1
|
Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh. J. Complement factor H polymorphism in age-related macular degeneration. Science 2005; 308:385-9. [PMID: 15761122 PMCID: PMC1512523 DOI: 10.1126/science.1109557] [Citation(s) in RCA: 3092] [Impact Index Per Article: 154.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Age-related macular degeneration (AMD) is a major cause of blindness in the elderly. We report a genome-wide screen of 96 cases and 50 controls for polymorphisms associated with AMD. Among 116,204 single-nucleotide polymorphisms genotyped, an intronic and common variant in the complement factor H gene (CFH) is strongly associated with AMD (nominal P value <10(-7)). In individuals homozygous for the risk allele, the likelihood of AMD is increased by a factor of 7.4 (95% confidence interval 2.9 to 19). Resequencing revealed a polymorphism in linkage disequilibrium with the risk allele representing a tyrosine-histidine change at amino acid 402. This polymorphism is in a region of CFH that binds heparin and C-reactive protein. The CFH gene is located on chromosome 1 in a region repeatedly linked to AMD in family-based studies.
Collapse
|
research-article |
20 |
3092 |
2
|
Rodríguez de Córdoba S, Esparza-Gordillo J, Goicoechea de Jorge E, Lopez-Trascasa M, Sánchez-Corral P. The human complement factor H: functional roles, genetic variations and disease associations. Mol Immunol 2004; 41:355-67. [PMID: 15163532 DOI: 10.1016/j.molimm.2004.02.005] [Citation(s) in RCA: 418] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 02/04/2004] [Accepted: 02/05/2004] [Indexed: 11/24/2022]
Abstract
Factor H is an essential regulatory protein that plays a critical role in the homeostasis of the complement system in plasma and in the protection of bystander host cells and tissues from damage by complement activation. Genetic and structural data generated during recent years have been instrumental to delineate the functional domains responsible for these regulatory activities in factor H, which is helping to understand the molecular basis underlying the different pathologies associated to factor H. This review summarises our current knowledge of the role of factor H in health and disease.
Collapse
|
Review |
21 |
418 |
3
|
Hellwage J, Meri T, Heikkilä T, Alitalo A, Panelius J, Lahdenne P, Seppälä IJ, Meri S. The complement regulator factor H binds to the surface protein OspE of Borrelia burgdorferi. J Biol Chem 2001; 276:8427-35. [PMID: 11113124 DOI: 10.1074/jbc.m007994200] [Citation(s) in RCA: 277] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Spirochete bacteria of the Borrelia burgdorferi sensu lato complex cause Lyme borreliosis. The three pathogenic subspecies Borrelia garinii, Borrelia afzelii, and Borrelia burgdorferi sensu stricto differ in their disease profiles and susceptibility to complement lysis. We investigated whether complement resistance of Borreliae could be due to acquisition of the main soluble inhibitors of the alternative complement pathway, factor H and the factor H-like protein 1. When exposed to nonimmune EDTA-plasma, the serum-resistant B. afzelii and B. burgdorferi sensu stricto strains bound factor H/factor H-like protein 1 to their surfaces. Assays with radiolabeled proteins showed that factor H bound strongly to the B. burgdorferi sensu stricto strain. To identify factor H ligands on the borrelial surface, we analyzed a panel of outer surface proteins of B. burgdorferi sensu stricto with the surface plasmon resonance technique. The outer surface lipoprotein OspE was identified as a specific ligand for factor H. Using recombinant constructs of factor H, the binding site for OspE was localized to the C-terminal short consensus repeat domains 15-20. Specific binding of factor H to B. burgdorferi sensu stricto OspE may help the pathogen to evade complement attack and phagocytosis.
Collapse
|
|
24 |
277 |
4
|
Wu J, Wu YQ, Ricklin D, Janssen BJC, Lambris JD, Gros P. Structure of complement fragment C3b-factor H and implications for host protection by complement regulators. Nat Immunol 2009; 10:728-33. [PMID: 19503104 PMCID: PMC2713992 DOI: 10.1038/ni.1755] [Citation(s) in RCA: 275] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 05/14/2009] [Indexed: 01/28/2023]
Abstract
Factor H (FH) is an abundant regulator of complement activation and protects host cells from self-attack by complement. Here we provide insight into the regulatory activity of FH by solving the crystal structure of the first four domains of FH in complex with its target, complement fragment C3b. FH interacted with multiple domains of C3b, covering a large, extended surface area. The structure indicated that FH destabilizes the C3 convertase by competition and electrostatic repulsion and that FH enables proteolytic degradation of C3b by providing a binding platform for protease factor I while stabilizing the overall domain arrangement of C3b. Our results offer general models for complement regulation and provide structural explanations for disease-related mutations in the genes encoding both FH and C3b.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
275 |
5
|
Schneider MC, Prosser BE, Caesar JJE, Kugelberg E, Li S, Zhang Q, Quoraishi S, Lovett JE, Deane JE, Sim RB, Roversi P, Johnson S, Tang CM, Lea SM. Neisseria meningitidis recruits factor H using protein mimicry of host carbohydrates. Nature 2009; 458:890-3. [PMID: 19225461 PMCID: PMC2670278 DOI: 10.1038/nature07769] [Citation(s) in RCA: 266] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 01/12/2009] [Indexed: 11/08/2022]
Abstract
The complement system is an essential component of the innate and acquired immune system, and consists of a series of proteolytic cascades that are initiated by the presence of microorganisms. In health, activation of complement is precisely controlled through membrane-bound and soluble plasma-regulatory proteins including complement factor H (fH; ref. 2), a 155 kDa protein composed of 20 domains (termed complement control protein repeats). Many pathogens have evolved the ability to avoid immune-killing by recruiting host complement regulators and several pathogens have adapted to avoid complement-mediated killing by sequestering fH to their surface. Here we present the structure of a complement regulator in complex with its pathogen surface-protein ligand. This reveals how the important human pathogen Neisseria meningitidis subverts immune responses by mimicking the host, using protein instead of charged-carbohydrate chemistry to recruit the host complement regulator, fH. The structure also indicates the molecular basis of the host-specificity of the interaction between fH and the meningococcus, and informs attempts to develop novel therapeutics and vaccines.
Collapse
|
research-article |
16 |
266 |
6
|
Pérez-Caballero D, González-Rubio C, Gallardo ME, Vera M, López-Trascasa M, Rodríguez de Córdoba S, Sánchez-Corral P. Clustering of missense mutations in the C-terminal region of factor H in atypical hemolytic uremic syndrome. Am J Hum Genet 2001; 68:478-84. [PMID: 11170895 PMCID: PMC1235280 DOI: 10.1086/318201] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2000] [Accepted: 12/12/2000] [Indexed: 12/16/2022] Open
Abstract
Hemolytic-uremic syndrome (HUS) is a microvasculature disorder leading to microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. Most cases of HUS are associated with epidemics of diarrhea caused by verocytotoxin-producing bacteria, but atypical cases of HUS not associated with diarrhea (aHUS) also occur. Early studies describing the association of aHUS with deficiencies of factor H suggested a role for this complement regulator in aHUS. Molecular evidence of factor H involvement in aHUS was first provided by Warwicker et al., who demonstrated that aHUS segregated with the chromosome 1q region containing the factor H gene (HF1) and who identified a mutation in HF1 in a case of familial aHUS with normal levels of factor H. We have performed the mutational screening of the HF1 gene in a novel series of 13 Spanish patients with aHUS who present normal complement profiles and whose plasma levels of factor H are, with one exception, within the normal range. These studies have resulted in the identification of five novel HF1 mutations in four of the patients. Allele HF1 Delta exon2, a genomic deletion of exon 2, produces a null HF1 allele and results in plasma levels of factor H that are 50% of normal. T956M, W1183L, L1189R, and V1197A are missense mutations that alter amino acid residues in the C-terminal portion of factor H, within a region--SCR16-SCR20--that is involved in the binding to solid-phase C3b and to negatively charged cellular structures. This remarkable clustering of mutations in HF1 suggests that a specific dysfunction in the protection of cellular surfaces by factor H is a major pathogenic condition underlying aHUS.
Collapse
|
case-report |
24 |
224 |
7
|
Caprioli J, Bettinaglio P, Zipfel PF, Amadei B, Daina E, Gamba S, Skerka C, Marziliano N, Remuzzi G, Noris M. The molecular basis of familial hemolytic uremic syndrome: mutation analysis of factor H gene reveals a hot spot in short consensus repeat 20. J Am Soc Nephrol 2001; 12:297-307. [PMID: 11158219 DOI: 10.1681/asn.v122297] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The aim of the present study was to clarify whether factor H mutations were involved in genetic predisposition to hemolytic uremic syndrome, by performing linkage and mutation studies in a large number of patients from those referred to the Italian Registry for Recurrent and Familial HUS/TTP. PCR and Western blot analyses were conducted to characterize the biochemical consequences of the mutations. Five mutations in the factor H gene were identified. Three, identified in two families and in a sporadic case, are heterozygous point mutations within the most C-terminal short consensus repeat 20 (SCR20) of factor H, resulting in single amino acid substitutions. The other two mutations introduce premature stop codons that interrupt the translation of factor H. A heterozygous nonsense mutation was identified in SCR8 in one family, and a homozygous 24-bp deletion within SCR20 was identified in a Bedouin family with a recessive mode of inheritance. Reverse transcription-PCR analysis of cDNA from peripheral blood leukocytes from the Bedouin family showed that the deletion lowered factor H mRNA levels. Although heterozygous mutations were associated with normal factor H levels and incomplete penetrance of the disease, the homozygous mutation in the Bedouin family resulted in severe reduction of factor H levels accompanied by very early disease onset. These data provide compelling molecular evidence that genetically determined deficiencies in factor H are involved in both autosomal-dominant and autosomal-recessive hemolytic uremic syndrome and identify SCR20 as a hot spot for mutations in the disease. The mutations identified here give an important hint to the relevance of the C-terminus of factor H in the control of the alternative complement activation pathway.
Collapse
|
|
24 |
207 |
8
|
Morgan HP, Schmidt CQ, Guariento M, Blaum BS, Gillespie D, Herbert AP, Kavanagh D, Mertens HDT, Svergun DI, Johansson CM, Uhrín D, Barlow PN, Hannan JP. Structural basis for engagement by complement factor H of C3b on a self surface. Nat Struct Mol Biol 2011; 18:463-70. [PMID: 21317894 PMCID: PMC3512577 DOI: 10.1038/nsmb.2018] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 01/14/2011] [Indexed: 12/15/2022]
Abstract
Complement factor H (FH) attenuates C3b molecules tethered by their thioester domains to self surfaces and thereby protects host tissues. Factor H is a cofactor for initial C3b proteolysis that ultimately yields a surface-attached fragment (C3d) corresponding to the thioester domain. We used NMR and X-ray crystallography to study the C3d-FH19-20 complex in atomic detail and identify glycosaminoglycan-binding residues in factor H module 20 of the C3d-FH19-20 complex. Mutagenesis justified the merging of the C3d-FH19-20 structure with an existing C3b-FH1-4 crystal structure. We concatenated the merged structure with the available FH6-8 crystal structure and new SAXS-derived FH1-4, FH8-15 and FH15-19 envelopes. The combined data are consistent with a bent-back factor H molecule that binds through its termini to two sites on one C3b molecule and simultaneously to adjacent polyanionic host-surface markers.
Collapse
|
research-article |
14 |
197 |
9
|
Chung KM, Liszewski MK, Nybakken G, Davis AE, Townsend RR, Fremont DH, Atkinson JP, Diamond MS. West Nile virus nonstructural protein NS1 inhibits complement activation by binding the regulatory protein factor H. Proc Natl Acad Sci U S A 2006; 103:19111-6. [PMID: 17132743 PMCID: PMC1664712 DOI: 10.1073/pnas.0605668103] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complement system, by virtue of its dual effector and priming functions, is a major host defense against pathogens. Flavivirus nonstructural protein (NS)-1 has been speculated to have immune evasion activity, because it is a secreted glycoprotein, binds back to cell surfaces, and accumulates to high levels in the serum of infected patients. Herein, we demonstrate an immunomodulatory function of West Nile virus NS1. Soluble and cell-surface-associated NS1 binds to and recruits the complement regulatory protein factor H, resulting in decreased complement activation in solution and attenuated deposition of C3 fragments and C5b-9 membrane attack complexes on cell surfaces. Accordingly, extracellular NS1 may function to minimize immune system targeting of West Nile virus by decreasing complement recognition of infected cells.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
189 |
10
|
Zipfel PF, Skerka C, Hellwage J, Jokiranta ST, Meri S, Brade V, Kraiczy P, Noris M, Remuzzi G. Factor H family proteins: on complement, microbes and human diseases. Biochem Soc Trans 2002; 30:971-8. [PMID: 12440956 DOI: 10.1042/bst0300971] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
At present, the human Factor H protein family represents seven multidomain, multifunctional serum proteins. This group includes the complement and immune regulators Factor H, the Factor H-like protein 1 (FHL-1) and five Factor H-related proteins proteins (FHR-1, -2, -3, -4 and -5). Each is exclusively composed of individually folded protein domains, termed short consensus repeats (SCRs) or complement control modules. Structure-function analyses allowed the localization of the complement regulatory domain of Factor H and FHL-1 in the N-terminal region within SCRs 1-4. In addition, multiple binding sites for C3b, heparin and microbial surface proteins were localized in the N-terminus, within the middle region and also in the C-terminus of Factor H and FHL-1. Recent results show a central role for the C-terminus of Factor H, i.e. SCRs 19-20. These particular domains are conserved in all FHRs identified so far, include contact points for C3b, heparin and microbial surface proteins and represent a 'hot-spot' for gene mutations in patients that suffer from the Factor H-associated form of haemolytic uraemic syndrome.
Collapse
|
Review |
23 |
179 |
11
|
Jokiranta TS, Hellwage J, Koistinen V, Zipfel PF, Meri S. Each of the three binding sites on complement factor H interacts with a distinct site on C3b. J Biol Chem 2000; 275:27657-62. [PMID: 10837479 DOI: 10.1074/jbc.m002903200] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Factor H (fH) restricts activation of the alternative pathway of complement at the level of C3, both in the fluid phase and on self-structures, but allows the activation to proceed on foreign structures. To study the interactions between fH and C3b we used surface plasmon resonance analysis (Biacore(R)) and eight recombinantly expressed fH constructs containing fragments of the 20 short consensus repeat domains (SCRs) of fH. We analyzed the binding of these constructs to C3b and its cleavage products C3c and C3d. Three binding sites for C3b were found on fH. Site 1 was localized to the five amino-terminal SCRs (SCR1-5), and its reciprocal binding site on C3b was found to be lost upon the cleavage of C3b to C3c and C3d. Site 2 on fH was localized by exclusion probably within or near SCRs 12-14 (fragment SCR8-20 bound to C3b, C3c, and C3d; SCR8-11 did not bind to C3b at all; and SCR15-20 bound only to the C3d part of C3b). Site 3 on fH for C3b was localized to the carboxyl-terminal SCRs 19-20, and its reciprocal binding site was mapped to the C3d part of C3b. In conclusion, we confirmed and mapped three binding sites on fH for C3b and demonstrated that the three binding sites on fH interact with distinct sites on C3b. Multiple reciprocal interactions between C3b and fH can provide a basis for the different reactivity of the alternative pathway with different target structures.
Collapse
|
|
25 |
164 |
12
|
Sánchez-Corral P, Pérez-Caballero D, Huarte O, Simckes AM, Goicoechea E, López-Trascasa M, de Córdoba SR. Structural and functional characterization of factor H mutations associated with atypical hemolytic uremic syndrome. Am J Hum Genet 2002; 71:1285-95. [PMID: 12424708 PMCID: PMC378565 DOI: 10.1086/344515] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2002] [Accepted: 08/28/2002] [Indexed: 01/15/2023] Open
Abstract
Genetic studies have demonstrated the involvement of the complement regulator factor H in nondiarrheal, nonverocytotoxin (i.e., atypical) cases of hemolytic uremic syndrome. Different factor H mutations have been identified in 10%-30% of patients with atypical hemolytic uremic syndrome (aHUS), and most of these mutations alter single amino acids in the C-terminal region of factor H. Although these mutations are considered to be responsible for the disease, the precise role that factor H plays in the pathogenesis of aHUS is unknown. We report here the structural and functional characterization of three different factor H proteins purified from the plasma of patients with aHUS who carry the factor H mutations W1183L, V1197A, or R1210C. Structural anomalies in factor H were found only in R1210C carriers; these individuals show, in their plasma, a characteristic high-molecular-weight factor H protein that results from the covalent interaction between factor H and human serum albumin. Most important, all three aHUS-associated factor H proteins have a normal cofactor activity in the proteolysis of fluid-phase C3b by factor I but show very low binding to surface-bound C3b. This functional impairment was also demonstrated in recombinant mutant factor H proteins expressed in COS7 cells. These data support the hypothesis that patients with aHUS carry a specific dysfunction in the protection of cellular surfaces from complement activation, offering new possibilities to improve diagnosis and develop appropriate therapies.
Collapse
|
research-article |
23 |
162 |
13
|
Kirkitadze MD, Barlow PN. Structure and flexibility of the multiple domain proteins that regulate complement activation. Immunol Rev 2001; 180:146-61. [PMID: 11414356 DOI: 10.1034/j.1600-065x.2001.1800113.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this review we summarise more than 10 years of biophysical exploration into the structural biology of the regulators of complement activation (RCA). The five human proteins responsible for regulation of the early events of complement are homologous and are composed largely from building blocks called "complement control protein (CCP) modules". Unlike most multiple domain proteins they do not contain any of the other widely occurring module types. This apparent simplicity of RCA structure, however, is belied by their sophistication of function. In fact, the structures of the individual CCP modules exhibit wide variations on a common theme while the extent and nature of intermodular connections is diverse. Some neighbouring modules within a protein stabilise each other and some co-operate to form specific binding surfaces. The degree of true "modularity" of CCPs is open to debate. The study of RCA proteins clearly illustrates the value of combining complementary structural biology techniques. The results could have implications for folding, evolution, flexibility and structure-function relationships of other molecules in the large, diverse and little understood category of multiple domain proteins.
Collapse
|
Review |
24 |
157 |
14
|
Prosser BE, Johnson S, Roversi P, Herbert AP, Blaum BS, Tyrrell J, Jowitt TA, Clark SJ, Tarelli E, Uhrín D, Barlow PN, Sim RB, Day AJ, Lea SM. Structural basis for complement factor H linked age-related macular degeneration. J Exp Med 2007; 204:2277-83. [PMID: 17893204 PMCID: PMC2118454 DOI: 10.1084/jem.20071069] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 08/31/2007] [Indexed: 11/04/2022] Open
Abstract
Nearly 50 million people worldwide suffer from age-related macular degeneration (AMD), which causes severe loss of central vision. A single-nucleotide polymorphism in the gene for the complement regulator factor H (FH), which causes a Tyr-to-His substitution at position 402, is linked to approximately 50% of attributable risks for AMD. We present the crystal structure of the region of FH containing the polymorphic amino acid His402 in complex with an analogue of the glycosaminoglycans (GAGs) that localize the complement regulator on the cell surface. The structure demonstrates direct coordination of ligand by the disease-associated polymorphic residue, providing a molecular explanation of the genetic observation. This glycan-binding site occupies the center of an extended interaction groove on the regulator's surface, implying multivalent binding of sulfated GAGs. This finding is confirmed by structure-based site-directed mutagenesis, nuclear magnetic resonance-monitored binding experiments performed for both H402 and Y402 variants with this and another model GAG, and analysis of an extended GAG-FH complex.
Collapse
|
research-article |
18 |
153 |
15
|
Barlow PN, Steinkasserer A, Norman DG, Kieffer B, Wiles AP, Sim RB, Campbell ID. Solution structure of a pair of complement modules by nuclear magnetic resonance. J Mol Biol 1993; 232:268-84. [PMID: 8331663 DOI: 10.1006/jmbi.1993.1381] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A portion of human complement factor H spanning the 15th (H15) and 16th (H16) of its 20 modules, has been expressed in a yeast vector and subjected to structure determination in solution using two-dimensional 1H-NMR. The structure of H15 is very similar to that already established for the fifth module of factor H and H16, consistent with the view that all such complement control (C-) modules share a common overall topology. In addition, the tertiary structures of the component modules of the H15-16 pair are very similar to those of the modules when expressed individually, implying that each folds entirely autonomously within intact factor H. Aromatic residues in the third turn of H15 and the second turn of H16, together with a leucine residue from the linker region, contribute to a small intermodular interface. Comparatively few nuclear Overhauser effects were observable between protons on different modules. Consequently, a wide range of angles of "twist" (131 (+/- 146) degrees, mean value (+/- 1 standard deviation)), i.e. rotation about the long axis of one module with respect to the other, exists in the family of structures generated on the basis of the experimental data. However, much smaller variations occur in the two, orthogonal, angles (175 (+/- 12) degrees and 103 (+/- 6) degrees) that describe the "tilt". These observations may suggest upper limits on the relative flexibility of the two modules. Models were built to assess the outcome of applying such restrictions to all the neighbours within a string of 20 C-modules, and the resulting structures compare well with factor H as visualized by electron microscopy.
Collapse
|
|
32 |
152 |
16
|
Høgåsen K, Jansen JH, Mollnes TE, Hovdenes J, Harboe M. Hereditary porcine membranoproliferative glomerulonephritis type II is caused by factor H deficiency. J Clin Invest 1995; 95:1054-61. [PMID: 7883953 PMCID: PMC441440 DOI: 10.1172/jci117751] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have recently described hereditary membranoproliferative glomerulonephritis type II in the pig. All affected animals had excessive complement activation, revealed as low plasma C3, elevated plasma terminal complement complex, and massive deposits of complement in the renal glomeruli, and eventually died of renal failure within 11 wk of birth. The aim of the present study was to investigate the cause of complement activation in this disease. Transfusion of normal porcine plasma to affected piglets inhibited complement activation and increased survival. Plasma was successively fractionated and the complement inhibitory effect of each fraction tested in vivo. A single chain 150-kD protein which showed the same complement inhibitory effect as whole plasma was finally isolated. Immunologic cross-reactivity, functional properties, and NH2-terminal sequence identified the protein as factor H. By Western blotting and enzyme immunoassay, membranoproliferative glomerulonephritis-affected piglets were demonstrated to be subtotally deficient in factor H. At 1 wk of age, median (range) factor H concentration was 1.6 mg/liter (1.1-2.3) in deficient animals (n = 13) and 51 mg/liter (26-98) in healthy littermates (n = 52). Our data show that hereditary porcine membrano-proliferative glomerulonephritis type II is caused by factor H deficiency.
Collapse
|
research-article |
30 |
145 |
17
|
Jarva H, Janulczyk R, Hellwage J, Zipfel PF, Björck L, Meri S. Streptococcus pneumoniae evades complement attack and opsonophagocytosis by expressing the pspC locus-encoded Hic protein that binds to short consensus repeats 8-11 of factor H. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1886-94. [PMID: 11823523 DOI: 10.4049/jimmunol.168.4.1886] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Streptococcus pneumoniae is an important cause of upper and lower respiratory tract infections, meningitis, peritonitis, bacterial arthritis, and sepsis. Here we have studied a novel immune evasion mechanism of serotype 3 pneumococci, which are particularly resistant to phagocytosis. On their surfaces the bacteria express the factor H-binding inhibitor of complement (Hic), a protein of the pneumococcal surface protein C family. Using radioligand binding, microtiter plate assays, surface plasmon resonance analysis, and recombinant constructs of factor H, we located the binding site of Hic to short consensus repeats (SCRs) 8-11 in the middle part of factor H. This represents a novel microbial interaction region on factor H. The only other ligand known so far for SCRs 8-11 of factor H is C-reactive protein (CRP), an acute phase protein that binds to the pneumococcal C-polysaccharide. The binding sites of Hic and CRP within the SCR8-11 region were different, however, because CRP did not inhibit the binding of Hic and required calcium for binding. Binding of factor H to Hic-expressing pneumococci promoted factor I-mediated cleavage of C3b and restricted phagocytosis of pneumococci. Thus, virulent pneumococci avoid complement attack and opsonophagocytosis by recruiting functionally active factor H with the Hic surface protein. Hic binds to a previously unrecognized microbial interaction site in the middle part of factor H.
Collapse
|
|
23 |
139 |
18
|
Jokiranta TS, Jaakola VP, Lehtinen MJ, Pärepalo M, Meri S, Goldman A. Structure of complement factor H carboxyl-terminus reveals molecular basis of atypical haemolytic uremic syndrome. EMBO J 2006; 25:1784-94. [PMID: 16601698 PMCID: PMC1440827 DOI: 10.1038/sj.emboj.7601052] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 02/28/2006] [Indexed: 11/08/2022] Open
Abstract
Factor H (FH) is the key regulator of the alternative pathway of complement. The carboxyl-terminal domains 19-20 of FH interact with the major opsonin C3b, glycosaminoglycans, and endothelial cells. Mutations within this area are associated with atypical haemolytic uremic syndrome (aHUS), a disease characterized by damage to endothelial cells, erythrocytes, and kidney glomeruli. The structure of recombinant FH19-20, solved at 1.8 A by X-ray crystallography, reveals that the short consensus repeat domain 20 contains, unusually, a short alpha-helix, and a patch of basic residues at its base. Most aHUS-associated mutations either destabilize the structure or cluster in a unique region on the surface of FH20. This region is close to, but distinct from, the primary heparin-binding patch of basic residues. By mutating five residues in this region, we show that it is involved, not in heparin, but in C3b binding. Therefore, the majority of the aHUS-associated mutations on the surface of FH19-20 interfere with the interaction between FH and C3b. This obviously leads to impaired control of complement attack on plasma-exposed cell surfaces in aHUS.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
136 |
19
|
Kühn S, Zipfel PF. Mapping of the domains required for decay acceleration activity of the human factor H-like protein 1 and factor H. Eur J Immunol 1996; 26:2383-7. [PMID: 8898949 DOI: 10.1002/eji.1830261017] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The human factor H-like protein 1 (FHL-1) is composed of seven repetitive elements (short consensus repeats; SCR) that are identical in sequence to the seven N-terminal SCR of complement factor H. We show that the FHL-1 protein has decay acceleration activity in that it can dissociate C3/C5-convertases bound to the surface of sheep red blood cells. The same activity was also determined for factor H. However, compared to FHL-1, factor H was more efficient in decay acceleration, as about 100-fold less protein was required for a 50% inhibition of activity. The domain required for decay accelerating activity of FHL-1 and factor H was mapped by the use of recombinant fragments. FHL-1 and a series of truncated forms of the protein were expressed in the baculovirus system. Recombinant FHL-1 and all mutants which include SCR 1-4 were functionally active. These four N-terminal SCR are essential and sufficient for activity, as deletion mutants which lack SCR 1 or SCR 4 showed no activity. These results demonstrate that FHL-1 and factor H have identical and overlapping regulatory functions in the complement system and that the domain required for this activity is located in the overlapping region of both proteins within the N-terminal four SCR.
Collapse
|
|
29 |
132 |
20
|
Pangburn MK. Host recognition and target differentiation by factor H, a regulator of the alternative pathway of complement. IMMUNOPHARMACOLOGY 2000; 49:149-57. [PMID: 10904114 DOI: 10.1016/s0162-3109(00)80300-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Factor H is responsible for recognition of host cells and tissues and mediates discrimination among microbial pathogens during activation of the alternative pathway of complement (AP). Its unique structure of 20 SCR domains arranged in a flexible chain permits a variety of functional sites to interact with complement proteins and surface markers in a biological example of single-molecule combinatorial chemistry. In addition to the complement regulatory site located in the N-terminal four SCR domains, two other sites bind complement protein C3b and three sites appear to recognize a variety of polyanions that serve as host markers. Recent studies indicate that cooperativity among several C3b- and polyanion-binding sites influences the biological functions of factor H and that the degree of influence of each site varies on different cells. The engagement of one or more of the host marker recognition sites enables factor H to control activation of the AP. The absence of host-like markers allows AP activation, but many common pathogens have developed receptors for factor H or mimics of host markers of varying degrees of authenticity allowing them to escape detection by this innate defense system. Organisms using one or more of these evasive techniques include Neisseria gonorrhoeae, Streptococcus pyogenes, Yersinia enterocolitica, Trypanosoma cruzi, and the HIV virus.
Collapse
|
Review |
25 |
129 |
21
|
Giannakis E, Jokiranta TS, Male DA, Ranganathan S, Ormsby RJ, Fischetti VA, Mold C, Gordon DL. A common site within factor H SCR 7 responsible for binding heparin, C-reactive protein and streptococcal M protein. Eur J Immunol 2003; 33:962-9. [PMID: 12672062 DOI: 10.1002/eji.200323541] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The complement inhibitor factor H (fH) interacts via its seventh short consensus repeat (SCR) domain with multiple ligands including heparin, streptococcal M protein and C-reactive protein (CRP). The aim of this study was to localize the residues in SCR 7 required for these interactions. We initially built a homology model of fH SCR 6-7 using the averaged NMR structures of fH SCR 15-16 and vaccinia control protein SCR 3-4 as templates. Electrostatic potentials of the model's surface demonstrated a co-localization of three clusters of positively charged residues on SCR 7, labeled site A (R369 and K370), site B (R386 and K387) and site C (K392). These residues, localized to the linker region preceding SCR 7 and to the end of a "hypervariable loop" in SCR 7, were systematically replaced with uncharged alanine residues in an fH construct containing SCR 1-7. The resulting proteins were expressed in the methylotrophic yeast, Pichia pastoris. By ELISA analysis we demonstrated: first, that substituting site A inhibited heparin and CRP binding; secondly, that substituting site B inhibited binding to heparin, CRP and M protein; and thirdly, that substituting site C clearly inhibited only heparin binding.
Collapse
|
|
22 |
126 |
22
|
Schmidt CQ, Herbert AP, Hocking HG, Uhrín D, Barlow PN. Translational mini-review series on complement factor H: structural and functional correlations for factor H. Clin Exp Immunol 2008; 151:14-24. [PMID: 18081691 PMCID: PMC2276926 DOI: 10.1111/j.1365-2249.2007.03553.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2007] [Indexed: 12/12/2022] Open
Abstract
The 155-kDa glycoprotein, complement factor H (CFH), is a regulator of complement activation that is abundant in human plasma. Three-dimensional structures of over half the 20 complement control protein (CCP) modules in CFH have been solved in the context of single-, double- and triple-module segments. Proven binding sites for C3b occupy the N and C termini of this elongated molecule and may be brought together by a bend in CFH mediated by its central CCP modules. The C-terminal CCP 20 is key to the ability of the molecule to adhere to polyanionic markers on self-surfaces where CFH acts to regulate amplification of the alternative pathway of complement. The surface patch on CCP 20 that binds to model glycosaminoglycans has been mapped using nuclear magnetic resonance (NMR), as has a second glycosaminoglycan-binding patch on CCP 7. These patches include many of the residue positions at which sequence variations have been linked to three complement-mediated disorders: dense deposit disease, age-related macular degeneration and atypical haemolytic uraemic syndrome. In one plausible model, CCP 20 anchors CFH to self-surfaces via a C3b/polyanion composite binding site, CCP 7 acts as a 'proof-reader' to help discriminate self- from non-self patterns of sulphation, and CCPs 1-4 disrupt C3/C5 convertase formation and stability.
Collapse
|
Review |
17 |
122 |
23
|
Banda NK, Thurman JM, Kraus D, Wood A, Carroll MC, Arend WP, Holers VM. Alternative Complement Pathway Activation Is Essential for Inflammation and Joint Destruction in the Passive Transfer Model of Collagen-Induced Arthritis. THE JOURNAL OF IMMUNOLOGY 2006; 177:1904-12. [PMID: 16849503 DOI: 10.4049/jimmunol.177.3.1904] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of each complement initiation pathway (classical, alternative, and lectin) can lead to the generation of bioactive fragments with resulting inflammation in target organs. The objective of the current study was to determine the role of specific complement activation pathways in the pathogenesis of experimental anti-type II collagen mAb-passive transfer arthritis. C57BL/6 mice were used that were genetically deficient in either the alternative pathway protein factor B (Bf(-/-)) or in the classical pathway component C4 (C4(-/-)). Clinical disease activity was markedly decreased in Bf(-/-) compared with wild-type (WT) mice (0.5 +/- 0.22 (n = 6) in Bf(-/-) vs 8.83 +/- 0.41 (n = 6) in WT mice (p < 0.0001)). Disease activity scores were not different between C4(-/-) and WT mice. Analyses of joints showed that C3 deposition, inflammation, pannus, cartilage, and bone damage scores were all significantly less in Bf(-/-) as compared with WT mice. There were significant decreases in mRNA levels of C3, C4, CR2, CR3, C3aR, and C5aR in the knees of Bf(-/-) as compared with C4(-/-) and WT mice with arthritis; mRNA levels for complement regulatory proteins did not differ between the three strains. These results indicate that the alternative pathway is absolutely required for the induction of arthritis following injection of anti-collagen Abs. The mechanisms by which these target organ-specific mAbs bypass the requirements for engagement of the classical pathway remain to be defined but do not appear to involve a lack of alternative pathway regulatory proteins.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Cartilage, Articular/immunology
- Cartilage, Articular/pathology
- Collagen/immunology
- Complement C3/chemistry
- Complement C4/deficiency
- Complement C4/genetics
- Complement Factor B/deficiency
- Complement Factor B/genetics
- Complement Factor H/chemistry
- Complement Inactivator Proteins/biosynthesis
- Complement Inactivator Proteins/genetics
- Complement Pathway, Alternative/immunology
- Cytokines/biosynthesis
- Cytokines/genetics
- Disease Models, Animal
- Immunization, Passive/methods
- Immunohistochemistry
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- RNA, Messenger/biosynthesis
- Synovial Membrane/immunology
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
Collapse
|
|
19 |
118 |
24
|
Haupt K, Reuter M, van den Elsen J, Burman J, Hälbich S, Richter J, Skerka C, Zipfel PF. The Staphylococcus aureus protein Sbi acts as a complement inhibitor and forms a tripartite complex with host complement Factor H and C3b. PLoS Pathog 2008; 4:e1000250. [PMID: 19112495 PMCID: PMC2602735 DOI: 10.1371/journal.ppat.1000250] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 12/01/2008] [Indexed: 12/15/2022] Open
Abstract
The Gram-positive bacterium Staphylococcus aureus, similar to other pathogens, binds human complement regulators Factor H and Factor H related protein 1 (FHR-1) from human serum. Here we identify the secreted protein Sbi (Staphylococcus aureus binder of IgG) as a ligand that interacts with Factor H by a—to our knowledge—new type of interaction. Factor H binds to Sbi in combination with C3b or C3d, and forms tripartite Sbi∶C3∶Factor H complexes. Apparently, the type of C3 influences the stability of the complex; surface plasmon resonance studies revealed a higher stability of C3d complexed to Sbi, as compared to C3b or C3. As part of this tripartite complex, Factor H is functionally active and displays complement regulatory activity. Sbi, by recruiting Factor H and C3b, acts as a potent complement inhibitor, and inhibits alternative pathway-mediated lyses of rabbit erythrocytes by human serum and sera of other species. Thus, Sbi is a multifunctional bacterial protein, which binds host complement components Factor H and C3 as well as IgG and β2-glycoprotein I and interferes with innate immune recognition. Staphylococcus aureus is a Gram-positive bacterium that can live as a commensal but can also cause severe life threatening infections in humans. Upon infection the bacterium is attacked by the host immune system, and in particular by the complement system which forms the immediate, first defence line of innate immunity. In order to survive, S. aureus has developed multiple evasion strategies and uses several virulence factors to evade and inactivate the host complement attack. Here we show that this pathogen binds the host complement regulators Factor H from human serum with the secreted and surface exposed Sbi protein, by a—to our knowledge—new type of interaction. Factor H binds to Sbi in combination with another host complement protein C3, C3b or C3d, and forms tripartite Sbi∶C3∶Factor H complexes. As part of this tripartite complex, Factor H is functionally active and inhibits further complement activation. Sbi, by recruiting Factor H and C3b, acts as a potent complement inhibitor, and inhibits alternative pathway-mediated lyses of rabbit erythrocytes by human serum and sera of different species. Thus, Sbi is a multifunctional bacterial protein, which binds host complement components Factor H and C3 as well as IgG and β2-glycoprotein I and interferes with innate immune recognition.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
116 |
25
|
Sjöberg AP, Manderson GA, Mörgelin M, Heinegård D, Blom AM. Short leucine-rich glycoproteins of the extracellular matrix display diverse patterns of complement interaction and activation. Mol Immunol 2009; 46:830-9. [PMID: 18962898 PMCID: PMC2760063 DOI: 10.1016/j.molimm.2008.09.018] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 07/29/2008] [Accepted: 09/07/2008] [Indexed: 11/17/2022]
Abstract
The extracellular matrix consists of structural macromolecules and other proteins with regulatory functions. An important family of the latter class of molecules found in most tissues is the small leucine-rich repeat proteins (SLRPs). We have previously shown that the SLRP fibromodulin binds directly to C1q and activates the classical pathway of complement. In the present study we further examine the interactions between SLRPs and complement. Osteoadherin, like fibromodulin, binds C1q and activates the classical pathway strongly while moderate activation is seen in the terminal pathway. This can be explained by the interaction of fibromodulin and osteoadherin with factor H, a major soluble inhibitor of complement. Also, chondroadherin was found to bind C1q and activate complement, albeit to a lesser extent. Chondroadherin also binds factor H. We confirm published data showing that biglycan and decorin bind C1q but do not activate complement. In this study a similar pattern is seen for lumican although its affinity for C1q is lower than for biglycan and decorin. Furthermore, using electron microscopy and radiolabeled SLRPs, we demonstrate two different classes of SLRP binding sites on C1q, to head and stalk respectively, where only binding to the head appears to be activating. We propose a role for SLRPs in the regulation of complement activation in diseases involving the extracellular matrix, particularly those characterized by chronic inflammation such as rheumatoid arthritis, atherosclerosis, osteoarthritis and chronic obstructive lung disease.
Collapse
|
research-article |
16 |
116 |