1
|
Liu J, Ghanim M, Xue L, Brown CD, Iossifov I, Angeletti C, Hua S, Nègre N, Ludwig M, Stricker T, Al-Ahmadie HA, Tretiakova M, Camp RL, Perera-Alberto M, Rimm DL, Xu T, Rzhetsky A, White KP. Analysis of Drosophila segmentation network identifies a JNK pathway factor overexpressed in kidney cancer. Science 2009; 323:1218-22. [PMID: 19164706 PMCID: PMC2756524 DOI: 10.1126/science.1157669] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We constructed a large-scale functional network model in Drosophila melanogaster built around two key transcription factors involved in the process of embryonic segmentation. Analysis of the model allowed the identification of a new role for the ubiquitin E3 ligase complex factor SPOP. In Drosophila, the gene encoding SPOP is a target of segmentation transcription factors. Drosophila SPOP mediates degradation of the Jun kinase phosphatase Puckered, thereby inducing tumor necrosis factor (TNF)/Eiger-dependent apoptosis. In humans, we found that SPOP plays a conserved role in TNF-mediated JNK signaling and was highly expressed in 99% of clear cell renal cell carcinomas (RCCs), the most prevalent form of kidney cancer. SPOP expression distinguished histological subtypes of RCC and facilitated identification of clear cell RCC as the primary tumor for metastatic lesions.
Collapse
|
research-article |
16 |
100 |
2
|
Kumar JP. The molecular circuitry governing retinal determination. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:306-14. [PMID: 19013263 PMCID: PMC2700058 DOI: 10.1016/j.bbagrm.2008.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 10/06/2008] [Accepted: 10/14/2008] [Indexed: 10/21/2022]
Abstract
The developing eye of the fruit fly, Drosophila melanogaster, has become a premier model system for studying the genetic and molecular mechanisms that govern tissue determination. Over the last fifteen years a regulatory circuit consisting of the members of the Pax, Six, Eya and Dach gene families has been identified and shown to govern the specification of a wide range of tissues including the retina of both insects and mammals. These genes are not organized in a simple developmental pathway or cascade in which there is a unidirectional flow of information. Rather, there are multiple feedback loops built into the system rendering its appearance and functionality more in line with the workings of a network. In this review I will attempt to describe the genetic, molecular and biochemical interactions that govern the specification of the Drosophila compound eye. In particular, the primary focus will be on the interactions that have been experimentally verified at the molecular and biochemical levels. During the course of this description I will also attempt to place each discovery in its own historical context. While a number of signaling pathways play significant roles in early eye development this review will focus on the network of nuclear factors that promote retinal determination.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
74 |
3
|
Geisbrecht ER, Haralalka S, Swanson SK, Florens L, Washburn MP, Abmayr SM. Drosophila ELMO/CED-12 interacts with Myoblast city to direct myoblast fusion and ommatidial organization. Dev Biol 2008; 314:137-49. [PMID: 18163987 PMCID: PMC2697615 DOI: 10.1016/j.ydbio.2007.11.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 11/07/2007] [Accepted: 11/17/2007] [Indexed: 10/22/2022]
Abstract
Members of the CDM (CED-5, Dock180, Myoblast city) superfamily of guanine nucleotide exchange factors function in diverse processes that include cell migration and myoblast fusion. Previous studies have shown that the SH3, DHR1 and DHR2 domains of Myoblast city (MBC) are essential for it to direct myoblast fusion in the Drosophila embryo, while the conserved DCrk-binding proline rich region is expendable. Herein, we describe the isolation of Drosophila ELMO/CED-12, an approximately 82 kDa protein with a pleckstrin homology (PH) and proline-rich domain, by interaction with the MBC SH3 domain. Mass spectrometry confirms the presence of an MBC/ELMO complex within the embryonic musculature at the time of myoblast fusion and embryos maternally and/or zygotically mutant for elmo exhibit defects in myoblast fusion. Overexpression of MBC and ELMO in the embryonic mesoderm causes defects in myoblast fusion reminiscent of those seen with constitutively-activated Rac1, supporting the previous finding that both the absence of and an excess of Rac activity are deleterious to myoblast fusion. Overexpression of MBC and ELMO/CED-12 in the eye causes perturbations in ommatidial organization that are suppressed by mutations in Rac1 and Rac2, demonstrating genetically that MBC and ELMO/CED-12 cooperate to activate these small GTPases in Drosophila.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
62 |
4
|
Hayashi T, Xu C, Carthew RW. Cell-type-specific transcription of prospero is controlled by combinatorial signaling in the Drosophila eye. Development 2008; 135:2787-96. [PMID: 18635611 PMCID: PMC2923442 DOI: 10.1242/dev.006189] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In Drosophila, Notch and Egfr signaling regulate the determination of many cell types, and yet how these common signals generate cell-specific transcription is not well understood. In the compound eye, prospero (pros) is transcribed specifically in R7 photoreceptors and cone cells. We show that the transcription of pros is activated by two visual-specific transcription selectors, Glass and Sine Oculis, that bind to an enhancer and promote its activation. Together with the pre-patterning transcription factor Lozenge, these factors work in a highly combinatorial manner, such that cells missing any one factor transcribe pros only weakly, if at all. However, the factors are not sufficient to activate the enhancer because of an additional requirement for both Notch and Egfr signals. The loss of Notch signaling produces a ;salt and pepper' effect, with some cells expressing near-normal levels and others expressing no detectable pros at all; thus, the signaling loss does not produce a uniformly reduced level of transcription activity in cells. This suggests a probabilistic mechanism, in which Notch signals influence the likelihood that the enhancer is inactive or fully active in any given cell. The activity level, therefore, is dictated by the proper combination of highly cooperative selector and pre-pattern factors present in the cell.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
41 |
5
|
Mao Y, Freeman M. Fasciclin 2, the Drosophila orthologue of neural cell-adhesion molecule, inhibits EGF receptor signalling. Development 2009; 136:473-81. [PMID: 19141676 PMCID: PMC2687591 DOI: 10.1242/dev.026054] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2008] [Indexed: 11/20/2022]
Abstract
Adhesion proteins not only control the degree to which cells adhere to each other but are increasingly recognised as regulators of intercellular signalling. Using genetic screening in Drosophila, we have identified Fasciclin 2 (Fas2), the Drosophila orthologue of neural cell adhesion molecule (NCAM), as a physiologically significant and specific inhibitor of epidermal growth factor receptor (EGFR) signalling in development. We find that loss of fas2 genetically interacts with multiple genetic conditions that perturb EGFR signalling. Fas2 is expressed in dynamic patterns during imaginal disc development, and in the eye we have shown that this depends on EGFR activity, implying participation in a negative-feedback loop. Loss of fas2 causes characteristic EGFR hyperactivity phenotypes in the eye, notum and wing, and also leads to downregulation of Yan, a transcriptional repressor targeted for degradation by EGFR activity. No significant genetic interactions were detected with the Notch, Wingless, Hedgehog or Dpp pathways, nor did Fas2 inhibit the FGF receptor or Torso, indicating specificity in the inhibitory role of Fas2 in EGFR signalling. Our results introduce a new regulatory interaction between an adhesion protein and a Drosophila signalling pathway and highlight the extent to which the EGFR pathway must be regulated at multiple levels.
Collapse
MESH Headings
- Animals
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/physiology
- Compound Eye, Arthropod/embryology
- Compound Eye, Arthropod/growth & development
- Compound Eye, Arthropod/physiology
- Down-Regulation
- Drosophila/embryology
- Drosophila/growth & development
- Drosophila/metabolism
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila Proteins/physiology
- ErbB Receptors/genetics
- ErbB Receptors/physiology
- Eye Proteins/metabolism
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Fibroblast Growth Factor/metabolism
- Receptors, Invertebrate Peptide/genetics
- Receptors, Invertebrate Peptide/physiology
- Receptors, Notch/metabolism
- Repressor Proteins/metabolism
- Signal Transduction/physiology
- Wings, Animal/embryology
- Wings, Animal/growth & development
Collapse
|
research-article |
16 |
35 |
6
|
|
Research Support, N.I.H., Extramural |
23 |
14 |
7
|
|
Review |
10 |
14 |
8
|
|
Review |
23 |
12 |
9
|
Neufeld TP, Hariharan IK. Regulation of growth and cell proliferation during eye development. Results Probl Cell Differ 2002; 37:107-133. [PMID: 25707072 DOI: 10.1007/978-3-540-45398-7_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
Review |
23 |
8 |
10
|
Yusuff T, Jensen M, Yennawar S, Pizzo L, Karthikeyan S, Gould DJ, Sarker A, Gedvilaite E, Matsui Y, Iyer J, Lai ZC, Girirajan S. Drosophila models of pathogenic copy-number variant genes show global and non-neuronal defects during development. PLoS Genet 2020; 16:e1008792. [PMID: 32579612 PMCID: PMC7313740 DOI: 10.1371/journal.pgen.1008792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/23/2020] [Indexed: 11/25/2022] Open
Abstract
While rare pathogenic copy-number variants (CNVs) are associated with both neuronal and non-neuronal phenotypes, functional studies evaluating these regions have focused on the molecular basis of neuronal defects. We report a systematic functional analysis of non-neuronal defects for homologs of 59 genes within ten pathogenic CNVs and 20 neurodevelopmental genes in Drosophila melanogaster. Using wing-specific knockdown of 136 RNA interference lines, we identified qualitative and quantitative phenotypes in 72/79 homologs, including 21 lines with severe wing defects and six lines with lethality. In fact, we found that 10/31 homologs of CNV genes also showed complete or partial lethality at larval or pupal stages with ubiquitous knockdown. Comparisons between eye and wing-specific knockdown of 37/45 homologs showed both neuronal and non-neuronal defects, but with no correlation in the severity of defects. We further observed disruptions in cell proliferation and apoptosis in larval wing discs for 23/27 homologs, and altered Wnt, Hedgehog and Notch signaling for 9/14 homologs, including AATF/Aatf, PPP4C/Pp4-19C, and KIF11/Klp61F. These findings were further supported by tissue-specific differences in expression patterns of human CNV genes, as well as connectivity of CNV genes to signaling pathway genes in brain, heart and kidney-specific networks. Our findings suggest that multiple genes within each CNV differentially affect both global and tissue-specific developmental processes within conserved pathways, and that their roles are not restricted to neuronal functions. Rare copy-number variants (CNVs), or large deletions and duplications in the genome, are associated with both neuronal and non-neuronal clinical features. Previous functional studies for these disorders have primarily focused on understanding the cellular mechanisms for neurological and behavioral phenotypes. To understand how genes within these CNVs contribute to developmental defects in non-neuronal tissues, we assessed 79 homologs of CNV and known neurodevelopmental genes in Drosophila models. We found that most homologs showed developmental defects when knocked down in the adult fly wing, ranging from mild size changes to severe wrinkled wings or lethality. Although a majority of tested homologs showed defects when knocked down specifically in wings or eyes, we found no correlation in the severity of the observed defects in these two tissues. A subset of the homologs showed disruptions in cellular processes in the developing fly wing, including alterations in cell proliferation, apoptosis, and cellular signaling pathways. Furthermore, human CNV genes also showed differences in gene expression patterns and interactions with signaling pathway genes across multiple human tissues. Our findings suggest that genes within CNV disorders affect global developmental processes in both neuronal and non-neuronal tissues.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
8 |
11
|
Kang J, Yeom E, Lim J, Choi KW. Bar represses dPax2 and decapentaplegic to regulate cell fate and morphogenetic cell death in Drosophila eye. PLoS One 2014; 9:e88171. [PMID: 24505414 PMCID: PMC3914906 DOI: 10.1371/journal.pone.0088171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/04/2014] [Indexed: 02/08/2023] Open
Abstract
The coordinated regulation of cell fate and cell survival is crucial for normal pattern formation in developing organisms. In Drosophila compound eye development, crystalline arrays of hexagonal ommatidia are established by precise assembly of diverse cell types, including the photoreceptor cells, cone cells and interommatidial (IOM) pigment cells. The molecular basis for controlling the number of cone and IOM pigment cells during ommatidial pattern formation is not well understood. Here we present evidence that BarH1 and BarH2 homeobox genes are essential for eye patterning by inhibiting excess cone cell differentiation and promoting programmed death of IOM cells. Specifically, we show that loss of Bar from the undifferentiated retinal precursor cells leads to ectopic expression of Prospero and dPax2, two transcription factors essential for cone cell specification, resulting in excess cone cell differentiation. We also show that loss of Bar causes ectopic expression of the TGFβ homolog Decapentaplegic (Dpp) posterior to the morphogenetic furrow in the larval eye imaginal disc. The ectopic Dpp expression is not responsible for the formation of excess cone cells in Bar loss-of-function mutant eyes. Instead, it causes reduction in IOM cell death in the pupal stage by antagonizing the function of pro-apoptotic gene reaper. Taken together, this study suggests a novel regulatory mechanism in the control of developmental cell death in which the repression of Dpp by Bar in larval eye disc is essential for IOM cell death in pupal retina.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
7 |
12
|
|
Research Support, N.I.H., Extramural |
23 |
3 |
13
|
|
Review |
23 |
1 |
14
|
Rose TC, Ediger EF, Lehman-Schletewitz J, McClane NW, Schweigert KC, Alzweideh S, Wadsworth L, Husseneder C, Morris JW, Ziesmann J. Compound eye formation in the termite Incisitermes minor (Isoptera: Kalotermitidae). Dev Genes Evol 2015; 225:235-51. [PMID: 26155777 DOI: 10.1007/s00427-015-0507-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
The postembryonic development and caste differentiation patterns of lower termites have been described multiple times in a variety of different species. However, most of these studies focused on gross ontogeny, without carefully describing the maturation of any particular organ or organ system. The few studies that have attempted to correlate caste development and organ differentiation have produced somewhat inconsistent results, especially in the area of eye formation. Therefore, in order to help further elucidate the relationship between eye formation and postembryonic differentiation in lower termites, we studied eye development in the termite, Incisitermes minor (Hagen). Eye formation in I. minor began in the earliest larvae, with only an eye primordium. However, in all later larval stages, characteristic eye structures were observed and were shown to progressively differentiate through larval and nymphal stages. Curiously, pigmentation began with three to eight groups of cells in early larvae and the number of these pigmented groups increased along the developmental time course. Ultimately, a uniformly pigmented eye area was formed by the early nymphal stage. The overall eye area also gradually increased along with normal caste development, but the characteristic lenses seen in a prototypical insect compound eye did not completely form until after the final nymphal stage. Electrophysiological measurements provided clear evidence that eyes were indeed functional at all stages of development where pigment was present. Based upon this data, the eye development pattern in I. minor appeared to follow a divergent pathway from holometabolous insects and an intermediate pathway between typical hemimetabolous eye development and the heterochronic shift observed in other termite species.
Collapse
|
|
10 |
0 |
15
|
Fischer JA. Developmental regulation through protein stability. Results Probl Cell Differ 2002; 37:151-167. [PMID: 25707074 DOI: 10.1007/978-3-540-45398-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
Research Support, N.I.H., Extramural |
23 |
|
16
|
Moses K. Introduction. Drosophila eye development. Results Probl Cell Differ 2002; 37:1-3. [PMID: 25707065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
Introductory Journal Article |
23 |
|