respiratory tract in an effort to understand the kinetics of these infections. Specifically, we use our model to investigate coinfections of influenza, respiratory syncytial virus, rhinovirus, parainfluenza virus, and human metapneumovirus. Our study shows that during coinfections, one virus can block another simply by being the first to infect the available host cells; there is no need for viral interference through immune response interactions. We use the model to calculate the duration of detectable coinfection and examine how it varies as initial viral dose and time of infection are varied. We find that rhinovirus, the fastest-growing virus, reduces replication of the remaining viruses during a coinfection, while parainfluenza virus, the slowest-growing virus is suppressed in the presence of other viruses.
Collapse
|
Journal Article |
9 |
138 |
20
|
Yue H, Zhang M, Xing L, Wang K, Rao X, Liu H, Tian J, Zhou P, Deng Y, Shang J. The epidemiology and clinical characteristics of co-infection of SARS-CoV-2 and influenza viruses in patients during COVID-19 outbreak. J Med Virol 2020; 92:2870-2873. [PMID: 32530499 PMCID: PMC7307028 DOI: 10.1002/jmv.26163] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022]
Abstract
In this study, we performed a single‐centered study of 307 severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infected patients. It was found that co‐infection of SARS‐CoV‐2 and influenza virus was common during COVID‐19 outbreak. And patients coinfected with SARS‐CoV‐2 and influenza B virus have a higher risk of developing poor outcomes so a detection of both viruses was recommended during COVID‐19 outbreak.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
130 |
21
|
Ouyang T, Zhang X, Liu X, Ren L. Co-Infection of Swine with Porcine Circovirus Type 2 and Other Swine Viruses. Viruses 2019; 11:v11020185. [PMID: 30795620 PMCID: PMC6410029 DOI: 10.3390/v11020185] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Porcine circovirus 2 (PCV2) is the etiological agent that causes porcine circovirus diseases and porcine circovirus-associated diseases (PCVD/PCVAD), which are present in every major swine-producing country in the world. PCV2 infections may downregulate the host immune system and enhance the infection and replication of other pathogens. However, the exact mechanisms of PCVD/PCVAD are currently unknown. To date, many studies have reported that several cofactors, such as other swine viruses or bacteria, vaccination failure, and stress or crowding, in combination with PCV2, lead to PCVD/PCVAD. Among these cofactors, co-infection of PCV2 with other viruses, such as porcine reproductive and respiratory syndrome virus, porcine parvovirus, swine influenza virus and classical swine fever virus have been widely studied for decades. In this review, we focus on the current state of knowledge regarding swine co-infection with different PCV2 genotypes or strains, as well as with PCV2 and other swine viruses.
Collapse
|
Review |
6 |
129 |
22
|
Mutz P, Metz P, Lempp FA, Bender S, Qu B, Schöneweis K, Seitz S, Tu T, Restuccia A, Frankish J, Dächert C, Schusser B, Koschny R, Polychronidis G, Schemmer P, Hoffmann K, Baumert TF, Binder M, Urban S, Bartenschlager R. HBV Bypasses the Innate Immune Response and Does Not Protect HCV From Antiviral Activity of Interferon. Gastroenterology 2018; 154:1791-1804.e22. [PMID: 29410097 DOI: 10.1053/j.gastro.2018.01.044] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) infection is sensitive to interferon (IFN)-based therapy, whereas hepatitis B virus (HBV) infection is not. It is unclear whether HBV escapes detection by the IFN-mediated immune response or actively suppresses it. Moreover, little is known on how HBV and HCV influence each other in coinfected cells. We investigated interactions between HBV and the IFN-mediated immune response using HepaRG cells and primary human hepatocytes (PHHs). We analyzed the effects of HBV on HCV replication, and vice versa, at the single-cell level. METHODS PHHs were isolated from liver resection tissues from HBV-, HCV-, and human immunodeficiency virus-negative patients. Differentiated HepaRG cells overexpressing the HBV receptor sodium taurocholate cotransporting polypeptide (dHepaRGNTCP) and PHHs were infected with HBV. Huh7.5 cells were transfected with circular HBV DNA genomes resembling viral covalently closed circular DNA (cccDNA), and subsequently infected with HCV; this served as a model of HBV and HCV coinfection. Cells were incubated with IFN inducers, or IFNs, and antiviral response and viral replication were analyzed by immune fluorescence, reverse-transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assays, and flow cytometry. RESULTS HBV infection of dHepaRGNTCP cells and PHHs neither activated nor inhibited signaling via pattern recognition receptors. Incubation of dHepaRGNTCP cells and PHHs with IFN had little effect on HBV replication or levels of cccDNA. HBV infection of these cells did not inhibit JAK-STAT signaling or up-regulation of IFN-stimulated genes. In coinfected cells, HBV did not prevent IFN-induced suppression of HCV replication. CONCLUSIONS In dHepaRGNTCP cells and PHHs, HBV evades the induction of IFN and IFN-induced antiviral effects. HBV infection does not rescue HCV from the IFN-mediated response.
Collapse
|
|
7 |
126 |
23
|
Mostafa HH, Fissel JA, Fanelli B, Bergman Y, Gniazdowski V, Dadlani M, Carroll KC, Colwell RR, Simner PJ. Metagenomic Next-Generation Sequencing of Nasopharyngeal Specimens Collected from Confirmed and Suspect COVID-19 Patients. mBio 2020; 11:e01969-20. [PMID: 33219095 PMCID: PMC7686804 DOI: 10.1128/mbio.01969-20] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Metagenomic next-generation sequencing (mNGS) offers an agnostic approach for emerging pathogen detection directly from clinical specimens. In contrast to targeted methods, mNGS also provides valuable information on the composition of the microbiome and might uncover coinfections that may associate with disease progression and impact prognosis. To evaluate the use of mNGS for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and/or other infecting pathogens, we applied direct Oxford Nanopore long-read third-generation metatranscriptomic and metagenomic sequencing. Nasopharyngeal (NP) swab specimens from 50 patients under investigation for CoV disease 2019 (COVID-19) were sequenced, and the data were analyzed by the CosmosID bioinformatics platform. Further, we characterized coinfections and the microbiome associated with a four-point severity index. SARS-CoV-2 was identified in 77.5% (31/40) of samples positive by RT-PCR, correlating with lower cycle threshold (Ct) values and fewer days from symptom onset. At the time of sampling, possible bacterial or viral coinfections were detected in 12.5% of SARS-CoV-2-positive specimens. A decrease in microbial diversity was observed among COVID-19-confirmed patients (Shannon diversity index, P = 0.0082; Chao richness estimate, P = 0.0097; Simpson diversity index, P = 0.018), and differences in microbial communities were linked to disease severity (P = 0.022). Furthermore, statistically significant shifts in the microbiome were identified among SARS-CoV-2-positive and -negative patients, in the latter of whom a higher abundance of Propionibacteriaceae (P = 0.028) and a reduction in the abundance of Corynebacterium accolens (P = 0.025) were observed. Our study corroborates the growing evidence that increased SARS-CoV-2 RNA detection from NP swabs is associated with the early stages rather than the severity of COVID-19. Further, we demonstrate that SARS-CoV-2 causes a significant change in the respiratory microbiome. This work illustrates the utility of mNGS for the detection of SARS-CoV-2, for diagnosing coinfections without viral target enrichment or amplification, and for the analysis of the respiratory microbiome.IMPORTANCE SARS-CoV-2 has presented a rapidly accelerating global public health crisis. The ability to detect and analyze viral RNA from minimally invasive patient specimens is critical to the public health response. Metagenomic next-generation sequencing (mNGS) offers an opportunity to detect SARS-CoV-2 from nasopharyngeal (NP) swabs. This approach also provides information on the composition of the respiratory microbiome and its relationship to coinfections or the presence of other organisms that may impact SARS-CoV-2 disease progression and prognosis. Here, using direct Oxford Nanopore long-read third-generation metatranscriptomic and metagenomic sequencing of NP swab specimens from 50 patients under investigation for COVID-19, we detected SARS-CoV-2 sequences by applying the CosmosID bioinformatics platform. Further, we characterized coinfections and detected a decrease in the diversity of the microbiomes in these patients. Statistically significant shifts in the microbiome were identified among COVID-19-positive and -negative patients, in the latter of whom a higher abundance of Propionibacteriaceae and a reduction in the abundance of Corynebacterium accolens were observed. Our study also corroborates the growing evidence that increased SARS-CoV-2 RNA detection from NP swabs is associated with the early stages of disease rather than with severity of disease. This work illustrates the utility of mNGS for the detection and analysis of SARS-CoV-2 from NP swabs without viral target enrichment or amplification and for the analysis of the respiratory microbiome.
Collapse
|
research-article |
5 |
126 |
24
|
Kotob MH, Menanteau-Ledouble S, Kumar G, Abdelzaher M, El-Matbouli M. The impact of co-infections on fish: a review. Vet Res 2016; 47:98. [PMID: 27716438 PMCID: PMC5050641 DOI: 10.1186/s13567-016-0383-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/23/2016] [Indexed: 11/30/2022] Open
Abstract
Co-infections are very common in nature and occur when hosts are infected by two or more different pathogens either by simultaneous or secondary infections so that two or more infectious agents are active together in the same host. Co-infections have a fundamental effect and can alter the course and the severity of different fish diseases. However, co-infection effect has still received limited scrutiny in aquatic animals like fish and available data on this subject is still scarce. The susceptibility of fish to different pathogens could be changed during mixed infections causing the appearance of sudden fish outbreaks. In this review, we focus on the synergistic and antagonistic interactions occurring during co-infections by homologous or heterologous pathogens. We present a concise summary about the present knowledge regarding co-infections in fish. More research is needed to better understand the immune response of fish during mixed infections as these could have an important impact on the development of new strategies for disease control programs and vaccination in fish.
Collapse
|
Review |
9 |
123 |
25
|
Harapan H, Ryan M, Yohan B, Abidin RS, Nainu F, Rakib A, Jahan I, Emran TB, Ullah I, Panta K, Dhama K, Sasmono RT. Covid-19 and dengue: Double punches for dengue-endemic countries in Asia. Rev Med Virol 2021; 31:e2161. [PMID: 32946149 PMCID: PMC7536968 DOI: 10.1002/rmv.2161] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022]
Abstract
The coronavirus disease 2019 (Covid-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an international public health crisis with devastating effects. In particular, this pandemic has further exacerbated the burden in tropical and subtropical regions of the world, where dengue fever, caused by dengue virus (DENV), is already endemic to the population. The similar clinical manifestations shared by Covid-19 and dengue fever have raised concerns, especially in dengue-endemic countries with limited resources, leading to diagnostic challenges. In addition, cross-reactivity of the immune responses in these infections is an emerging concern, as pre-existing DENV-antibodies might potentially affect Covid-19 through antibody-dependent enhancement. In this review article, we aimed to raise the issue of Covid-19 and dengue fever misdiagnosis, not only in a clinical setting but also with regards to cross-reactivity between SARS-CoV-2 and DENV antibodies. We also have discussed the potential consequences of overlapping immunological cascades between dengue and Covid-19 on disease severity and vaccine development.
Collapse
|
Review |
4 |
114 |