1
|
Watanabe M, Iyobe S, Inoue M, Mitsuhashi S. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1991; 35:147-51. [PMID: 1901695 PMCID: PMC244956 DOI: 10.1128/aac.35.1.147] [Citation(s) in RCA: 398] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We isolated an imipenem-resistant strain, GN17203, of Pseudomonas aeruginosa. The strain produced a beta-lactamase that hydrolyzed imipenem. The beta-lactamase was encoded by a 31-MDa plasmid, pMS350, which belongs to incompatibility group P-9. The plasmic conferred resistance to beta-lactams, gentamicin, and sulfonamide and was transferable by conjugation to P. aeruginosa but not to Escherichia coli. The molecular weight of the purified enzyme was estimated to be 28,000, and the isoelectric point was 9.0. The enzyme showed a broad substrate profile, hydrolyzing imipenem, oxyiminocephalosporins, 7-methoxycephalosporins, and penicillins. The enzyme activity was inhibited by EDTA, iodine, p-chloromercuribenzoate, CuSO4, and HgCl2 but not by clavulanic acid or sulbactam.
Collapse
|
research-article |
34 |
398 |
2
|
Lawley TD, Klimke WA, Gubbins MJ, Frost LS. F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett 2003; 224:1-15. [PMID: 12855161 DOI: 10.1016/s0378-1097(03)00430-0] [Citation(s) in RCA: 318] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The F sex factor of Escherichia coli is a paradigm for bacterial conjugation and its transfer (tra) region represents a subset of the type IV secretion system (T4SS) family. The F tra region encodes eight of the 10 highly conserved (core) gene products of T4SS including TraAF (pilin), the TraBF, -KF (secretin-like), -VF (lipoprotein) and TraCF (NTPase), -EF, -LF and TraGF (N-terminal region) which correspond to TrbCP, -IP, -GP, -HP, -EP, -JP, DP and TrbLP, respectively, of the P-type T4SS exemplified by the IncP plasmid RP4. F lacks homologs of TrbBP (NTPase) and TrbFP but contains a cluster of genes encoding proteins essential for F conjugation (TraFF, -HF, -UF, -WF, the C-terminal region of TraGF, and TrbCF) that are hallmarks of F-like T4SS. These extra genes have been implicated in phenotypes that are characteristic of F-like systems including pilus retraction and mating pair stabilization. F-like T4SS systems have been found on many conjugative plasmids and in genetic islands on bacterial chromosomes. Although few systems have been studied in detail, F-like T4SS appear to be involved in the transfer of DNA only whereas P- and I-type systems appear to transport protein or nucleoprotein complexes. This review examines the similarities and differences among the T4SS, especially F- and P-like systems, and summarizes the properties of the F transfer region gene products.
Collapse
|
Review |
22 |
318 |
3
|
Abstract
Recent analyses with ribosomal RNA-based technologies have revealed the diversity of bacterial populations within dental biofilms, and have highlighted their important contributions to oral health and disease. Dental biofilms are exceedingly complex and multispecies ecosystems, where oral bacteria interact cooperatively or competitively with other members. Bacterial interactions that influence dental biofilm communities include various different mechanisms. During the early stage of biofilm formation, it is known that planktonic bacterial cells directly attach to surfaces of the oral cavity or indirectly bind to other bacterial cells that have already colonized. Adherence through co-aggregation may be critical for the temporary retention of bacteria on dental surfaces, and may facilitate eventual bacterial colonization. It is likely that metabolic communication, genetic exchange, production of inhibitory factors (e.g., bacteriocins, hydrogen peroxide, etc.), and quorum-sensing are pivotal regulatory factors that determine the bacterial composition and/or metabolism. Since each bacterium can easily access a neighboring bacterial cell and its metabolites, genetic exchanges and metabolic communication may occur frequently in dental biofilms. Quorum-sensing is defined as gene regulation in response to cell density, which influences various functions, e.g., virulence and bacteriocin production. In this review, we discuss these important interactions among oral bacteria within the dental biofilm communities.
Collapse
|
Review |
16 |
254 |
4
|
Poyart-Salmeron C, Carlier C, Trieu-Cuot P, Courtieu AL, Courvalin P. Transferable plasmid-mediated antibiotic resistance in Listeria monocytogenes. Lancet 1990; 335:1422-6. [PMID: 1972210 DOI: 10.1016/0140-6736(90)91447-i] [Citation(s) in RCA: 188] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A strain of Listeria monocytogenes, isolated from a patient with meningoencephalitis, was resistant to chloramphenicol, erythromycin, streptomycin, and tetracycline. The genes conferring resistance to these antibiotics were carried by a 37-kb plasmid, pIP811, that was self-transferable to other L monocytogenes cells, to enterococci-streptococci, and to Staphylococcus aureus. The efficacy of transfer and the stability of pIP811 were higher in enterococci-streptococci than in the other gram-positive bacteria. As indicated by nucleic acid hybridisation, the genes in pIP811 conferring resistance to chloramphenicol, erythromycin, and streptomycin were closely related to plasmid-borne determinants that are common in enterococci-streptococci. Plasmid pIP811 shared extensive sequence homology with pAM beta 1, the prototype broad host range resistance plasmid in these two groups of gram-positive cocci. These results suggest that emergence of multiple antibiotic resistance in Listeria spp is due to acquisition of a replicon originating in enterococci-streptococci. The dissemination of resistance to other strains of L monocytogenes is likely.
Collapse
|
|
35 |
188 |
5
|
Trieu-Cuot P, Carlier C, Poyart-Salmeron C, Courvalin P. Shuttle vectors containing a multiple cloning site and a lacZ alpha gene for conjugal transfer of DNA from Escherichia coli to gram-positive bacteria. Gene 1991; 102:99-104. [PMID: 1864514 DOI: 10.1016/0378-1119(91)90546-n] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mobilizable shuttle cloning vectors, pAT18 and pAT19, are composed of: (i) the replication origins of pUC and of the broad-host-range enterococcal plasmid pAM beta 1; (ii) an erythromycin-resistance-encoding gene expressed in Gram- and Gram+ bacteria; (iii) the transfer origin of the IncP plasmid RK2; and (iv) the multiple cloning site and the lacZ alpha reporter gene of pUC18 (pAT18) and pUC19 (pAT19). These 6.6-kb plasmids contain ten unique cloning sites that allow screening of derivatives containing DNA inserts by alpha-complementation in Escherichia coli carrying the lacZ delta M15 deletion, and can be efficiently mobilized by self-transferable IncP plasmids co-resident in the E. coli donors. Plasmids pAT18, pAT19 and recombinant derivatives have been successfully transferred by conjugation from E. coli to Bacillus subtilis, Bacillus thuringiensis, Listeria monocytogenes, Enterococcus faecalis, Lactococcus lactis, and Staphylococcus aureus at frequencies ranging from 10(-6) to 10(-9). The presence of a restriction system in the recipient dramatically affects (by three orders of magnitude) the efficiency of conjugal transfer of these vectors from E. coli to Gram+ bacteria.
Collapse
|
|
34 |
175 |
6
|
Abstract
Small RNAs produced by an RNAi-related mechanism are involved in DNA elimination during development of the somatic macronucleus from the germline micronucleus in Tetrahymena. The properties of these small RNAs can explain how the primary sequence of the parental macronucleus epigenetically controls genome rearrangement in the new macronucleus and provide the first demonstration of an RNAi-mediated process that directly alters DNA sequence organization. Methylation of histone H3 on lysine 9 and accumulation of chromodomain proteins, hallmarks of heterochromatin, also occur specifically on sequences undergoing elimination and are dependent on the small RNAs. These findings contribute to a new paradigm of chromatin biology: regulation of heterochromatin formation by RNAi-related mechanisms in eukaryotes.
Collapse
|
|
21 |
155 |
7
|
Doucet-Populaire F, Trieu-Cuot P, Dosbaa I, Andremont A, Courvalin P. Inducible transfer of conjugative transposon Tn1545 from Enterococcus faecalis to Listeria monocytogenes in the digestive tracts of gnotobiotic mice. Antimicrob Agents Chemother 1991; 35:185-7. [PMID: 1849709 PMCID: PMC244965 DOI: 10.1128/aac.35.1.185] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transfer of conjugative transposon Tn1545 from Enterococcus faecalis to Listeria monocytogenes was studied in vitro and in vivo. Tn1545 transferred following filter mating at a frequency of 2.5 x 10(-7) transconjugants per donor colony. A 20-fold increase in transfer frequency was observed when matings were performed in the presence of a subinhibitory concentration of tetracycline. The frequency of in vivo transfer of Tn1545, expressed as the number of transconjugants per donor cell extracted from the intestines of the gnotobiotic mice after 35 days of experiment, was 1.1 x 10(-8). Presence of a low concentration of tetracycline in the drinking water increased this frequency 10-fold.
Collapse
|
research-article |
34 |
152 |
8
|
Madireddi MT, Coyne RS, Smothers JF, Mickey KM, Yao MC, Allis CD. Pdd1p, a novel chromodomain-containing protein, links heterochromatin assembly and DNA elimination in Tetrahymena. Cell 1996; 87:75-84. [PMID: 8858150 DOI: 10.1016/s0092-8674(00)81324-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During Tetrahymena conjugation, programmed DNA degradation occurs in two separate nuclei. Thousands of germline-specific deletion elements are removed from the genome of the developing somatic macronucleus, and the old parental macronucleus is degraded by an apoptotic mechanism. An abundant polypeptide, Pdd1p (formerly p65), localizes to both of these nuclei at the time of DNA degradation. Here we report that, in developing macronuclei, Pdd1p localizes to electron-dense, heterochromatic structures that contain germline-specific deletion elements. Pdd1p also associates with parental macronuclei during terminal stages of apoptosis. Sequencing of the PDD1 gene reveals it to be a member of the chromodomain family, suggesting a molecular link between heterochromatin assembly and programmed DNA degradation.
Collapse
|
|
29 |
136 |
9
|
Mushtaq S, Ge Y, Livermore DM. Doripenem versus Pseudomonas aeruginosa in vitro: activity against characterized isolates, mutants, and transconjugants and resistance selection potential. Antimicrob Agents Chemother 2004; 48:3086-92. [PMID: 15273124 PMCID: PMC478525 DOI: 10.1128/aac.48.8.3086-3092.2004] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Doripenem is a broad-spectrum parenteral carbapenem under clinical development in Japan and North America. Its activities against (i) Pseudomonas aeruginosa isolates with graded levels of intrinsic efflux-type resistance, (ii) mutants with various combinations of AmpC and OprD expression, (iii) PU21 transconjugants with class A and D beta-lactamases, and (iv) P. aeruginosa isolates with metallo-beta-lactamases were tested by the agar dilution method of the National Committee for Clinical Laboratory Standards. Selection of resistant P. aeruginosa mutants was investigated in single- and multistep procedures. Doripenem MICs for isolates without acquired resistance mostly were 0.12 to 0.5 microg/ml, whereas meropenem MICs were 0.25 to 0.5 microg/ml and imipenem MICs were 1 to 2 microg/ml. The MICs of doripenem, meropenem, ertapenem, and noncarbapenems for isolates with increased efflux-type resistance were elevated, whereas the MICs of imipenem were less affected. The MICs of doripenem were increased by the loss of OprD but not by derepression of AmpC; nevertheless, and as with other carbapenems, the impermeability-determined resistance caused by the loss of OprD corequired AmpC activity and was lost in OprD- mutants also lacking AmpC. The TEM, PSE, PER, and OXA enzymes did not significantly protect P. aeruginosa PU21 against the activity of doripenem, whereas MICs of > or =16 microg/ml were seen for clinical isolates with VIM and IMP metallo-beta-lactamases. Resistant mutants seemed to be harder to select with doripenem than with other carbapenems (or noncarbapenems), and the fold increases in the MICs were smaller for the resistant mutants. Single-step doripenem mutants were mostly resistant only to carbapenems and had lost OprD; multistep mutants had broader resistance, implying the presence of additional mechanisms, putatively including up-regulated efflux. Most mutants selected with aminoglycosides and quinolones had little or no cross-resistance to carbapenems, including doripenem.
Collapse
|
Journal Article |
21 |
126 |
10
|
Atmakuri K, Ding Z, Christie PJ. VirE2, a type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens. Mol Microbiol 2003; 49:1699-713. [PMID: 12950931 PMCID: PMC3882298 DOI: 10.1046/j.1365-2958.2003.03669.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Agrobacterium tumefaciens transfers oncogenic DNA and effector proteins to plant cells during the course of infection. Substrate translocation across the bacterial cell envelope is mediated by a type IV secretion (TFS) system composed of the VirB proteins, as well as VirD4, a member of a large family of inner membrane proteins implicated in the coupling of DNA transfer intermediates to the secretion machine. In this study, we demonstrate with novel cytological screens - a two-hybrid (C2H) assay and bimolecular fluorescence complementation (BiFC) - and by immunoprecipitation of chemically cross-linked protein complexes that the VirE2 effector protein interacts directly with the VirD4 coupling protein at cell poles of A. tumefaciens. Analyses of truncation derivatives showed that VirE2 interacts via its C terminus with VirD4, and, further, an NH2-terminal membrane-spanning domain of VirD4 is dispensable for complex formation. VirE2 interacts with VirD4 independently of the virB-encoded transfer machine and T pilus, the putative periplasmic chaperones AcvB and VirJ, and the T-DNA transfer intermediate. Finally, VirE2 is recruited to polar-localized VirD4 as a complex with its stabilizing secretion chaperone VirE1, yet the effector-coupling protein interaction is not dependent on chaperone binding. Together, our findings establish for the first time that a protein substrate of a type IV secretion system is recruited to a member of the coupling protein superfamily.
Collapse
|
research-article |
22 |
120 |
11
|
White CE, Winans SC. Cell-cell communication in the plant pathogen Agrobacterium tumefaciens. Philos Trans R Soc Lond B Biol Sci 2007; 362:1135-48. [PMID: 17360279 PMCID: PMC2435578 DOI: 10.1098/rstb.2007.2040] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The plant pathogen Agrobacterium tumefaciens induces the formation of crown gall tumours at wound sites on host plants by directly transforming plant cells. This disease strategy benefits the bacteria as the infected plant tissue produces novel nutrients, called opines, that the colonizing bacteria can use as nutrients. Almost all of the genes that are required for virulence, and all of the opine uptake and utilization genes, are carried on large tumour-inducing (Ti) plasmids. The observation more than 25 years ago that specific opines are required for Ti plasmid conjugal transfer led to the discovery of a cell-cell signalling system on these plasmids that is similar to the LuxR-LuxI system first described in Vibrio fischeri. All Ti plasmids that have been described to date carry a functional LuxI-type N-acylhomoserine lactone synthase (TraI), and a LuxR-type signal receptor and transcriptional regulator called TraR. The traR genes are expressed only in the presence of specific opines called conjugal opines. The TraR-TraI system provides an important model for LuxR-LuxI-type systems, especially those found in the agriculturally important Rhizobiaceae family. In this review, we discuss current advances in the biochemistry and structural biology of the TraR-TraI system.
Collapse
|
Review |
18 |
106 |
12
|
Glöckner G, Albert-Weissenberger C, Weinmann E, Jacobi S, Schunder E, Steinert M, Hacker J, Heuner K. Identification and characterization of a new conjugation/type IVA secretion system (trb/tra) of Legionella pneumophila Corby localized on two mobile genomic islands. Int J Med Microbiol 2008; 298:411-28. [PMID: 17888731 DOI: 10.1016/j.ijmm.2007.07.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 06/14/2007] [Accepted: 07/13/2007] [Indexed: 11/22/2022] Open
Abstract
Horizontal gene transfer probably contributes to evolution of Legionella pneumophila and its adaptation to different environments. Although horizontal gene transfer was observed in Legionella, the mechanism is still not specified. In this study we identified and analysed a new type of conjugation/type IVA secretion system (trb/tra) of L. pneumophila Corby, a virulent human isolate. Two similar versions of this conjugation system were identified, localized on two different genomic islands (Trb-1, 42,710 bp and Trb-2, 34,434 bp). Trb-1 and Trb-2 are integrated within the tRNA(Pro) gene (lpc2778) and the tmRNA gene (lpc0164), respectively. Both islands exhibit an oriT region and both can be excised from the chromosome forming episomal circles. Trb-1 was analysed in more detail. It is active and can be horizontally transferred to other Legionella strains by conjugation and then integrated into the genome in a site-specific manner within the tRNA(Pro) gene. We characterized the sequence of the excision and integration sites of Trb-1 in three different L. pneumophila strains. Here we demonstrate that L. pneumophila exhibits a functional oriT region and that genomic islands in Legionella can be mobilized and conjugated to other species of Legionella. Thus, we describe for the first time a mechanism that may explain the observed horizontal transfer of chromosomal DNA in Legionella.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/genetics
- Base Sequence
- Carrier Proteins/genetics
- Conjugation, Genetic/genetics
- Conjugation, Genetic/physiology
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Gene Order
- Genes, Bacterial
- Genomic Islands
- Humans
- Interspersed Repetitive Sequences
- Legionella pneumophila/genetics
- Legionella pneumophila/isolation & purification
- Legionella pneumophila/metabolism
- Legionnaires' Disease/microbiology
- Models, Biological
- Molecular Sequence Data
- RNA, Bacterial/genetics
- RNA, Transfer, Pro/genetics
- Recombination, Genetic
- Sequence Alignment
- Sequence Analysis, DNA
Collapse
|
|
17 |
101 |
13
|
Shi K, Brown CK, Gu ZY, Kozlowicz BK, Dunny GM, Ohlendorf DH, Earhart CA. Structure of peptide sex pheromone receptor PrgX and PrgX/pheromone complexes and regulation of conjugation in Enterococcus faecalis. Proc Natl Acad Sci U S A 2005; 102:18596-601. [PMID: 16339309 PMCID: PMC1317922 DOI: 10.1073/pnas.0506163102] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many bacterial activities, including expression of virulence factors, horizontal genetic transfer, and production of antibiotics, are controlled by intercellular signaling using small molecules. To date, understanding of the molecular mechanisms of peptide-mediated cell-cell signaling has been limited by a dearth of published information about the molecular structures of the signaling components. Here, we present the molecular structure of PrgX, a DNA- and peptide-binding protein that regulates expression of the conjugative transfer genes of the Enterococcus faecalis plasmid pCF10 in response to an intercellular peptide pheromone signal. Comparison of the structures of PrgX and the PrgX/pheromone complex suggests that pheromone binding destabilizes PrgX tetramers, opening a 70-bp pCF10 DNA loop required for conjugation repression.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
101 |
14
|
Dunny GM. The peptide pheromone-inducible conjugation system of Enterococcus faecalis plasmid pCF10: cell-cell signalling, gene transfer, complexity and evolution. Philos Trans R Soc Lond B Biol Sci 2007; 362:1185-93. [PMID: 17360276 PMCID: PMC2435581 DOI: 10.1098/rstb.2007.2043] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Expression of a large set of gene products required for conjugative transfer of the antibiotic resistance plasmid pCF10 is controlled by cell-cell communication between plasmid-free recipient cells and plasmid-carrying donor cells using a peptide mating pheromone cCF10. Most of the recent experimental analysis of this system has focused on the molecular events involved in initiation of the pheromone response in the donor cells, and on the mechanisms by which the donor cells control self-induction by endogenously produced pheromone. Recently, studies of the molecular machinery of conjugation encoded by the pheromone-inducible genes have been initiated. In addition, the system may serve as a useful bacterial model for addressing the evolution of biological complexity.
Collapse
|
Review |
18 |
91 |
15
|
Tato I, Zunzunegui S, de la Cruz F, Cabezon E. TrwB, the coupling protein involved in DNA transport during bacterial conjugation, is a DNA-dependent ATPase. Proc Natl Acad Sci U S A 2005; 102:8156-61. [PMID: 15919815 PMCID: PMC1149453 DOI: 10.1073/pnas.0503402102] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bacterial conjugation is an example of macromolecular trafficking between cells, based on the translocation of single-stranded DNA across membranes through a type IV secretion system. TrwBDeltaN70 is the soluble domain of TrwB, an essential integral membrane protein that couples the relaxosome (a nucleoprotein complex) to the DNA transport apparatus in plasmid R388 conjugation. TrwBDeltaN70 crystallographic structure revealed a hexamer with six equivalent subunits and a central channel. In this work, we characterize a DNA-dependent ATPase activity for TrwBDeltaN70. The protein displays positive cooperativity for ATP hydrolysis, with at least three catalytic sites involved. The activity is sensitive to pH and salt concentration, being more active at low pH values. The effective oligonucleotide size required for activation of the ATPase function is between 40 and 45 nucleotides, and the same length is required for the formation of high-molecular-weight TrwBDeltaN70-DNA complexes, as observed by gel filtration chromatography. A mutation in a tryptophan residue (W216A), placed in the central pore formed by the hexameric structure, resulted in a protein that did not hydrolyze ATP. In addition, it exerted a dominant negative effect, both on R388 conjugation frequency and ATP hydrolysis, underscoring the multimeric state of the protein. ATP hydrolysis was not coupled to a DNA unwinding activity under the tested conditions, which included forked DNA substrates. These results, together with TrwB structural similarity to F1-ATPase, lead us to propose a mechanism for TrwB as a DNA-translocating motor.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
91 |
16
|
Abstract
In the past year, our knowledge of type IV transporters of Gram-negative bacteria has further expanded. Advances include the discovery of additional members of this family of proteins, increased knowledge of the morphologies of type IV transporters, and a better understanding of the mechanisms by which macromolecules are exported by these systems.
Collapse
|
Review |
26 |
91 |
17
|
Lipke PN, Kurjan J. Sexual agglutination in budding yeasts: structure, function, and regulation of adhesion glycoproteins. Microbiol Rev 1992; 56:180-94. [PMID: 1579109 PMCID: PMC372860 DOI: 10.1128/mr.56.1.180-194.1992] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The sexual agglutinins of the budding yeasts are cell adhesion proteins that promote aggregation of cells during mating. In each yeast species, complementary agglutinins are expressed by cells of opposite mating type that interact to mediate aggregation. Saccharomyces cerevisiae alpha-agglutinin and its analogs from other yeasts are single-subunit glycoproteins that contain N-linked and O-linked oligosaccharides. The N-glycosidase-sensitive carbohydrate is not necessary for activity. The proposed binding domain of alpha-agglutinin has features characteristic of the immunoglobulin fold structures of cell adhesion proteins of higher eukaryotes. The C-terminal region of alpha-agglutinin plays a role in anchoring the glycoprotein to the cell surface. The S. cerevisiae alpha-agglutinin and its analogs from other species contain multiple subunits; one or more binding subunits, which interact with the opposite agglutinin, are disulfide bonded to a core subunit, which mediates cell wall anchorage. The core subunits are composed of 80 to 95% O-linked carbohydrate. The binding subunits have less carbohydrate, and both carbohydrate and peptide play roles in binding. The alpha-agglutinin and alpha-agglutinin genes from S. cerevisiae have been cloned and shown to be regulated by the mating-type locus, MAT, and by pheromone induction. The agglutinins are necessary for mating under conditions that do not promote cell-cell contact. The role of the agglutinins therefore is to promote close interactions between cells of opposite mating type and possibly to facilitate the response to phermone, thus increasing the efficiency of mating. We speculate that they mediate enhanced response to sex pheromones by providing a synapse at the point of cell-cell contact, at which both pheromone secretion and cell fusion occur.
Collapse
|
research-article |
33 |
85 |
18
|
Rivas S, Bolland S, Cabezón E, Goñi FM, de la Cruz F. TrwD, a protein encoded by the IncW plasmid R388, displays an ATP hydrolase activity essential for bacterial conjugation. J Biol Chem 1997; 272:25583-90. [PMID: 9325277 DOI: 10.1074/jbc.272.41.25583] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A 1.7-kilobase pair segment from the conjugative transfer region of plasmid R388 DNA was cloned and sequenced. It contained trwD, a gene essential for plasmid R388 conjugation, for expression of the conjugative W-pilus and for sensitivity to phage PRD1. The deduced amino acid sequence of TrwD showed homology to the PulE/VirB11 superfamily of potential ATPases involved in various types of transport processes. A fusion of trwD with the glutathione S-transferase (GST) was constructed, and the resulting fusion protein was purified from overproducing bacteria. Factor Xa hydrolysis of GST-TrwD and further purification rendered TrwD protein with more than 95% purity. Antibodies raised against TrwD localized it both in the soluble fraction and in the outer membrane of Escherichia coli. TrwD is probably a peripheral outer membrane protein because it could be solubilized by increasing salt concentration to 0.5 M NaCl in the lysis buffer. Both purified GST-TrwD and TrwD could hydrolize ATP. ATPase activity increased 2-fold in the presence of detergent-phospholipid mixed micelles. To study the importance of the nucleotide-binding site, Walker box A (GXXGXGK(T/S)), present in TrwD, the conserved lysine residue was replaced by glutamine. The mutant protein, expressed and purified under the same conditions as the wild type, did not exhibit ATPase activity. TrwD(K203Q) was not able to complement the mutation in trwD of the R388 mutant plasmid, suggesting the essentiality of the ATPase activity of the protein in the conjugative process. Furthermore, the dominant character of this mutation suggested that GST-TrwD(K432Q) was still able to interact either with itself or with other component(s) of the conjugative machinery.
Collapse
|
|
28 |
81 |
19
|
Anthony KG, Sherburne C, Sherburne R, Frost LS. The role of the pilus in recipient cell recognition during bacterial conjugation mediated by F-like plasmids. Mol Microbiol 1994; 13:939-53. [PMID: 7854127 DOI: 10.1111/j.1365-2958.1994.tb00486.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of defined mutations in the lipopolysaccharide (LPS) and the outer membrane protein OmpA of the recipient cell on mating-pair formation in liquid media by the transfer systems of the F-like plasmids pOX38 (F), ColB2 and R100-1 were investigated. Transfer of all three plasmids was affected differently by mutations in the rfa (LPS) locus of the recipient cell, the F plasmid being most sensitive to mutations that affected rfaP gene expression which is responsible for the addition of pyrophosphorylethanolamine (PPEA) to heptose I of the inner core of the LPS. ColB2 transfer was more strongly affected by mutations in the heptose II-heptose III region of the LPS (rfaF) whereas R100-1 was not strongly affected by any of the rfa mutations tested. ompA but not rfa mutations further decreased the mating efficiency of an F plasmid carrying a mutation in the mating-pair stabilization protein TraN. An F derivative with a chloramphenicol acetyltransferase (CAT) cassette interrupting the traA pilin gene was constructed and pilin genes from F-like plasmids (F, ColB2, R100-1) were used to complement this mutation. Unexpectedly, the results suggested that the differences in the pilin sequences were not responsible for recognizing specific groups in the LPS, OmpA or the TraT surface exclusion protein. Other corroborating evidence is presented suggesting the presence of an adhesin at the F pilus tip.
Collapse
|
Comparative Study |
31 |
79 |
20
|
Dumitru R, Navarathna DHMLP, Semighini CP, Elowsky CG, Dumitru RV, Dignard D, Whiteway M, Atkin AL, Nickerson KW. In vivo and in vitro anaerobic mating in Candida albicans. EUKARYOTIC CELL 2007; 6:465-72. [PMID: 17259544 PMCID: PMC1828919 DOI: 10.1128/ec.00316-06] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans cells of opposite mating types are thought to conjugate during infection in mammalian hosts, but paradoxically, the mating-competent opaque state is not stable at mammalian body temperatures. We found that anaerobic conditions stabilize the opaque state at 37 degrees C, block production of farnesol, and permit in vitro mating at 37 degrees C at efficiencies of up to 84%. Aerobically, farnesol prevents mating because it kills the opaque cells necessary for mating, and as a corollary, farnesol production is turned off in opaque cells. These in vitro observations suggest that naturally anaerobic sites, such as the efficiently colonized gastrointestinal (GI) tract, could serve as niches for C. albicans mating. In a direct test of mating in the mouse GI tract, prototrophic cells were obtained from auxotrophic parent cells, confirming that mating will occur in this organ. These cells were true mating products because they were tetraploid, mononuclear, and prototrophic, and they contained the heterologous hisG marker from one of the parental strains.
Collapse
MESH Headings
- Anaerobiosis/physiology
- Animals
- Candida albicans/cytology
- Candida albicans/genetics
- Candida albicans/metabolism
- Conjugation, Genetic/physiology
- Farnesol/metabolism
- Farnesol/pharmacology
- Female
- Gastrointestinal Tract/microbiology
- Gastrointestinal Tract/physiology
- Gene Expression Regulation, Fungal/drug effects
- Gene Expression Regulation, Fungal/genetics
- Genes, Mating Type, Fungal/drug effects
- Genes, Mating Type, Fungal/genetics
- Genes, Switch/genetics
- Mice
- Mice, Inbred Strains
- Microscopy, Fluorescence
- Microscopy, Phase-Contrast
- Phenotype
- Signal Transduction
- Species Specificity
- Temperature
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
77 |
21
|
Read EB, Okamura HH, Drubin DG. Actin- and tubulin-dependent functions during Saccharomyces cerevisiae mating projection formation. Mol Biol Cell 1992; 3:429-44. [PMID: 1498363 PMCID: PMC275593 DOI: 10.1091/mbc.3.4.429] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Several conditional-lethal mutant alleles of the single-copy Saccharomyces cerevisiae beta-tubulin and actin genes were used to evaluate the roles of microtubules and actin filaments in the pheromone-induced extension of mating projections. Mutants defective in tubulin assembly form projections indistinguishable in appearance from those formed by wild-type cells. However, the tubulin mutants are unable to move their nuclei into the projections and to orient the spindle pole body associated with each nucleus toward the projection tip. Actin mutants are defective in spatial orientation of cell-surface growth required for formation of normal mating projections. Migration of nuclei into mating projections and Spa2p segregation to projection tips are also defective in actin mutants. Studies with abp1 null mutants showed that the function of the Abp1p actin-binding protein is either not required for projection formation or there are other proteins in yeast with similar functions. Our findings demonstrate that actin is required to restrict cell-surface growth to a defined region for pheromone-induced morphogenesis and suggest that nuclear position and orientation in mating projections depend on direct or indirect interaction of microtubules with actin filaments.
Collapse
|
research-article |
33 |
76 |
22
|
Camacho EM, Casadesús J. Conjugal transfer of the virulence plasmid of Salmonella enterica is regulated by the leucine-responsive regulatory protein and DNA adenine methylation. Mol Microbiol 2002; 44:1589-98. [PMID: 12067346 DOI: 10.1046/j.1365-2958.2002.02981.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Host-encoded functions that regulate the transfer operon (tra) in the virulence plasmid of Salmonella enterica (pSLT) were identified with a genetic screen. Mutations that decreased tra operon expression mapped in the lrp gene, which encodes the leucine-responsive regulatory protein (Lrp). Reduced tra operon expression in an Lrp- background is caused by lowered transcription of the traJ gene, which encodes a transcriptional activator of the tra operon. Gel retardation assays indicated that Lrp binds a DNA region upstream of the traJ promoter. Deletion of the Lrp binding site resulted in lowered and Lrp-independent traJ transcription. Conjugal transfer of pSLT decreased 50-fold in a Lrp- background. When a FinO- derivative of pSLT was used, conjugal transfer from an Lrp- donor decreased 1000-fold. Mutations that derepressed tra operon expression mapped in dam, the gene encoding Dam methyltransferase. Expression of the tra operon and conjugal transfer remain repressed in an Lrp- Dam- background. These observations support the model that Lrp acts as a conjugation activator by promoting traJ transcription, whereas Dam methylation acts as a conjugation repressor by activating FinP RNA synthesis. This dual control of conjugal transfer may also operate in other F-like plasmids such as F and R100.
Collapse
|
|
23 |
75 |
23
|
Abstract
Though bacteria are predominantly asexual, the genetic information in their genomes can be expanded and modified through mechanisms that introduce DNA from outside sources. Bacterial sex differs from that of eukaryotes in that it is unidirectional and does not involve gamete fusion or reproduction. The input of DNA during bacterial sex generates diversity in two ways--through the alteration of existing genes by recombination and through the introduction of novel sequences--and each of these processes has been shown to aid in the survival and diversification of lineages.
Collapse
|
Review |
19 |
66 |
24
|
Tato I, Matilla I, Arechaga I, Zunzunegui S, de la Cruz F, Cabezon E. The ATPase activity of the DNA transporter TrwB is modulated by protein TrwA: implications for a common assembly mechanism of DNA translocating motors. J Biol Chem 2007; 282:25569-76. [PMID: 17599913 DOI: 10.1074/jbc.m703464200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conjugative systems contain an essential integral membrane protein involved in DNA transport called the Type IV coupling protein (T4CP). The T4CP of conjugative plasmid R388 is TrwB, a DNA-dependent ATPase. Biochemical and structural data suggest that TrwB uses energy released from ATP hydrolysis to pump DNA through its central channel by a mechanism similar to that used by F1-ATPase or ring helicases. For DNA transport, TrwB couples the relaxosome (a DNA-protein complex) to the secretion channel. In this work we show that TrwA, a tetrameric oriT DNA-binding protein and a component of the R388 relaxosome, stimulates TrwBDeltaN70 ATPase activity, revealing a specific interaction between the two proteins. This interaction occurs via the TrwA C-terminal domain. A 68-kDa complex between TrwBDeltaN70 and TrwA C-terminal domain was observed by gel filtration chromatography, consistent with a 1:1 stoichiometry. Additionally, electron microscopy revealed the formation of oligomeric TrwB complexes in the presence, but not in the absence, of TrwA protein. TrwBDeltaN70 ATPase activity in the presence of TrwA was further enhanced by DNA. Interestingly, maximal ATPase rates were achieved with TrwA and different types of dsDNA substrates. This is consistent with a role of TrwA in facilitating the interaction between TrwB and DNA. Our findings provide a new insight into the mechanism by which TrwB recruits the relaxosome for DNA transport. The process resembles the mechanism used by other DNA-dependent molecular motors, such as the RuvA/RuvB system, to be targeted to the DNA followed by hexamer assembly.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
66 |
25
|
Abstract
DNA translocation across bacterial membranes occurs during the biological processes of infection by bacteriophages, conjugative DNA transfer of plasmids, T-DNA transfer, and genetic transformation. The mechanism of DNA translocation in these systems is not fully understood, but during the last few years extensive data about genes and gene products involved in the translocation processes have accumulated. One reason for the increasing interest in this topic is the discussion about horizontal gene transfer and transkingdom sex. Analyses of genes and gene products involved in DNA transfer suggest that DNA is transferred through a protein channel spanning the bacterial envelope. No common model exists for DNA translocation during phage infection. Perhaps various mechanisms are necessary as a result of the different morphologies of bacteriophages. The DNA translocation processes during conjugation, T-DNA transfer, and transformation are more consistent and may even be compared to the excretion of some proteins. On the basis of analogies and homologies between the proteins involved in DNA translocation and protein secretion, a common basic model for these processes is presented.
Collapse
|
research-article |
31 |
62 |