1
|
Abstract
Factor D is unique among serine proteases in that it requires neither enzymatic cleavage for expression of proteolytic activity nor inactivation by a serpin for its control. Regulation of factor D activity is instead attained by a novel mechanism that depends on reversible conformational changes for expression and control of catalytic activity. These conformational changes are believed to be induced by the single natural substrate, C3bB, and to result in realignment of the catalytic triad, the specificity pocket, and the nonspecific substrate binding site, all of which have atypical conformations. Mutational studies have defined structural determinants responsible for these unique structural features of factor D and for the resultant low reactivity with synthetic esters.
Collapse
|
review-article |
29 |
121 |
2
|
Narayana SV, Carson M, el-Kabbani O, Kilpatrick JM, Moore D, Chen X, Bugg CE, Volanakis JE, DeLucas LJ. Structure of human factor D. A complement system protein at 2.0 A resolution. J Mol Biol 1994; 235:695-708. [PMID: 8289289 DOI: 10.1006/jmbi.1994.1021] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Factor D, an essential enzyme for the activation of the alternative pathway of the complement system, belongs to the serine protease superfamily. The crystal structure of the enzyme was solved by a combination of multiple isomorphous replacement and molecular replacement methods. The present model was refined to an R-factor of 18.8% using 23,681 observed reflections between 7.5 and 2.0 A resolution, with a root-mean-square deviation from standard bond lengths of 0.016 A. The two non-crystallographically related molecules in the triclinic unit cell have distinctive active site conformations. The protein has the general structural fold of a serine protease, but there are several unique amino acid substitutions resulting in significant alterations in the critical loops responsible for catalysis and substrate specificity in serine proteases. Factor D is the first complement serine protease whose three-dimensional structure has been determined.
Collapse
|
|
31 |
73 |
3
|
Harris CL, Abbott RJM, Smith RA, Morgan BP, Lea SM. Molecular Dissection of Interactions between Components of the Alternative Pathway of Complement and Decay Accelerating Factor (CD55). J Biol Chem 2005; 280:2569-78. [PMID: 15536079 DOI: 10.1074/jbc.m410179200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complement regulatory protein decay accelerating factor (DAF; CD55), inhibits the alternative complement pathway by accelerating decay of the convertase enzymes formed by C3b and factor B. We show, using surface plasmon resonance, that in the absence of Mg(2+), DAF binds C3b, factor B, and the Bb subunit with low affinity (K(D), 14 +/- 0.1, 44 +/- 10, and 20 +/- 7 microm, respectively). In the presence of Mg(2+), DAF bound Bb or the von Willebrand factor type A subunit of Bb with higher affinities (K(D), 1.3 +/- 0.5 and 2.2 +/- 0.1 microm, respectively). Interaction with the proenzyme C3bB was investigated by flowing factor B across a C3b-coated surface in the absence of factor D. The dissociation rate was dependent on the time of incubation, suggesting that a time-dependent conformational transition stabilized the C3b-factor B interaction. Activation by factor D (forming C3bBb) increased the complex half-life; however, the enzyme became susceptible to rapid decay by DAF, unlike the proenzyme, which was unaffected. A convertase assembled with cobra venom factor and Bb was decayed by DAF, albeit far less efficiently than C3bBb. DAF did not bind cobra venom factor, implying that Bb decay is accelerated, at least in part, through DAF binding of this subunit. It is likely that DAF binds the complex with higher affinity/avidity, promoting a conformational change in either or both subunits accelerating decay. Such analysis of component and regulator interactions will inform our understanding of inhibitory mechanisms and the ways in which regulatory proteins cooperate to control the complement cascade.
Collapse
|
|
20 |
72 |
4
|
Abstract
Complement convertases are bimolecular complexes expressing protease activity only against C3 and C5. Their action is necessary for production of the biological activities of the complement system. Formation of these complexes proceeds through sequential protein-protein interactions and proteolytic cleavages of high specificity. Recent structural, mutational and functional data on factors D and B have significantly enhanced our understanding of the assembly, action, and regulation of the alternative pathway convertase. These processes were shown to depend critically on conformational changes, only some of which are reversible. The need for such changes is dictated by the zymogen-like configurations of the active centers of these unique serine proteases. The structural determinants of some of these changes have been defined from structural and mutational analyses of the two enzymes. Transition of factor D from the zymogen-like to the catalytically active conformation is completely reversible, while the active conformation of the catalytic center of the Bb fragment of factor B is irreversibly attenuated to a great extent on dissociation of the convertase complex. Both mechanisms contribute to the regulation of the proteolytic activity of these enzymes. Additional studies are necessary for a complete description of the elegant mechanisms mediating these processes.
Collapse
|
Comparative Study |
24 |
67 |
5
|
Jing H, Babu YS, Moore D, Kilpatrick JM, Liu XY, Volanakis JE, Narayana SV. Structures of native and complexed complement factor D: implications of the atypical His57 conformation and self-inhibitory loop in the regulation of specific serine protease activity. J Mol Biol 1998; 282:1061-81. [PMID: 9753554 DOI: 10.1006/jmbi.1998.2089] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Factor D is a serine protease essential for the activation of the alternative pathway of complement. The structures of native factor D and a complex formed with isatoic anhydride inhibitor were determined at resolution of 2.3 and 1.5 A, respectively, in an isomorphous monoclinic crystal form containing one molecule per asymmetric unit. The native structure was compared with structures determined previously in a triclinic cell containing two molecules with different active site conformations. The current structure shows greater similarity with molecule B in the triclinic cell, suggesting that this may be the dominant factor D conformation in solution. The major conformational differences with molecule A in the triclinic cell are located in four regions, three of which are close to the active site and include some of the residues shown to be critical for factor D catalytic activity. The conformational flexibility associated with these regions is proposed to provide a structural basis for the previously proposed substrate-induced reversible conformational changes in factor D. The high-resolution structure of the factor D/isatoic anhydride complex reveals the binding mode of the mechanism-based inhibitor. The higher specificity towards factor D over trypsin and thrombin is based on hydrophobic interactions between the inhibitor benzyl ring and the aliphatic side-chain of Arg218 that is salt bridged with Asp189 at the bottom of the primary specificity (S1) pocket. Comparison of factor D structural variants with other serine protease structures revealed the presence of a unique "self-inhibitory loop". This loop (214-218) dictates the resting-state conformation of factor D by (1) preventing His57 from adopting active tautomer conformation, (2) preventing the P1 to P3 residues of the substrate from forming anti-parallel beta-sheets with the non-specific substrate binding loop, and (3) blocking the accessibility of Asp189 to the positive1y charged P1 residue of the substrate. The conformational switch from resting-state to active-state can only be induced by the single macromolecular substrate, C3b-bound factor B. This self-inhibitory mechanism is highly correlated with the unique functional properties of factor D, which include high specificity toward factor B, low esterolytic activity toward synthetic substrates, and absence of regulation by zymogen and serpin-like or other natural inhibitors in blood.
Collapse
|
Comparative Study |
27 |
57 |
6
|
Kock MA, Hew BE, Bammert H, Fritzinger DC, Vogel CW. Structure and function of recombinant cobra venom factor. J Biol Chem 2004; 279:30836-43. [PMID: 15131128 DOI: 10.1074/jbc.m403196200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cobra venom factor (CVF) is the complement-activating protein from cobra venom. It is a structural and functional analog of complement component C3. CVF functionally resembles C3b, the activated form of C3. Like C3b, CVF binds factor B, which is subsequently cleaved by factor D to form the bimolecular complex CVF,Bb. CVF,Bb is a C3/C5 convertase that cleaves both complement components C3 and C5. CVF is a three-chain protein that structurally resembles the C3b degradation product C3c, which is unable to form a C3/C5 convertase. Both C3 and CVF are synthesized as single-chain prepro-proteins. This study reports the recombinant expression of pro-CVF in two insect cell expression systems (baculovirus-infected Sf9 Spodoptera frugiperda cells and stably transfected S2 Drosophila melanogaster cells). In both expression systems pro-CVF is synthesized initially as a single-chain pro-CVF molecule that is subsequently proteolytically processed into a two-chain form of pro-CVF that structurally resembles C3. The C3-like form of pro-CVF can be further proteolytically processed into another two-chain form of pro-CVF that structurally resembles C3b. Unexpectedly, all three forms of pro-CVF exhibit functional activity of mature, natural CVF. Recombinant pro-CVF supports the activation of factor B in the presence of factor D and Mg2+ and depletes serum complement activity like natural CVF. The bimolecular convertase pro-CVF,Bb exhibits both C3 cleaving and C5 cleaving activity. The activity of pro-CVF and the resulting C3/C5 convertase is indistinguishable from CVF and the CVF,Bb convertase. The ability to produce active forms of pro-CVF recombinantly ensures the continued availability of an important research reagent for complement depletion because cobra venom as the source for natural CVF will be increasingly difficult to obtain as the Indian cobra is on the list of endangered species. Experimental systems to express pro-CVF recombinantly will also be invaluable for studies to delineate the structure and function relationship of CVF and its differences from C3 as well as to generate human C3 derivatives with CVF-like function for therapeutic complement depletion ("humanized CVF").
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
48 |
7
|
Jing H, Macon KJ, Moore D, DeLucas LJ, Volanakis JE, Narayana SV. Structural basis of profactor D activation: from a highly flexible zymogen to a novel self-inhibited serine protease, complement factor D. EMBO J 1999; 18:804-14. [PMID: 10022823 PMCID: PMC1171173 DOI: 10.1093/emboj/18.4.804] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The crystal structure of profactor D, determined at 2.1 A resolution with an Rfree and an R-factor of 25.1 and 20.4%, respectively, displays highly flexible or disordered conformation for five regions: N-22, 71-76, 143-152, 187-193 and 215-223. A comparison with the structure of its mature serine protease, complement factor D, revealed major conformational changes in the similar regions. Comparisons with the zymogen-active enzyme pairs of chymotrypsinogen, trypsinogen and prethrombin-2 showed a similar distribution of the flexible regions. However, profactor D is the most flexible of the four, and its mature enzyme displays inactive, self-inhibited active site conformation. Examination of the surface properties of the N-terminus-binding pocket indicates that Ile16 may play the initial positioning role for the N-terminus, and Leu17 probably also helps in inducing the required conformational changes. This process, perhaps shared by most chymotrypsinogen-like zymogens, is followed by a factor D-unique step, the re-orientation of an external Arg218 to an internal position for salt-bridging with Asp189, leading to the generation of the self-inhibited factor D.
Collapse
|
research-article |
26 |
47 |
8
|
Biesma DH, Hannema AJ, van Velzen-Blad H, Mulder L, van Zwieten R, Kluijt I, Roos D. A family with complement factor D deficiency. J Clin Invest 2001; 108:233-40. [PMID: 11457876 PMCID: PMC203023 DOI: 10.1172/jci12023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A complement factor D deficiency was found in a young woman who had experienced a serious Neisseria meningitidis infection, in a deceased family member with a history of meningitis, and in three relatives without a history of serious infections. The patient and these three relatives showed a normal activity of the classical complement pathway, but a very low activity of the alternative complement pathway and a very low capacity to opsonize Escherichia coli and N. meningitidis (isolated from the patient) for phagocytosis by normal human neutrophils. The alternative pathway-dependent hemolytic activity and the opsonizing capacity of these sera were restored by addition of purified factor D. The family had a high degree of consanguinity, and several other family members exhibited decreased levels of factor D. The gene encoding factor D was found to contain a point mutation that changed the TCG codon for serine 42 into a TAG stop codon. This mutation was found in both alleles of the five completely factor D-deficient family members and in one allele of 21 other members of the same family who had decreased or low-normal factor D levels in their serum. The gene sequence of the signal peptide of human factor D was also identified. Our report is the first, to our knowledge, to document a Factor D gene mutation. The mode of inheritance of factor D deficiency is autosomal recessive, in accordance with the localization of the Factor D gene on chromosome 19. Increased susceptibility for infections in individuals with a partial factor D deficiency is unlikely.
Collapse
|
research-article |
24 |
33 |
9
|
Perkins SJ, Smith KF, Kilpatrick JM, Volanakis JE, Sim RB. Modelling of the serine-proteinase fold by X-ray and neutron scattering and sedimentation analyses: occurrence of the fold in factor D of the complement system. Biochem J 1993; 295 ( Pt 1):87-99. [PMID: 8216242 PMCID: PMC1134824 DOI: 10.1042/bj2950087] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Solution scattering is a powerful means of determining the overall arrangement of domains in the multidomain proteins of complement. the serine-proteinase domain is central to all proteolytic events during complement activation. As models of this domain, bovine beta-trypsin, trypsinogen, alpha-chymotrypsin and chymotrypsinogen A were studied by neutron and X-ray synchrotron solution scattering. At pH 7, all the X-ray and neutron M(r) values corresponded to monomeric proteins. The X-ray radii of gyration, RG, of beta-trypsin, trypsinogen, alpha-chymotrypsin and chymotrypsinogen A (measured in positive solute-solvent contrasts) were 1.59 nm, 1.78 nm, 1.71 nm and 1.76 nm (+/- 0.05-0.11 nm) in that order. Neutron contrast variation showed that the RG at infinite contrast, RC, for these four proteins were 1.57 nm, 1.70 nm, 1.67 nm and 1.78 nm (+/- 0.03 nm) in that same order. The radial inhomogeneity of neutron-scattering density, alpha, was positive at (5-13) x 10(-5), and corresponds to the preponderance of hydrophilic residues near the protein surface. On trypsinogen activation, a small reduction in the RG value of 0.13 +/- 0.07 nm was just detectable, while the RG of chymotrypsinogen A was unchanged after activation. The RC and alpha values of the four proteins can be calculated by using crystallographic co-ordinates. The reduced RG of beta-trypsin relative to trypsinogen was explained in terms of the removal of the extended N-terminal hexapeptide of trypsinogen. The full X-ray and neutron-scattering curves in positive and negative contrasts agreed well with scattering curves calculated from crystallographic coordinates to a nominal structural resolution of 4.5 nm, provided that the internal structure was considered in neutron modelling, and that the hydration was considered in X-ray modelling. Sedimentation-coefficient data also provide information on the disposition of domains in multidomain proteins. It was found that the hydrated X-ray sphere model could be directly utilized to calculate sedimentation coefficients. X-ray scattering on factor D showed from its RG of 1.78 nm that this is monomeric and very similar in structure to beta-trypsin. The X-ray-scattering curve of factor D was readily modelled using the beta-trypsin crystal structure after allowance for sequence changes. The success of these modellings provides a basis for the constrained modelling of solution scattering data for the multidomain proteins of complement.
Collapse
|
research-article |
32 |
32 |
10
|
Forneris F, Burnley BT, Gros P. Ensemble refinement shows conformational flexibility in crystal structures of human complement factor D. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:733-43. [PMID: 24598742 PMCID: PMC3949522 DOI: 10.1107/s1399004713032549] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/29/2013] [Indexed: 11/16/2022]
Abstract
Human factor D (FD) is a self-inhibited thrombin-like serine proteinase that is critical for amplification of the complement immune response. FD is activated by its substrate through interactions outside the active site. The substrate-binding, or `exosite', region displays a well defined and rigid conformation in FD. In contrast, remarkable flexibility is observed in thrombin and related proteinases, in which Na(+) and ligand binding is implied in allosteric regulation of enzymatic activity through protein dynamics. Here, ensemble refinement (ER) of FD and thrombin crystal structures is used to evaluate structure and dynamics simultaneously. A comparison with previously published NMR data for thrombin supports the ER analysis. The R202A FD variant has enhanced activity towards artificial peptides and simultaneously displays active and inactive conformations of the active site. ER revealed pronounced disorder in the exosite loops for this FD variant, reminiscent of thrombin in the absence of the stabilizing Na(+) ion. These data indicate that FD exhibits conformational dynamics like thrombin, but unlike in thrombin a mechanism has evolved in FD that locks the unbound native state into an ordered inactive conformation via the self-inhibitory loop. Thus, ensemble refinement of X-ray crystal structures may represent an approach alternative to spectroscopy to explore protein dynamics in atomic detail.
Collapse
|
research-article |
11 |
30 |
11
|
Abstract
Factor D of carp (Cyprinus carpio) complement was purified to apparent homogeneity by a 4-step chromatographic procedure and examined for physicochemical and functional properties. Carp factor D proved to be an alpha-globulin with a molecular mass of 29 kDa and the serum concentration was estimated to be 6 micrograms/ml. The NH2-terminal amino acid sequence (30 residues including five unidentified positions) of carp factor D showed high homologies (57-60%) to those of mammalian factor D. Neither functional compatibility nor common antigenicity was observed between carp and human factor D. This report is apparently the first description on the factor D molecule in a non-mammalian species.
Collapse
|
|
31 |
26 |
12
|
Taylor FR, Bixler SA, Budman JI, Wen D, Karpusas M, Ryan ST, Jaworski GJ, Safari-Fard A, Pollard S, Whitty A. Induced fit activation mechanism of the exceptionally specific serine protease, complement factor D. Biochemistry 1999; 38:2849-59. [PMID: 10052957 DOI: 10.1021/bi982140f] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated the mechanism by which the complement protease, Factor D, achieves its high specificity for the cleavage of Factor B in complex with C3(H2O). Kinetic experiments showed that Factor B and C3(H2O) associate with a KD of >/=2.5 microM and that Factor D acts on this complex with a second-order rate constant of kcat/KM >/= 2 x 10(6) M-1 s-1, close to the rate of a diffusion-controlled reaction for proteins of this size. In contrast, Factor D, which is a member of the trypsin family of serine proteases, was 10(3)-10(4)-fold less active than trypsin toward both thioester and p-nitroanilide substrates containing an arginine at P1. Furthermore, peptides spanning the Factor B cleavage site were not detectably cleaved by Factor D (kcat/KM </= 0.5 M-1 s-1). These results imply that contacts between Factor D and the C3(H2O)B complex, outside the vicinity of the cleavage site in Factor B, generate >/=9 kcal/mol of binding energy to stabilize the transition state for reaction. In support of this, we demonstrate that chemical modification of Factor D at a single lysine residue that is distant from the active site abolishes the activity of the enzyme toward Factor B while not affecting activity toward small synthetic substrates. We propose that Factor D may exemplify a special case of the induced fit mechanism in which the requirement for conformational activation of the enzyme results in a substantial increase in substrate specificity.
Collapse
|
|
26 |
24 |
13
|
Perkins SJ, Smith KF. Identity of the putative serine-proteinase fold in proteins of the complement system with nine relevant crystal structures. Biochem J 1993; 295 ( Pt 1):109-14. [PMID: 8216203 PMCID: PMC1134826 DOI: 10.1042/bj2950109] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The serine-proteinase domain is responsible for the proteolytic events that occur during complement activation. The sequences of nine serine proteinases of known crystal structure were compared with the serine-proteinase sequences in the six complement proteins C1r, C1s, C2, factor B, factor I and factor D to assess the degree of structural homology of the latter with the crystal structures. All sequence insertions and deletions were readily located at the protein surface. The internal location of disulphide bridges and the surface location of putative glycosylation sites are compatible with this structure. Secondary-structure predictions for the sequences were fully consistent with the crystal structures. It is concluded that the double subdomain beta-sheet motif is retained in the complement sequences, but that localized differences are observed for factor I, C2 and factor B.
Collapse
|
research-article |
32 |
23 |
14
|
Kim S, Narayana SV, Volanakis JE. Mutational analysis of the substrate binding site of human complement factor D. Biochemistry 1994; 33:14393-9. [PMID: 7981199 DOI: 10.1021/bi00252a004] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Complement factor D is a serine protease with a single natural substrate, C3b-complexed factor B, and very low catalytic activity against synthetic esters. The recently solved X-ray crystal structure of factor D has demonstrated certain key differences from other serine protease in the conformation of residues of the catalytic triad and the substrate-binding regions. To investigate possible contributions of unique amino acid substitutions to these distinct structural and functional features of factor D, we constructed a series of mutants by substituting trypsin substrate-binding residues for the corresponding factor D residues. Wild-type and seven mutant factor D cDNAs were expressed stably in Chinese hamster ovary cells, and the recombinant proteins were purified from culture supernatants and assayed by hemolytic, proteolytic, and esterolytic assays. The combined results indicate that residues Thr-198, Ser-199, Arg-202, and perhaps also Val-203 provide determinants for substrate binding and catalysis. The data also provide additional support for the hypothesis that the proteolytically active conformation of the active center of factor D is induced by its substrate, C3bB.
Collapse
|
|
31 |
23 |
15
|
Cole LB, Kilpatrick JM, Chu N, Babu YS. Structure of 3,4-dichloroisocoumarin-inhibited factor D. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 1998; 54:711-7. [PMID: 9757085 DOI: 10.1107/s0907444997010457] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Factor D (D) is a serine protease essential in the activation of the alternative complement pathway. Only a few of the common serine protease inhibitors inhibit D, binding covalently to the serine hydroxyl of the catalytic triad. 3,4-Dichloroisocoumarin (DCI) is a mechanism-based inhibitor which inhibits most serine proteases and many esterases, including D. The structure of the enzyme:inhibitor covalent adduct of D with DCI, DCI:D, to a resolution of 1.8 A is described, which represents the first structural analysis of D with a mechanism-based inhibitor. The side chain of the ring-opened DCI moiety of the protein adduct undergoes chemical modification in the buffered solution, resulting in the formation of an alpha-hydroxy acid moiety through the nucleophilic substitution of both Cl atoms. The inhibited enzyme is similar in overall structure to the native enzyme, as well as to a variety of isocoumarin-inhibited trypsin and porcine pancreatic elastase (PPE) structures, yet notable differences are observed in the active site and binding mode of these small-molecule inhibitors. One region of the active site (residues 189-195) is relatively conserved between factor D, trypsin, and elastase with respect to amino-acid sequence and to conformation. Another region (residues 214-220) reflects the amino-acid substitutions and conformational flexibility between these enzymes. The carbonyl O atom of the DCI moiety was found to be oriented away from the oxyanion hole, which greatly contributes to the stability of the DCI:D adduct. The comparisons of the active sites between native factor D, DCI-inhibited factor D, and various inhibited trypsin and elastase (PPE) molecules are providing the chemical bases directing our design of novel, small-molecule pharmaceutical agents capable of modulating the alternative complement pathway.
Collapse
|
Comparative Study |
27 |
23 |
16
|
Pascual M, Plastre O, Montdargent B, Labarre D, Schifferli JA. Specific interactions of polystyrene biomaterials with factor D of human complement. Biomaterials 1993; 14:665-70. [PMID: 8399963 DOI: 10.1016/0142-9612(93)90065-a] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The contact of blood with some biomaterials results in complement activation, primarily by the alternative pathway (AP). Insoluble polystyrene derivatives bearing isolated sulphonate groups (PSSO3) deplete complement, whereas identical surfaces substituted with both sulphonate and hydroxymethyl groups (PSCH2OH-SO3) are non-activators. Polystyrene sulphonate derivatives possess high adsorptive properties, particularly for serine proteases of the coagulation cascade. Thus, we studied the interactions between polystyrene derivatives and factor D, an enzyme essential for AP activation. C3 was activated when normal human serum (NHS) was incubated with PSSO3, whereas PSCH2OH-SO3 did not induce any specific C3 activation. Both polymers adsorbed factor D from serum, as shown by the loss of haemolytic factor D from NHS incubated with the polymers and by the specific adsorption of radiolabelled factor D. When bound to the polymers, factor D was not functional. The disappearance of factor D was in contradiction to the observed complement activation induced by PSSO3. When other AP components were studied, it was evident that PSSO3 adsorbed factor H even more rapidly and efficiently than factor D. Thus, the net effect was an immediate deregulation of the AP resulting in C3 activation, followed by inhibition of the AP when factor D was finally depleted. Pre-exposure of PSSO3 to NHS prevented any complement activation because the polymer was saturated with factor H, but still adsorbed factor D. Such properties could be beneficial during haemodialysis with membranes for uremic patients who have increased levels of factor D in their serum.
Collapse
|
|
32 |
20 |
17
|
Sng CCT, O'Byrne S, Prigozhin DM, Bauer MR, Harvey JC, Ruhle M, Challis BG, Lear S, Roberts LD, Workman S, Janowitz T, Magiera L, Doffinger R, Buckland MS, Jodrell DJ, Semple RK, Wilson TJ, Modis Y, Thaventhiran JED. A type III complement factor D deficiency: Structural insights for inhibition of the alternative pathway. J Allergy Clin Immunol 2018; 142:311-314.e6. [PMID: 29522842 PMCID: PMC6034011 DOI: 10.1016/j.jaci.2018.01.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 01/24/2023]
|
Case Reports |
7 |
10 |
18
|
Hinshelwood J, Perkins SJ. Conformational changes during the assembly of factor B from its domains by (1)H NMR spectroscopy and molecular modelling: their relevance to the regulation of factor B activity. J Mol Biol 2000; 301:1267-85. [PMID: 10966820 DOI: 10.1006/jmbi.2000.4044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Factor B is a key component of the alternative pathway of complement and is cleaved by factor D into the Ba and Bb fragments in the presence of activated C3 (C3b or C3(H(2)O)). The Ba fragment contains three short consensus/complement repeat domains, while the Bb fragment contains a von Willebrand factor type A (vWF-A) domain and a serine protease (SP) domain, all three of which are implicated in multisite contacts with C3. The upfield-shifted signals in the (1)H NMR spectra of factor B, the Ba and Bb fragments, and the vWF-A and SP domains were used as sensitive conformational probes of their structures. Temperature studies and pH titrations showed that the Ba fragment and the vWF-A and SP domains had conformationally mobile structures. The comparison of the NMR spectra of the SP domains of both factor B and factor D showed that the factor D linewidths were broader than those for factor B, which may result from a range of proteolytically inactive conformations of factor D in the absence of substrate. The NMR spectra from the separate vWF-A and SP domains in combination with that of the Ba fragment generally accounted for that of intact factor B, apart from the perturbation of an upfield-shifted signal from the Ba fragment. A new upfield-shifted signal was observed in the Bb fragment that was not detected in the spectra for the vWF-A or SP domains or intact factor B. Ring current calculations based on homology models or crystal structures predicted that buried hydrophobic methyl-aromatic interactions probably accounted for the upfield-shifted signals, with many arising from the N-terminal subdomain of the SP domain to which the C terminus of the vWF-A domain is directly linked. It was concluded that: (1) the conformation of the free SP domain is better ordered in solution than that of factor D; (2) the conformation of the Ba fragment is affected by its incorporation into factor B; and (3) the proximity of the vWF-A and SP domains within the Bb fragment leads to a conformational change in which conserved charged residues may be important. Allosteric structural rearrangements in the SP domain as the result of its interactions with the vWF-A domain or the Ba fragment provide an explanation of the regulation of the catalytic activity of factor B.
Collapse
|
|
25 |
8 |
19
|
Baker BC, Campbell CJ, Grinham CJ, Turcatti G. Purification and partial characterization of rat factor D. Biochem J 1991; 279 ( Pt 3):775-9. [PMID: 1953671 PMCID: PMC1151513 DOI: 10.1042/bj2790775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rat factor D has been purified to homogeneity (10,559-fold) from serum by chromatography on CM-Sepharose Fast Flow, phenyl-Sepharose CL-4B and Mono S and has been shown to resemble its human and mouse counterparts both in substrate specificity and in its susceptibility to inhibition by the organophosphorous inhibitor di-isopropylfluorophosphate. The rat enzyme, however, is heavily glycosylated and binds to wheat-germ lectin-Sepharose 6MB and 5-hydroxytryptamine-agarose, but not to concanavalin A-Sepharose 4B. All of the carbohydrate chains are N-linked. Enzymic removal of this carbohydrate decreased the Mr by approx. 15,000. The deglycosylated rat enzyme had the same mobility as native human factor D on SDS/PAGE, corresponding to an Mr of 24,500. N-Terminal sequence analysis of the first 30 amino acids of rat factor D highlighted the sequence similarity with human factor D (greater than 76%) and, in particular, with mouse adipsin (greater than 93%).
Collapse
|
research-article |
34 |
6 |
20
|
Murakami Y, Iwata H, Kitano E, Kitamura H, Ikada Y. Interaction of poly(styrene sulfonic acid) with the alternative pathway of the serum complement system. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2005; 16:381-95. [PMID: 15850291 DOI: 10.1163/1568562053654095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bioartificial pancreas, in which the islets of Langerhans are enclosed in artificial membrane to be protected from the host immune system, is expected to be a promising medical device to treat patients who suffer from insulin-dependent diabetes. Our strategy for preparation of a bioartificial pancreas involves utilizing a membrane including polymeric materials that can inhibit the complement reaction. In this study, we examined the effects of poly(styrene sulfonic acid) (PSSa) on the alternative pathway of the serum complement system to identify the mechanism(s) involved. PSSa was dissolved in pooled normal human serum (NHS), and the mixtures were incubated at 37 degrees C for 30 min. Complement activities in sera were determined by hemolytic assays. Amounts of complement activation products released were determined by ELISA. Interactions of PSSa with complement components and fragments were examined with electrophoresis and immunoblotting. From these examinations, it appeared that the manner of PSSa effects on the alternative pathway (AP) highly depends on its concentration. PSSa seemingly acted as an activator when its concentration was 0.005 g/dl to 0.05 g/dl, while it acted as an inhibitor when its concentration was more than 0.1 g/dl. In terms of activation or inhibition of the AP, forming complex of PSSa with factor H induced activation, and that with factor D induced inhibition.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
5 |
21
|
|
|
26 |
4 |
22
|
Kong HJ, Hong GE, Nam BH, Kim YO, Kim WJ, Lee SJ, Lee NS, Do JW, Cho HK, Cheong J, Lee CH, Kim KK. An immune responsive complement factor D/adipsin and kallikrein-like serine protease (PoDAK) from the olive flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2009; 27:486-492. [PMID: 19591942 DOI: 10.1016/j.fsi.2009.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 06/26/2009] [Accepted: 06/26/2009] [Indexed: 05/28/2023]
Abstract
The cDNA encoding of a complement factor D/adipsin and kallikrein-like serine protease, designated PoDAK, was isolated from the olive flounder Paralichthys olivaceus. PoDAK cDNA encodes a polypeptide with 277 amino acids containing conserved catalytic triad residues of serine proteases. The amino acid sequence of PoDAK showed high similarity to the kallikrein-like protein of medaka, mammalian adipsin/complement factor D and tissue kallikrein homolog, KT-14 of trout, complement factor D of zebrafish, and shared 31.6-36.8% homology with complement factor D/adipsin known from other species, including mammals. Phylogenetic analysis revealed that PoDAK clustered with the kallikrein-like protein of medaka and mammalian adipsin/complement factor D and tissue kallikrein homolog KT-14 of trout. The expression of PoDAK mRNA was high in the gills and heart, moderate in muscle, liver, intestine, stomach, kidney, and spleen of healthy flounder, and increased in the kidney, liver, and spleen of flounder challenged by the viral hemorrhagic septicemia virus (VHSV) or Streptococcus iniae. In situ hybridization confirmed that PoDAK mRNA is localized in the kidney and heart of individuals infected with VHSV. Further investigations are needed to clarify the function of PoDAK in vivo and in vitro.
Collapse
|
|
16 |
4 |
23
|
Narayana SV, Kilpatrick JM, el-Kabbani O, Babu YS, Bugg CE, Volanakis JE, DeLucas LJ. Crystallization and preliminary X-ray investigation of factor D of human complement. J Mol Biol 1991; 219:1-3. [PMID: 2023254 DOI: 10.1016/0022-2836(91)90851-v] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human factor D, an essential enzyme of the alternative pathway of complement activation, has been crystallized. Crystals were grown by vapor diffusion using polyethylene glycol 6000 and NaCl as precipitants. The factor D crystals are triclinic and the space group is P1 with unit cell dimensions a = 40.8 A, b = 64.7 A, c = 40.3 A, alpha = 101.0 degrees, beta = 109.7 degrees, gamma = 74.3 degrees. The unit cell contains two molecules of factor D related by a non-crystallographic 2-fold axis. The crystals grow to dimensions of 0.8 mm x 0.5 mm x 0.2 mm within five days, are stable in the X-ray beam and diffract beyond 2.5 A.
Collapse
|
|
34 |
4 |
24
|
Ding M, Fan J, Wang W, Wang H, Liu H. Molecular characterization, expression and antimicrobial activity of complement factor D in Megalobrama amblycephala. FISH & SHELLFISH IMMUNOLOGY 2019; 89:43-51. [PMID: 30890434 DOI: 10.1016/j.fsi.2019.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/23/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Complement factor D (Df) is a serine protease, which can activate the alternative pathway by cleaving complement factor B, and involves in the innate defense against pathogens infection in teleost. In this study, we cloned, characterized the Df gene from blunt snout bream (Megalobrama amblycephala) (Mamdf), and examined its expression pattern and antimicrobial activity. The open reading frame (ORF) of Mamdf was 753 bp, encoding 250 amino acids with a molecular mass of 27.2 kDa. Mamdf consisted of a single serine protease trypsin superfamily domain, 3 substrate binding sites and 3 active sites, but no potential N-glycosylation site. Pairwise alignment showed that Mamdf shared the highest identity (94%) with grass carp (Ctenopharyngodon idellus). Phylogenetic analysis indicated that Mamdf and other vertebrate Df had a common ancestral origin. Mamdf structured with 4 introns and 5 exons. The Mamdf mRNA expressed relatively high at the intestine appearance stage during early development and constitutively expressed in various tissues with the highest expression in the kidney in healthy adults. After challenged with Aeromonas hydrophila, significant changes of Mamdf at both mRNA and protein levels in the kidney, spleen, liver and head-kidney were observed. The recombinant Mamdf protein showed antimicrobial activity against both gram-positive bacteria and gram-negative bacteria. The above results suggested the immune function of Mamdf, and would benefit further detailed Df function research in the immune process in teleost.
Collapse
|
|
6 |
3 |
25
|
Godahewa GI, Perera NCN, Bathige SDNK, Nam BH, Noh JK, Lee J. Complement factor D homolog involved in the alternative complement pathway of rock bream (Oplegnathus fasciatus): Molecular and functional characterization and immune responsive mRNA expression analysis. FISH & SHELLFISH IMMUNOLOGY 2016; 55:423-433. [PMID: 27311435 DOI: 10.1016/j.fsi.2016.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/06/2016] [Accepted: 06/11/2016] [Indexed: 06/06/2023]
Abstract
The complement system serves conventional role in the innate defense against common invading pathogens. Complement factor D (CfD) is vital to alternative complement pathway activation in cleaving complement factor B. This catalytic reaction forms the alternative C3 convertase that is crucial for complement-mediated pathogenesis. In this study, rock bream (Oplegnathus fasciatus) CfD (OfCfD) was characterized and OfCfD mRNA expression was investigated. OfCfD encodes 277 amino acids (aa) for a 30-kDa polypeptide. A domain analysis of the deduced OfCfD aa sequence showed a single serine protease trypsin superfamily domain, a serine active region, three active sites, and three substrate-binding sites. Pairwise sequence comparisons indicated that OfCfD has the highest identity (84.5%) with Oreochromis niloticus CfD. The phylogenetic tree revealed a common ancestral origin of CfD members, with fish CfD distinct from other vertebrate orthologs. The structural arrangement of the OfCfD gene (2451 bp) contained five exons interrupted by four introns. A spatial transcriptional analysis indicated that OfCfD transcripts constitutively expressed in all of the examined rock bream tissues, and that they were highest in the spleen and liver. In addition, OfCfD transcripts were immunologically upregulated by lipopolysaccharide (LPS) (12 h p.i.), Streptococcus iniae (12 h p.i.), rock bream iridovirus (RBIV) (6-12 h p.i.), and poly I:C (6 h p.i.) in spleen tissue. OfCfD is a trypsin protease and its recombinant protein showed strong protease activity similar to that of trypsin, indicating its catalytic function in the alternative pathway. Together, our findings suggest that OfCfD might be involved in immune responses in rock bream.
Collapse
|
|
9 |
2 |