1
|
Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci U S A 1986; 83:4167-71. [PMID: 2424019 PMCID: PMC323692 DOI: 10.1073/pnas.83.12.4167] [Citation(s) in RCA: 2018] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transforming growth factor type beta (TGF-beta), when injected subcutaneously in newborn mice, causes formation of granulation tissue (induction of angiogenesis and activation of fibroblasts to produce collagen) at the site of injection. These effects occur within 2-3 days at dose levels than 1 microgram. Parallel in vitro studies show that TGF-beta causes marked increase of either proline or leucine incorporation into collagen in either an NRK rat fibroblast cell line or early passage human dermal fibroblasts. Epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) do not cause these same in vivo and in vitro effects; in both rat and human fibroblast cultures, EGF antagonizes the effects of TGF-beta on collagen formation. We have obtained further data to support a role for TGF-beta as an intrinsic mediator of collagen formation: conditioned media obtained from activated human tonsillar T lymphocytes contain greatly elevated levels of TGF-beta compared to media obtained from unactivated lymphocytes. These activated media markedly stimulate proline incorporation into collagen in NRK cells; this effect is blocked by a specific antibody to TGF-beta. The data are all compatible with the hypothesis that TGF-beta is an important mediator of tissue repair.
Collapse
|
research-article |
39 |
2018 |
2
|
Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 1998; 238:265-72. [PMID: 9457080 DOI: 10.1006/excr.1997.3858] [Citation(s) in RCA: 1733] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A culture system that facilitates the chondrogenic differentiation of rabbit bone marrow-derived mesenchymal progenitor cells has been developed. Cells obtained in bone marrow aspirates were first isolated by monolayer culture and then transferred into tubes and allowed to form three-dimensional aggregates in a chemically defined medium. The inclusion of 10(-7) M dexamethasone in the medium induced chondrogenic differentiation of cells within the aggregate as evidenced by the appearance of toluidine blue metachromasia and the immunohistochemical detection of type II collagen as early as 7 days after beginning three-dimensional culture. After 21 days, the matrix of the entire aggregate contained type II collagen. By 14 days of culture, there was also evidence for type X collagen present in the matrix and the cells morphologically resembled hypertrophic chondrocytes. However, chondrogenic differentiation was achieved in only approximately 25% of the marrow cell preparations used. In contrast, with the addition of transforming growth factor-beta 1 (TGF-beta 1), chondrogenesis was induced in all marrow cell preparations, with or without the presence of 10(-7) M dexamethasone. The induction of chondrogenesis was accompanied by an increase in the alkaline phosphatase activity of the aggregated cells. The results of RT-PCR experiments indicated that both type IIA and IIB collagen mRNAs were detected by 7 days postaggregation as was mRNA for type X collagen. Conversely, the expression of the type I collagen mRNA was detected in the preaggregate cells but was no longer detectable at 7 days after aggregation. These results provide histological, immunohistochemical, and molecular evidence for the in vitro chondrogenic differentiation of adult mammalian progenitor cells derived from bone marrow.
Collapse
|
|
27 |
1733 |
3
|
Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 1982; 30:215-24. [PMID: 7127471 DOI: 10.1016/0092-8674(82)90027-7] [Citation(s) in RCA: 1618] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The differentiated phenotype of rabbit articular chondrocytes consists primarily of type II collagen and cartilage-specific proteoglycan. During serial monolayer culture this phenotype is lost and replaced by a complex collagen phenotype consisting predominately of type I collagen and a low level of proteoglycan synthesis. Such dedifferentiated chondrocytes reexpress the differentiated phenotype during suspension culture in firm gels of 0.5% low Tm agarose. Approximately 80% of the cells survive this transition from the flattened morphology of anchorage-dependent culture to the spherical morphology of anchorage-independent culture and then deposit characteristic proteoglycan matrix domains. The rates of proteoglycan and collagen synthesis return to those of primary chondrocytes. Using SDS-polyacrylamide gel electrophoresis of intact collagen chains and two-dimensional cyanogen bromide peptide mapping, we demonstrated a complete return to the differentiated collagen phenotype. These results emphasize the primary role of cell shape in the modulation of the chondrocyte phenotype and demonstrate a reversible system for the study of gene expression.
Collapse
|
|
43 |
1618 |
4
|
Abstract
The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the distribution and function of various collagen types in different tissues. It introduces their basic structural subunits and points out major steps in the biosynthesis and supramolecular processing of fibrillar collagens as prototypical members of this protein family. A final outlook indicates the importance of different collagen types not only for the understanding of collagen-related diseases, but also as a basis for the therapeutical use of members of this protein family discussed in other chapters of this issue.
Collapse
|
Review |
22 |
1528 |
5
|
Abstract
Embryonal carcinoma cells, the stem cells of teratocarcinomas, usually undergo extensive differentiation in vivo and in vitro to a wide variety of cell types. There exist, however, several embryonal carcinoma cell lines that have almost completely lost the capacity to differentiate, so that the cells are propagated primarily as the stem cells. Using one such cell line, F9, we have found that retinoic acid at concentrations as low as 10(-9) M induces multiple phenotypic changes in the cultures in vitro. These changes include morphological alteration at the resolution of the light microscope, elevated levels of plasminogen activator production, sensitivity to cyclic AMP compounds and increased synthesis of collagen-like proteins. The nature of these changes, as well as their independence of the continued presence of retinoic acid, are consistent with the proposition that retinoic acid induces differentiation of embryonal carcinoma cells into endoderm.
Collapse
|
|
47 |
1125 |
6
|
|
Review |
46 |
1123 |
7
|
Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney DG. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A 2003; 100:8407-11. [PMID: 12815096 PMCID: PMC166242 DOI: 10.1073/pnas.1432929100] [Citation(s) in RCA: 1058] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2003] [Indexed: 12/14/2022] Open
Abstract
Previously we described a reliable method based on immunodepletion for isolating mesenchymal stem cells (MSCs) from murine bone marrow and showed that, after intracranial transplantation, the cells migrated throughout forebrain and cerebellum and adopted neural cell fates. Here we systemically administered MSCs purified by immunodepletion from male bleomycin (BLM)-resistant BALB/c mice into female BLM-sensitive C57BL/6 recipients and quantified engraftment levels in lung by real-time PCR. Male DNA accounted for 2.21 x 10(-5)% of the total lung DNA in control-treated mice but was increased 23-fold (P = 0.05) in animals exposed to BLM before MSC transplantation. Fluorescence in situ hybridization revealed that engrafted male cells were localized to areas of BLM-induced injury and exhibited an epithelium-like morphology. Moreover, purification of type II epithelial cells from the lungs of transplant recipients resulted in a 3-fold enrichment of male, donor-derived cells as compared with whole lung tissue. MSC administration immediately after exposure to BLM also significantly reduced the degree of BLM-induced inflammation and collagen deposition within lung tissue. Collectively, these studies demonstrate that murine MSCs home to lung in response to injury, adopt an epithelium-like phenotype, and reduce inflammation and collagen deposition in lung tissue of mice challenged with BLM.
Collapse
|
research-article |
22 |
1058 |
8
|
Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. TISSUE ENGINEERING 1999; 4:415-28. [PMID: 9916173 DOI: 10.1089/ten.1998.4.415] [Citation(s) in RCA: 946] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the adult human, mesenchymal stem cells (MSCs) resident in bone marrow retain the capacity to proliferate and differentiate along multiple connective tissue lineages, including cartilage. In this study, culture-expanded human MSCs (hMSCs) of 60 human donors were induced to express the morphology and gene products of chondrocytes. Chondrogenesis was induced by culturing hMSCs in micromass pellets in the presence of a defined medium that included 100 nM dexamethasone and 10 ng/ml transforming growth factor-beta(3) (TGF-beta(3)). Within 14 days, cells secreted an extracellular matrix incorporating type II collagen, aggrecan, and anionic proteoglycans. hMSCs could be further differentiated to the hypertrophic state by the addition of 50 nM thyroxine, the withdrawal of TGF-beta(3), and the reduction of dexamethasone concentration to 1 nM. Increased understanding of the induction of chondrogenic differentiation should lead to further progress in defining the mechanisms responsible for the generation of cartilaginous tissues, their maintenance, and their regeneration.
Collapse
|
|
26 |
946 |
9
|
|
|
51 |
827 |
10
|
|
Review |
45 |
785 |
11
|
von der Mark K, Gauss V, von der Mark H, Müller P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 1977; 267:531-2. [PMID: 559947 DOI: 10.1038/267531a0] [Citation(s) in RCA: 768] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
|
48 |
768 |
12
|
|
Review |
41 |
752 |
13
|
Prockop DJ, Kivirikko KI, Tuderman L, Guzman NA. The biosynthesis of collagen and its disorders (first of two parts). N Engl J Med 1979; 301:13-23. [PMID: 449904 DOI: 10.1056/nejm197907053010104] [Citation(s) in RCA: 746] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
|
46 |
746 |
14
|
Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky AJ. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A 2002; 99:9996-10001. [PMID: 12119393 PMCID: PMC126613 DOI: 10.1073/pnas.142309999] [Citation(s) in RCA: 714] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Emerging medical technologies for effective and lasting repair of articular cartilage include delivery of cells or cell-seeded scaffolds to a defect site to initiate de novo tissue regeneration. Biocompatible scaffolds assist in providing a template for cell distribution and extracellular matrix (ECM) accumulation in a three-dimensional geometry. A major challenge in choosing an appropriate scaffold for cartilage repair is the identification of a material that can simultaneously stimulate high rates of cell division and high rates of cell synthesis of phenotypically specific ECM macromolecules until repair evolves into steady-state tissue maintenance. We have devised a self-assembling peptide hydrogel scaffold for cartilage repair and developed a method to encapsulate chondrocytes within the peptide hydrogel. During 4 weeks of culture in vitro, chondrocytes seeded within the peptide hydrogel retained their morphology and developed a cartilage-like ECM rich in proteoglycans and type II collagen, indicative of a stable chondrocyte phenotype. Time-dependent accumulation of this ECM was paralleled by increases in material stiffness, indicative of deposition of mechanically functional neo-tissue. Taken together, these results demonstrate the potential of a self-assembling peptide hydrogel as a scaffold for the synthesis and accumulation of a true cartilage-like ECM within a three-dimensional cell culture for cartilage tissue repair.
Collapse
|
research-article |
23 |
714 |
15
|
Pereira RF, Halford KW, O'Hara MD, Leeper DB, Sokolov BP, Pollard MD, Bagasra O, Prockop DJ. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci U S A 1995; 92:4857-61. [PMID: 7761413 PMCID: PMC41806 DOI: 10.1073/pnas.92.11.4857] [Citation(s) in RCA: 673] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cells from transgenic mice expressing a human mini-gene for collagen I were used as markers to follow the fate of mesenchymal precursor cells from marrow that were partially enriched by adherence to plastic, expanded in culture, and then injected into irradiated mice. Sensitive PCR assays for the marker collagen I gene indicated that few of the donor cells were present in the recipient mice after 1 week, but 1-5 months later, the donor cells accounted for 1.5-12% of the cells in bone, cartilage, and lung in addition to marrow and spleen. A PCR in situ assay on lung indicated that the donor cells diffusely populated the parenchyma, and reverse transcription-PCR assays indicated that the marker collagen I gene was expressed in a tissue-specific manner. The results, therefore, demonstrated that mesenchymal precursor cells from marrow that are expanded in culture can serve as long-lasting precursors for mesenchymal cells in bone, cartilage, and lung. They suggest that cells may be particularly attractive targets for gene therapy ex vivo.
Collapse
|
research-article |
30 |
673 |
16
|
Anfinsen CB, Scheraga HA. Experimental and theoretical aspects of protein folding. ADVANCES IN PROTEIN CHEMISTRY 1975; 29:205-300. [PMID: 237413 DOI: 10.1016/s0065-3233(08)60413-1] [Citation(s) in RCA: 659] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
Review |
50 |
659 |
17
|
Friedman SL, Roll FJ, Boyles J, Bissell DM. Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proc Natl Acad Sci U S A 1985; 82:8681-5. [PMID: 3909149 PMCID: PMC391500 DOI: 10.1073/pnas.82.24.8681] [Citation(s) in RCA: 651] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hepatic lipocytes were isolated from normal rat liver and established in culture. A virtually pure isolate was obtained by fractionating enzymatically digested liver on a discontinuous gradient of arabinogalactan. Isolated cells displayed prominent rough endoplasmic reticulum and typical cytoplasmic droplets containing vitamin A. Lipocytes in primary culture were shown by immunofluorescence to secrete collagen types I, III, and IV and also laminin. Immunoassay of culture media showed that lipocytes during the first week in culture secrete type I (72.1-86.2% of total measured soluble collagen), type III (2.6-7.2%), and type IV (11.2-29.7%) collagens. Five percent of total secreted protein was collagen compared with 0.2% in similarly cultured hepatocytes and 1.7% in sinusoidal endothelial cells, as measured by the production of peptide-bound [3H]hydroxyproline in cells incubated with [3H]proline. The calculated amount of collagen synthesized by lipocytes per microgram of cellular DNA was 10-fold greater than that produced by hepatocytes and over 20-fold greater than that produced by endothelial cells. The findings indicate that collagen synthesis and secretion are specialized functions of hepatic lipocytes, and that, in cells from normal liver, this represents production primarily of type I collagen. The phenotypic resemblance of these cells to fibroblasts supports the hypothesis that lipocytes are a major source of collagen in pathologic fibrosis and may be precursors of the fibroblast-like cells observed in liver injury.
Collapse
|
research-article |
40 |
651 |
18
|
Yoo JU, Barthel TS, Nishimura K, Solchaga L, Caplan AI, Goldberg VM, Johnstone B. The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg Am 1998; 80:1745-57. [PMID: 9875932 DOI: 10.2106/00004623-199812000-00004] [Citation(s) in RCA: 637] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mesenchymal progenitor cells provide a source of cells for the repair of musculoskeletal tissue. However, in vitro models are needed to study the mechanisms of differentiation of progenitor cells. This study demonstrated the successful induction of in vitro chondrogenesis with human bone-marrow-derived osteochondral progenitor cells in a reliable and reproducible culture system. Human bone marrow was removed and fractionated, and adherent cell cultures were established. The cells were then passaged into an aggregate culture system in a serum-free medium. Initially, the cell aggregates contained type-I collagen and neither type-II nor type-X collagen was detected. Type-II collagen was typically detected in the matrix by the fifth day, with the immunoreactivity localized in the region of metachromatic staining. By the fourteenth day, type-II and type-X collagen were detected throughout the cell aggregates, except for an outer region of flattened, perichondrial-like cells in a matrix rich in type-I collagen. Aggrecan and link protein were detected in extracts of the cell aggregates, providing evidence that large aggregating proteoglycans of the type found in cartilaginous tissues had been synthesized by the newly differentiating chondrocytic cells; the small proteoglycans, biglycan and decorin, were also detected in extracts. Immunohistochemical staining with antibodies specific for chondroitin 4-sulfate and keratan sulfate demonstrated a uniform distribution of proteoglycans throughout the extracellular matrix of the cell aggregates. When the bone-marrow-derived cell preparations were passaged in monolayer culture as many as twenty times, with cells allowed to grow to confluence at each passage, the chondrogenic potential of the cells was maintained after each passage.
Collapse
|
|
27 |
637 |
19
|
Lefebvre V, Li P, de Crombrugghe B. A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J 1998; 17:5718-33. [PMID: 9755172 PMCID: PMC1170900 DOI: 10.1093/emboj/17.19.5718] [Citation(s) in RCA: 626] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transcripts for a new form of Sox5, called L-Sox5, and Sox6 are coexpressed with Sox9 in all chondrogenic sites of mouse embryos. A coiled-coil domain located in the N-terminal part of L-Sox5, and absent in Sox5, showed >90% identity with a similar domain in Sox6 and mediated homodimerization and heterodimerization with Sox6. Dimerization of L-Sox5/Sox6 greatly increased efficiency of binding of the two Sox proteins to DNA containing adjacent HMG sites. L-Sox5, Sox6 and Sox9 cooperatively activated expression of the chondrocyte differentiation marker Col2a1 in 10T1/2 and MC615 cells. A 48 bp chondrocyte-specific enhancer in this gene, which contains several HMG-like sites that are necessary for enhancer activity, bound the three Sox proteins and was cooperatively activated by the three Sox proteins in non-chondrogenic cells. Our data suggest that L-Sox5/Sox6 and Sox9, which belong to two different classes of Sox transcription factors, cooperate with each other in expression of Col2a1 and possibly other genes of the chondrocytic program.
Collapse
|
research-article |
27 |
626 |
20
|
Clemson CM, McNeil JA, Willard HF, Lawrence JB. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 1996; 132:259-75. [PMID: 8636206 PMCID: PMC2120729 DOI: 10.1083/jcb.132.3.259] [Citation(s) in RCA: 603] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The XIST gene is implicated in X chromosome inactivation, yet the RNA contains no apparent open reading frame. An accumulation of XIST RNA is observed near its site of transcription, the inactive X chromosome (Xi). A series of molecular cytogenetic studies comparing properties of XIST RNA to other protein coding RNAs, support a critical distinction for XIST RNA; XIST does not concentrate at Xi simply because it is transcribed and processed there. Most notably, morphometric and 3-D analysis reveals that XIST RNA and Xi are coincident in 2- and 3-D space; hence, the XIST RNA essentially paints Xi. Several results indicate that the XIST RNA accumulation has two components, a minor one associated with transcription and processing, and a spliced major component, which stably associates with Xi. Upon transcriptional inhibition the major spliced component remains in the nucleus and often encircles the extra-prominent heterochromatic Barr body. The continually transcribed XIST gene and its polyadenylated RNA consistently localize to a nuclear region devoid of splicing factor/poly A RNA rich domains. XIST RNA remains with the nuclear matrix fraction after removal of chromosomal DNA. XIST RNA is released from its association with Xi during mitosis, but shows a unique highly particulate distribution. Collective results indicate that XIST RNA may be an architectural element of the interphase chromosome territory, possibly a component of nonchromatin nuclear structure that specifically associates with Xi. XIST RNA is a novel nuclear RNA which potentially provides a specific precedent for RNA involvement in nuclear structure and cis-limited gene regulation via higher-order chromatin packaging.
Collapse
|
research-article |
29 |
603 |
21
|
Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 1992; 102 ( Pt 2):341-51. [PMID: 1400636 DOI: 10.1242/jcs.102.2.341] [Citation(s) in RCA: 570] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The differentiation of adipocytic and osteogenic cells has been investigated in cultures of adult rat marrow stromal cells. Adipocytic differentiation was assessed using morphological criteria, changes in expression of procollagen mRNAs, consistent with a switch from the synthesis of predominantly fibrillar (types I and III) to basement membrane (type IV) collagen, and the induction of expression of aP2, a specific marker for differentiation of adipocytes. Osteogenic differentiation was assessed on the basis of changes in the abundance of the mRNAs for the bone/liver/kidney isozyme of alkaline phosphatase and the induction of mRNAs for bone sialoprotein and osteocalcin. In the presence of foetal calf serum and dexamethasone (10(-8) M) there was always differentiation of both adipocytic and osteogenic cells. When the steroid was present throughout primary and secondary culture the differentiation of osteogenic cells predominated. Conversely, when dexamethasone was present in secondary culture only, the differentiation of adipocytes predominated. When marrow stromal cells were cultured in the presence of dexamethasone in primary culture and dexamethasone and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3; 10(-8) M) in secondary culture, the differentiation of adipocytes was inhibited whereas the differentiation of osteogenic cells was enhanced, as assessed by an increase in expression of osteocalcin mRNA. The results, therefore, demonstrate an inverse relationship between the differentiation of adipocytic and osteogenic cells in this culture system and are consistent with the possibility that the regulation of adipogenesis and osteogenesis can occur at the level of a common precursor in vivo.
Collapse
|
|
33 |
570 |
22
|
|
Review |
24 |
561 |
23
|
Abstract
In the last few decades, a great deal of progress has been made in understanding the cellular and biochemical interplay that comprises the normal wound healing response. This response is a complex process involving intricate interactions among a variety of different cell types, structural proteins, growth factors, and proteinases. The normal wound repair process consists of three phases--inflammation, proliferation, and remodeling--that occur in a predictable sequence and comprise a series of cellular and biochemical events. A review of the biochemical and physiologic processes that regulate wound healing and the cascade of cellular events that gives rise to the healing process is presented here.
Collapse
|
Review |
27 |
533 |
24
|
Varani J, Dame MK, Rittie L, Fligiel SEG, Kang S, Fisher GJ, Voorhees JJ. Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1861-8. [PMID: 16723701 PMCID: PMC1606623 DOI: 10.2353/ajpath.2006.051302] [Citation(s) in RCA: 531] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reduced synthesis of collagen types I and III is characteristic of chronologically aged skin. The present report provides evidence that both cellular fibroblast aging and defective mechanical stimulation in the aged tissue contribute to reduced collagen synthesis. The reduction in collagen synthesis due to fibroblast aging was demonstrated by a lower in vitro production of type I procollagen by dermal fibroblasts isolated from skin of young (18 to 29 years) versus old (80+ years) individuals (82 +/- 16 versus 56 +/- 8 ng/ml; P < 0.05). A reduction in mechanical stimulation in chronologically aged skin was inferred from morphological, ultrastructural, and fluorescence microscopic studies. These studies, comparing dermal sections from young and old individuals, demonstrated a greater percentage of the cell surface attached to collagen fibers (78 +/- 6 versus 58 +/- 8%; P < 0.01) and more extensive cell spreading (1.0 +/- 0.3 vs. 0.5 +/- 0.3; P < 0.05) in young skin compared with old skin. These features are consistent with a lower level of mechanical stimulation on the cells in old versus young skin. Based on the findings presented here, we conclude that reduced collagen synthesis in chronologically aged skin reflects at least two different underlying mechanisms: cellular fibroblast aging and a lower level of mechanical stimulation.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
531 |
25
|
Ho CY, López B, Coelho-Filho OR, Lakdawala NK, Cirino AL, Jarolim P, Kwong R, González A, Colan SD, Seidman JG, Díez J, Seidman CE. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med 2010; 363:552-63. [PMID: 20818890 PMCID: PMC3049917 DOI: 10.1056/nejmoa1002659] [Citation(s) in RCA: 515] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Myocardial fibrosis is a hallmark of hypertrophic cardiomyopathy and a proposed substrate for arrhythmias and heart failure. In animal models, profibrotic genetic pathways are activated early, before hypertrophic remodeling. Data showing early profibrotic responses to sarcomere-gene mutations in patients with hypertrophic cardiomyopathy are lacking. METHODS We used echocardiography, cardiac magnetic resonance imaging (MRI), and serum biomarkers of collagen metabolism, hemodynamic stress, and myocardial injury to evaluate subjects with hypertrophic cardiomyopathy and a confirmed genotype. RESULTS The study involved 38 subjects with pathogenic sarcomere mutations and overt hypertrophic cardiomyopathy, 39 subjects with mutations but no left ventricular hypertrophy, and 30 controls who did not have mutations. Levels of serum C-terminal propeptide of type I procollagen (PICP) were significantly higher in mutation carriers without left ventricular hypertrophy and in subjects with overt hypertrophic cardiomyopathy than in controls (31% and 69% higher, respectively; P<0.001). The ratio of PICP to C-terminal telopeptide of type I collagen was increased only in subjects with overt hypertrophic cardiomyopathy, suggesting that collagen synthesis exceeds degradation. Cardiac MRI studies showed late gadolinium enhancement, indicating myocardial fibrosis, in 71% of subjects with overt hypertrophic cardiomyopathy but in none of the mutation carriers without left ventricular hypertrophy. CONCLUSIONS Elevated levels of serum PICP indicated increased myocardial collagen synthesis in sarcomere-mutation carriers without overt disease. This profibrotic state preceded the development of left ventricular hypertrophy or fibrosis visible on MRI. (Funded by the National Institutes of Health and others.)
Collapse
|
Research Support, N.I.H., Extramural |
15 |
515 |