1
|
Warnes SL, Little ZR, Keevil CW. Human Coronavirus 229E Remains Infectious on Common Touch Surface Materials. mBio 2015; 6:e01697-15. [PMID: 26556276 PMCID: PMC4659470 DOI: 10.1128/mbio.01697-15] [Citation(s) in RCA: 304] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The evolution of new and reemerging historic virulent strains of respiratory viruses from animal reservoirs is a significant threat to human health. Inefficient human-to-human transmission of zoonotic strains may initially limit the spread of transmission, but an infection may be contracted by touching contaminated surfaces. Enveloped viruses are often susceptible to environmental stresses, but the human coronaviruses responsible for severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) have recently caused increasing concern of contact transmission during outbreaks. We report here that pathogenic human coronavirus 229E remained infectious in a human lung cell culture model following at least 5 days of persistence on a range of common nonbiocidal surface materials, including polytetrafluoroethylene (Teflon; PTFE), polyvinyl chloride (PVC), ceramic tiles, glass, silicone rubber, and stainless steel. We have shown previously that noroviruses are destroyed on copper alloy surfaces. In this new study, human coronavirus 229E was rapidly inactivated on a range of copper alloys (within a few minutes for simulated fingertip contamination) and Cu/Zn brasses were very effective at lower copper concentration. Exposure to copper destroyed the viral genomes and irreversibly affected virus morphology, including disintegration of envelope and dispersal of surface spikes. Cu(I) and Cu(II) moieties were responsible for the inactivation, which was enhanced by reactive oxygen species generation on alloy surfaces, resulting in even faster inactivation than was seen with nonenveloped viruses on copper. Consequently, copper alloy surfaces could be employed in communal areas and at any mass gatherings to help reduce transmission of respiratory viruses from contaminated surfaces and protect the public health. IMPORTANCE Respiratory viruses are responsible for more deaths globally than any other infectious agent. Animal coronaviruses that "host jump" to humans result in severe infections with high mortality, such as severe acute respiratory syndrome (SARS) and, more recently, Middle East respiratory syndrome (MERS). We show here that a closely related human coronavirus, 229E, which causes upper respiratory tract infection in healthy individuals and serious disease in patients with comorbidities, remained infectious on surface materials common to public and domestic areas for several days. The low infectious dose means that this is a significant infection risk to anyone touching a contaminated surface. However, rapid inactivation, irreversible destruction of viral RNA, and massive structural damage were observed in coronavirus exposed to copper and copper alloy surfaces. Incorporation of copper alloy surfaces in conjunction with effective cleaning regimens and good clinical practice could help to control transmission of respiratory coronaviruses, including MERS and SARS.
Collapse
|
research-article |
10 |
304 |
2
|
Yan B, Chu H, Yang D, Sze KH, Lai PM, Yuan S, Shuai H, Wang Y, Kao RYT, Chan JFW, Yuen KY. Characterization of the Lipidomic Profile of Human Coronavirus-Infected Cells: Implications for Lipid Metabolism Remodeling upon Coronavirus Replication. Viruses 2019; 11:v11010073. [PMID: 30654597 PMCID: PMC6357182 DOI: 10.3390/v11010073] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/19/2022] Open
Abstract
Lipids play numerous indispensable cellular functions and are involved in multiple steps in the replication cycle of viruses. Infections by human-pathogenic coronaviruses result in diverse clinical outcomes, ranging from self-limiting flu-like symptoms to severe pneumonia with extrapulmonary manifestations. Understanding how cellular lipids may modulate the pathogenicity of human-pathogenic coronaviruses remains poor. To this end, we utilized the human coronavirus 229E (HCoV-229E) as a model coronavirus to comprehensively characterize the host cell lipid response upon coronavirus infection with an ultra-high performance liquid chromatography-mass spectrometry (UPLC–MS)-based lipidomics approach. Our results revealed that glycerophospholipids and fatty acids (FAs) were significantly elevated in the HCoV-229E-infected cells and the linoleic acid (LA) to arachidonic acid (AA) metabolism axis was markedly perturbed upon HCoV-229E infection. Interestingly, exogenous supplement of LA or AA in HCoV-229E-infected cells significantly suppressed HCoV-229E virus replication. Importantly, the inhibitory effect of LA and AA on virus replication was also conserved for the highly pathogenic Middle East respiratory syndrome coronavirus (MERS-CoV). Taken together, our study demonstrated that host lipid metabolic remodeling was significantly associated with human-pathogenic coronavirus propagation. Our data further suggested that lipid metabolism regulation would be a common and druggable target for coronavirus infections.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
213 |
3
|
Cheng PW, Ng LT, Chiang LC, Lin CC. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin Exp Pharmacol Physiol 2007; 33:612-6. [PMID: 16789928 PMCID: PMC7162031 DOI: 10.1111/j.1440-1681.2006.04415.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Saikosaponins represent a group of oleanane derivatives, usually as glucosides, that are found in a number of plant families. Saikosaponins isolated from medicinal plants such as Bupleurum spp., Heteromorpha spp. and Scrophularia scorodonia have been reported to possess various biological activities, specifically antihepatitis, antinephritis, antihepatoma, anti-inflammation, immunomodulation and antibacterial effects. 2. The aim of the present study was to examine the anticoronaviral activity of saikosaponins (A, B2, C and D) and their mode of action. Using the 2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-5-[(phenylamino) carbonyl-2H-tetrazolium hydroxide] (XTT) assay, results showed that all saikosaponins tested demonstrated antiviral activity at concentrations of 0.25-25 micromol/L, with the strongest activity being noted for saikosaponin B2 (IC50 = 1.7 +/- 0.1 micromol/L). Interestingly, both saikosaponins A (50% cellular cytotoxicity (CC50) concentration = 228.1 +/- 3.8 micromol/L; selectivity index (SI) = 26.6) and B2 (CC50 = 383.3 +/- 0.2 micromol/L; SI = 221.9) exhibited no cytotoxic effects on target cells at concentrations that achieved antiviral activity. In the time-of-addition studies, saikosaponin B2, at 6 micromol/L, significantly inhibited human coronavirus 229E infection following its addition at various time pre-infection (-4 to -1 h), coinfection (0 h) and post-infection (1-4 h). Furthermore, saikosaponin B2 also showed an inhibitory effect on viral attachment and penetration. 3. The present results indicate that saikosaponin B2 has potent anticoronaviral activity and that its mode of action possibly involves interference in the early stage of viral replication, such as absorption and penetration of the virus.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
180 |
4
|
Łoczechin A, Séron K, Barras A, Giovanelli E, Belouzard S, Chen YT, Metzler-Nolte N, Boukherroub R, Dubuisson J, Szunerits S. Functional Carbon Quantum Dots as Medical Countermeasures to Human Coronavirus. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42964-42974. [PMID: 31633330 PMCID: PMC7075527 DOI: 10.1021/acsami.9b15032] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/21/2019] [Indexed: 05/18/2023]
Abstract
Therapeutic options for the highly pathogenic human coronavirus (HCoV) infections are urgently needed. Anticoronavirus therapy is however challenging, as coronaviruses are biologically diverse and rapidly mutating. In this work, the antiviral activity of seven different carbon quantum dots (CQDs) for the treatment of human coronavirus HCoV-229E infections was investigated. The first generation of antiviral CQDs was derived from hydrothermal carbonization of ethylenediamine/citric acid as carbon precursors and postmodified with boronic acid ligands. These nanostructures showed a concentration-dependent virus inactivation with an estimated EC50 of 52 ± 8 μg mL-1. CQDs derived from 4-aminophenylboronic acid without any further modification resulted in the second-generation of anti-HCoV nanomaterials with an EC50 lowered to 5.2 ± 0.7 μg mL-1. The underlying mechanism of action of these CQDs was revealed to be inhibition of HCoV-229E entry that could be due to interaction of the functional groups of the CQDs with HCoV-229E entry receptors; surprisingly, an equally large inhibition activity was observed at the viral replication step.
Collapse
|
research-article |
6 |
179 |
5
|
Chan RWY, Chan MCW, Agnihothram S, Chan LLY, Kuok DIT, Fong JHM, Guan Y, Poon LLM, Baric RS, Nicholls JM, Peiris JSM. Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures. J Virol 2013; 87:6604-14. [PMID: 23552422 PMCID: PMC3676115 DOI: 10.1128/jvi.00009-13] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 03/12/2013] [Indexed: 01/11/2023] Open
Abstract
Since April 2012, there have been 17 laboratory-confirmed human cases of respiratory disease associated with newly recognized human betacoronavirus lineage C virus EMC (HCoV-EMC), and 7 of them were fatal. The transmissibility and pathogenesis of HCoV-EMC remain poorly understood, and elucidating its cellular tropism in human respiratory tissues will provide mechanistic insights into the key cellular targets for virus propagation and spread. We utilized ex vivo cultures of human bronchial and lung tissue specimens to investigate the tissue tropism and virus replication kinetics following experimental infection with HCoV-EMC compared with those following infection with human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome coronavirus (SARS-CoV). The innate immune responses elicited by HCoV-EMC were also investigated. HCoV-EMC productively replicated in human bronchial and lung ex vivo organ cultures. While SARS-CoV productively replicated in lung tissue, replication in human bronchial tissue was limited. Immunohistochemistry revealed that HCoV-EMC infected nonciliated bronchial epithelium, bronchiolar epithelial cells, alveolar epithelial cells, and endothelial cells. Transmission electron microscopy showed virions within the cytoplasm of bronchial epithelial cells and budding virions from alveolar epithelial cells (type II). In contrast, there was minimal HCoV-229E infection in these tissues. HCoV-EMC failed to elicit strong type I or III interferon (IFN) or proinflammatory innate immune responses in ex vivo respiratory tissue cultures. Treatment of human lung tissue ex vivo organ cultures with type I IFNs (alpha and beta IFNs) at 1 h postinfection reduced the replication of HCoV-EMC, suggesting a potential therapeutic use of IFNs for treatment of human infection.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
145 |
6
|
Putics A, Filipowicz W, Hall J, Gorbalenya AE, Ziebuhr J. ADP-ribose-1"-monophosphatase: a conserved coronavirus enzyme that is dispensable for viral replication in tissue culture. J Virol 2005; 79:12721-31. [PMID: 16188975 PMCID: PMC1235854 DOI: 10.1128/jvi.79.20.12721-12731.2005] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication of the approximately 30-kb plus-strand RNA genome of coronaviruses and synthesis of an extensive set of subgenome-length RNAs are mediated by the replicase-transcriptase, a membrane-bound protein complex containing several cellular proteins and up to 16 viral nonstructural proteins (nsps) with multiple enzymatic activities, including protease, polymerase, helicase, methyltransferase, and RNase activities. To get further insight into the replicase gene-encoded functions, we characterized the coronavirus X domain, which is part of nsp3 and has been predicted to be an ADP-ribose-1"-monophosphate (Appr-1"-p) processing enzyme. Bacterially expressed forms of human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome-coronavirus X domains were shown to dephosphorylate Appr-1"-p, a side product of cellular tRNA splicing, to ADP-ribose in a highly specific manner. The enzyme had no detectable activity on several other nucleoside phosphates. Guided by the crystal structure of AF1521, an X domain homolog from Archaeoglobus fulgidus, potential active-site residues of the HCoV-229E X domain were targeted by site-directed mutagenesis. The data suggest that the HCoV-229E replicase polyprotein residues, Asn 1302, Asn 1305, His 1310, Gly 1312, and Gly 1313, are part of the enzyme's active site. Characterization of an Appr-1"-pase-deficient HCoV-229E mutant revealed no significant effects on viral RNA synthesis and virus titer, and no reversion to the wild-type sequence was observed when the mutant virus was passaged in cell culture. The apparent dispensability of the conserved X domain activity in vitro indicates that coronavirus replicase polyproteins have evolved to include nonessential functions. The biological significance of the novel enzymatic activity in vivo remains to be investigated.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
134 |
7
|
Schelle B, Karl N, Ludewig B, Siddell SG, Thiel V. Selective replication of coronavirus genomes that express nucleocapsid protein. J Virol 2005; 79:6620-30. [PMID: 15890900 PMCID: PMC1112145 DOI: 10.1128/jvi.79.11.6620-6630.2005] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coronavirus nucleocapsid (N) protein is a structural protein that forms a ribonucleoprotein complex with genomic RNA. In addition to its structural role, it has been described as an RNA-binding protein that might be involved in coronavirus RNA synthesis. Here, we report a reverse genetic approach to elucidate the role of N in coronavirus replication and transcription. We found that human coronavirus 229E (HCoV-229E) vector RNAs that lack the N gene were greatly impaired in their ability to replicate, whereas the transcription of subgenomic mRNA from these vectors was easily detectable. In contrast, vector RNAs encoding a functional N protein were able to carry out both replication and transcription. Furthermore, modification of the transcription signal required for the synthesis of N protein mRNAs in the HCoV-229E genome resulted in the selective replication of genomes that are able to express the N protein. This genetic evidence leads us to conclude that at least one coronavirus structural protein, the N protein, is involved in coronavirus replication.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
107 |
8
|
Cencic R, Desforges M, Hall DR, Kozakov D, Du Y, Min J, Dingledine R, Fu H, Vajda S, Talbot PJ, Pelletier J. Blocking eIF4E-eIF4G interaction as a strategy to impair coronavirus replication. J Virol 2011; 85:6381-9. [PMID: 21507972 PMCID: PMC3126520 DOI: 10.1128/jvi.00078-11] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 04/08/2011] [Indexed: 12/14/2022] Open
Abstract
Coronaviruses are a family of enveloped single-stranded positive-sense RNA viruses causing respiratory, enteric, and neurologic diseases in mammals and fowl. Human coronaviruses are recognized to cause up to a third of common colds and are suspected to be involved in enteric and neurologic diseases. Coronavirus replication involves the generation of nested subgenomic mRNAs (sgmRNAs) with a common capped 5' leader sequence. The translation of most of the sgmRNAs is thought to be cap dependent and displays a requirement for eukaryotic initiation factor 4F (eIF4F), a heterotrimeric complex needed for the recruitment of 40S ribosomes. We recently reported on an ultrahigh-throughput screen to discover compounds that inhibit eIF4F activity by blocking the interaction of two of its subunits (R. Cencic et al., Proc. Natl. Acad. Sci. U. S. A. 108:1046-1051, 2011). Herein we describe a molecule from this screen that prevents the interaction between eIF4E (the cap-binding protein) and eIF4G (a large scaffolding protein), inhibiting cap-dependent translation. This inhibitor significantly decreased human coronavirus 229E (HCoV-229E) replication, reducing the percentage of infected cells and intra- and extracellular infectious virus titers. Our results support the strategy of targeting the eIF4F complex to block coronavirus infection.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
89 |
9
|
Tang BSF, Chan KH, Cheng VCC, Woo PCY, Lau SKP, Lam CCK, Chan TL, Wu AKL, Hung IFN, Leung SY, Yuen KY. Comparative host gene transcription by microarray analysis early after infection of the Huh7 cell line by severe acute respiratory syndrome coronavirus and human coronavirus 229E. J Virol 2005; 79:6180-93. [PMID: 15858003 PMCID: PMC1091719 DOI: 10.1128/jvi.79.10.6180-6193.2005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The pathogenesis of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) at the cellular level is unclear. No human cell line was previously known to be susceptible to both SARS-CoV and other human coronaviruses. Huh7 cells were found to be susceptible to both SARS-CoV, associated with SARS, and human coronavirus 229E (HCoV-229E), usually associated with the common cold. Highly lytic and productive rates of infections within 48 h of inoculation were reproducible with both viruses. The early transcriptional profiles of host cell response to both types of infection at 2 and 4 h postinoculation were determined by using the Affymetrix HG-U133A microarray (about 22,000 genes). Much more perturbation of cellular gene transcription was observed after infection by SARS-CoV than after infection by HCoV-229E. Besides the upregulation of genes associated with apoptosis, which was exactly opposite to the previously reported effect of SARS-CoV in a colonic carcinoma cell line, genes related to inflammation, stress response, and procoagulation were also upregulated. These findings were confirmed by semiquantitative reverse transcription-PCR, reverse transcription-quantitative PCR for mRNA of genes, and immunoassays for some encoded proteins. These transcriptomal changes are compatible with the histological changes of pulmonary vasculitis and microvascular thrombosis in addition to the diffuse alveolar damage involving the pneumocytes.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
87 |
10
|
Hofmann H, Simmons G, Rennekamp AJ, Chaipan C, Gramberg T, Heck E, Geier M, Wegele A, Marzi A, Bates P, Pöhlmann S. Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors. J Virol 2006; 80:8639-52. [PMID: 16912312 PMCID: PMC1563880 DOI: 10.1128/jvi.00560-06] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have recently demonstrated that the severe acute respiratory syndrome coronavirus (SARS-CoV) receptor angiotensin converting enzyme 2 (ACE2) also mediates cellular entry of the newly discovered human coronavirus (hCoV) NL63. Here, we show that expression of DC-SIGN augments NL63 spike (S)-protein-driven infection of susceptible cells, while only expression of ACE2 but not DC-SIGN is sufficient for entry into nonpermissive cells, indicating that ACE2 fulfills the criteria of a bona fide hCoV-NL63 receptor. As for SARS-CoV, murine ACE2 is used less efficiently by NL63-S for entry than human ACE2. In contrast, several amino acid exchanges in human ACE2 which diminish SARS-S-driven entry do not interfere with NL63-S-mediated infection, suggesting that SARS-S and NL63-S might engage human ACE2 differentially. Moreover, we observed that NL63-S-driven entry was less dependent on a low-pH environment and activity of endosomal proteases compared to infection mediated by SARS-S, further suggesting differences in hCoV-NL63 and SARS-CoV cellular entry. NL63-S does not exhibit significant homology to SARS-S but is highly related to the S-protein of hCoV-229E, which enters target cells by engaging CD13. Employing mutagenic analyses, we found that the N-terminal unique domain in NL63-S, which is absent in 229E-S, does not confer binding to ACE2. In contrast, the highly homologous C-terminal parts of the NL63-S1 and 229E-S1 subunits in conjunction with distinct amino acids in the central regions of these proteins confer recognition of ACE2 and CD13, respectively. Therefore, despite the high homology of these sequences, they likely form sufficiently distinct surfaces, thus determining receptor specificity.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
86 |
11
|
Pasquereau S, Nehme Z, Haidar Ahmad S, Daouad F, Van Assche J, Wallet C, Schwartz C, Rohr O, Morot-Bizot S, Herbein G. Resveratrol Inhibits HCoV-229E and SARS-CoV-2 Coronavirus Replication In Vitro. Viruses 2021; 13:v13020354. [PMID: 33672333 PMCID: PMC7926471 DOI: 10.3390/v13020354] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/31/2022] Open
Abstract
A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in China at the end of 2019 causing a large global outbreak. As treatments are of the utmost importance, drug repurposing embodies a rich and rapid drug discovery landscape, where candidate drug compounds could be identified and optimized. To this end, we tested seven compounds for their ability to reduce replication of human coronavirus (HCoV)-229E, another member of the coronavirus family. Among these seven drugs tested, four of them, namely rapamycin, disulfiram, loperamide and valproic acid, were highly cytotoxic and did not warrant further testing. In contrast, we observed a reduction of the viral titer by 80% with resveratrol (50% effective concentration (EC50) = 4.6 µM) and lopinavir/ritonavir (EC50 = 8.8 µM) and by 60% with chloroquine (EC50 = 5 µM) with very limited cytotoxicity. Among these three drugs, resveratrol was less cytotoxic (cytotoxic concentration 50 (CC50) = 210 µM) than lopinavir/ritonavir (CC50 = 102 µM) and chloroquine (CC50 = 67 µM). Thus, among the seven drugs tested against HCoV-229E, resveratrol demonstrated the optimal antiviral response with low cytotoxicity with a selectivity index (SI) of 45.65. Similarly, among the three drugs with an anti-HCoV-229E activity, namely lopinavir/ritonavir, chloroquine and resveratrol, only the latter showed a reduction of the viral titer on SARS-CoV-2 with reduced cytotoxicity. This opens the door to further evaluation to fight Covid-19.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
81 |
12
|
Jang M, Park R, Park YI, Cha YE, Yamamoto A, Lee JI, Park J. EGCG, a green tea polyphenol, inhibits human coronavirus replication in vitro. Biochem Biophys Res Commun 2021; 547:23-28. [PMID: 33588235 PMCID: PMC7874949 DOI: 10.1016/j.bbrc.2021.02.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/04/2021] [Indexed: 01/27/2023]
Abstract
COVID-19 pandemic results in record high deaths in many countries. Although a vaccine for SARS-CoV-2 is now available, effective antiviral drugs to treat coronavirus diseases are not available yet. Recently, EGCG, a green tea polyphenol, was reported to inhibit SARS-CoV-2 3CL-protease, however the effect of EGCG on coronavirus replication is unknown. In this report, human coronavirus HCoV-OC43 (beta coronavirus) and HCoV-229E (alpha coronavirus) were used to examine the effect of EGCG on coronavirus. EGCG treatment decreases 3CL-protease activity of HCoV-OC43 and HCoV-229E. Moreover, EGCG treatment decreased HCoV-OC43-induced cytotoxicity. Finally, we found that EGCG treatment decreased the levels of coronavirus RNA and protein in infected cell media. These results indicate that EGCG inhibits coronavirus replication.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
73 |
13
|
Breslin JJ, Mørk I, Smith MK, Vogel LK, Hemmila EM, Bonavia A, Talbot PJ, Sjöström H, Norén O, Holmes KV. Human coronavirus 229E: receptor binding domain and neutralization by soluble receptor at 37 degrees C. J Virol 2003; 77:4435-8. [PMID: 12634402 PMCID: PMC150646 DOI: 10.1128/jvi.77.7.4435-4438.2003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Truncated human coronavirus HCoV-229E spike glycoproteins containing amino acids 407 to 547 bound to purified, soluble virus receptor, human aminopeptidase N (hAPN). Soluble hAPN neutralized the infectivity of HCoV-229E virions at 37 degrees C, but not 4 degrees C. Binding of hAPN may therefore trigger conformational changes in the viral spike protein at 37 degrees C that facilitate virus entry.
Collapse
|
research-article |
22 |
70 |
14
|
Ma-Lauer Y, Zheng Y, Malešević M, von Brunn B, Fischer G, von Brunn A. Influences of cyclosporin A and non-immunosuppressive derivatives on cellular cyclophilins and viral nucleocapsid protein during human coronavirus 229E replication. Antiviral Res 2019; 173:104620. [PMID: 31634494 PMCID: PMC7114175 DOI: 10.1016/j.antiviral.2019.104620] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/27/2019] [Accepted: 10/11/2019] [Indexed: 01/06/2023]
Abstract
The well-known immunosuppressive drug cyclosporin A inhibits replication of various viruses including coronaviruses by binding to cellular cyclophilins thus inactivating their cis-trans peptidyl-prolyl isomerase function. Viral nucleocapsid proteins are inevitable for genome encapsidation and replication. Here we demonstrate the interaction between the N protein of HCoV-229E and cyclophilin A, not cyclophilin B. Cyclophilin inhibitors abolish this interaction. Upon infection, cyclophilin A stays evenly distributed throughout the cell, whereas cyclophilin B concentrates at ER-bleb-like structures. We further show the inhibitory potential of non-immunosuppressive CsA derivatives Alisporivir, NIM811, compound 3 on HCoV-229E-GFP and -Luciferase replication in human Huh-7.5 hepatoma cells at 18 and 48 h time points post infection with EC50 s at low micromolar ranges. Thus, non-immunosuppressive CsA derivatives effectively inhibit HCoV-229E replication suggesting them as possible candidates for the treatment of HCoV infection. The interruption of interaction between CypA and N protein by CsA and its derivatives suggest a mechanism how CypA inhibitors suppress viral replication.
HCoV-229E replication is inhibited by Alisporivir, NIM811 and other non-immunosuppressive Cyclosporin A derivatives. HCoV-229E N protein interacts with cyclophilin A. Cyclophilin A is required for coronavirus replication. Cyclophilin B concentrates in bleb-like structures of the ER in HCoV-infected Huh7 cells.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
64 |
15
|
Lassnig C, Sanchez CM, Egerbacher M, Walter I, Majer S, Kolbe T, Pallares P, Enjuanes L, Müller M. Development of a transgenic mouse model susceptible to human coronavirus 229E. Proc Natl Acad Sci U S A 2005; 102:8275-80. [PMID: 15919828 PMCID: PMC1140478 DOI: 10.1073/pnas.0408589102] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human coronavirus (HCoV) 229E is a group 1 coronavirus and is specific to humans. So far, no animal model is available to study the pathogenesis of infection by HCoV-229E. We show here that the expression of aminopeptidase N (APN, also termed CD13), the receptor for HCoV-229E, is required but not sufficient to confer susceptibility in vivo. HCoV-229E infection was facilitated by crossing APN transgenic mice into signal transducers and activators of transcription (Stat) 1 null mice and by adaptation of HCoV-229E to grow in primary APN transgenic, Stat1 null fibroblasts. Double transgenic mice allow the study of human coronavirus group 1 infections in an animal model, in particular, viral tropism, replication, recombination, and spread in an immunocompromised situation. Furthermore, these mice provide an important tool for the evaluation of biosafety and efficacy of coronavirus-based vectors.
Collapse
MESH Headings
- Animals
- CD13 Antigens/genetics
- CD13 Antigens/metabolism
- Cells, Cultured
- Coronavirus 229E, Human/genetics
- Coronavirus 229E, Human/pathogenicity
- Coronavirus 229E, Human/physiology
- Disease Models, Animal
- Disease Susceptibility
- Fibroblasts
- Genotype
- Humans
- Mice
- Mice, Transgenic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Recombination, Genetic/genetics
- Species Specificity
- Transgenes/genetics
- Virus Replication
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
51 |
16
|
Ziebuhr J, Schelle B, Karl N, Minskaia E, Bayer S, Siddell SG, Gorbalenya AE, Thiel V. Human coronavirus 229E papain-like proteases have overlapping specificities but distinct functions in viral replication. J Virol 2007; 81:3922-32. [PMID: 17251282 PMCID: PMC1866161 DOI: 10.1128/jvi.02091-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Expression of the exceptionally large RNA genomes of CoVs involves multiple regulatory mechanisms, including extensive proteolytic processing of the large replicase polyproteins, pp1a and pp1ab, by two types of cysteine proteases: the chymotrypsin-like main protease and papain-like accessory proteases (PLpros). Here, we characterized the proteolytic processing of the human coronavirus 229E (HCoV-229E) amino-proximal pp1a/pp1ab region by two paralogous PLpro activities. Reverse-genetics data revealed that replacement of the PL2pro active-site cysteine was lethal. By contrast, the PL1pro activity proved to be dispensable for HCoV-229E virus replication, although reversion of the PL1pro active-site substitution to the wild-type sequence after several passages in cell culture indicated that there was selection pressure to restore the PL1pro activity. Further experiments showed that both PL1pro and PL2pro were able to cleave the nsp1-nsp2 cleavage site, with PL2pro cleaving the site less efficiently. The PL1pro-negative mutant genotype could be stably maintained in cell culture when the nsp1-nsp2 site was replaced by a short autoproteolytic sequence, suggesting that the major driving force for the observed reversion of the PL1pro mutation was the requirement for efficient nsp1-nsp2 cleavage. The data suggest that the two HCoV-229E PLpro paralogs have overlapping substrate specificities but different functions in viral replication. Within the tightly controlled interplay of the two protease activities, PL2pro plays a universal and essential proteolytic role that appears to be assisted by the PL1pro paralog at specific sites. Functional and evolutionary implications of the differential amino-terminal polyprotein-processing pathways among the main CoV lineages are discussed.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
48 |
17
|
Trimarco JD, Heaton BE, Chaparian RR, Burke KN, Binder RA, Gray GC, Smith CM, Menachery VD, Heaton NS. TMEM41B is a host factor required for the replication of diverse coronaviruses including SARS-CoV-2. PLoS Pathog 2021; 17:e1009599. [PMID: 34043740 PMCID: PMC8189496 DOI: 10.1371/journal.ppat.1009599] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/09/2021] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
Abstract
Antiviral therapeutics are a front-line defense against virally induced diseases. Because viruses frequently mutate to escape direct inhibition of viral proteins, there is interest in targeting the host proteins that the virus must co-opt to complete its replication cycle. However, a detailed understanding of the interactions between the virus and the host cell is necessary in order to facilitate development of host-directed therapeutics. As a first step, we performed a genome-wide loss of function screen using the alphacoronavirus HCoV-229E to better define the interactions between coronaviruses and host factors. We report the identification and validation of an ER-resident host protein, TMEM41B, as an essential host factor for not only HCoV-229E but also genetically distinct coronaviruses including the pandemic betacoronavirus SARS-CoV-2. We show that the protein is required at an early, but post-receptor engagement, stage of the viral lifecycle. Further, mechanistic studies revealed that although the protein was not enriched at replication complexes, it likely contributes to viral replication complex formation via mobilization of cholesterol and other lipids to facilitate host membrane expansion and curvature. Continued study of TMEM41B and the development of approaches to prevent its function may lead to broad spectrum anti-coronavirus therapeutics.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
35 |
18
|
Dijkman R, Jebbink MF, Wilbrink B, Pyrc K, Zaaijer HL, Minor PD, Franklin S, Berkhout B, Thiel V, van der Hoek L. Human coronavirus 229E encodes a single ORF4 protein between the spike and the envelope genes. Virol J 2006; 3:106. [PMID: 17194306 PMCID: PMC1774570 DOI: 10.1186/1743-422x-3-106] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 12/28/2006] [Indexed: 11/12/2022] Open
Abstract
Background The genome of coronaviruses contains structural and non-structural genes, including several so-called accessory genes. All group 1b coronaviruses encode a single accessory protein between the spike and envelope genes, except for human coronavirus (HCoV) 229E. The prototype virus has a split gene, encoding the putative ORF4a and ORF4b proteins. To determine whether primary HCoV-229E isolates exhibit this unusual genome organization, we analyzed the ORF4a/b region of five current clinical isolates from The Netherlands and three early isolates collected at the Common Cold Unit (CCU) in Salisbury, UK. Results All Dutch isolates were identical in the ORF4a/b region at amino acid level. All CCU isolates are only 98% identical to the Dutch isolates at the nucleotide level, but more closely related to the prototype HCoV-229E (>98%). Remarkably, our analyses revealed that the laboratory adapted, prototype HCoV-229E has a 2-nucleotide deletion in the ORF4a/b region, whereas all clinical isolates carry a single ORF, 660 nt in size, encoding a single protein of 219 amino acids, which is a homologue of the ORF3 proteins encoded by HCoV-NL63 and PEDV. Conclusion Thus, the genome organization of the group 1b coronaviruses HCoV-NL63, PEDV and HCoV-229E is identical. It is possible that extensive culturing of the HCoV-229E laboratory strain resulted in truncation of ORF4. This may indicate that the protein is not essential in cell culture, but the highly conserved amino acid sequence of the ORF4 protein among clinical isolates suggests that the protein plays an important role in vivo.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
34 |
19
|
Wentworth DE, Tresnan D, Turner B, Lerman I, Bullis B, Hemmila E, Levis R, Shapiro L, Holmes KV. Cells of human aminopeptidase N (CD13) transgenic mice are infected by human coronavirus-229E in vitro, but not in vivo. Virology 2005; 335:185-97. [PMID: 15840518 PMCID: PMC7111747 DOI: 10.1016/j.virol.2005.02.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 01/11/2005] [Accepted: 02/23/2005] [Indexed: 11/16/2022]
Abstract
Aminopeptidase N, or CD13, is a receptor for serologically related coronaviruses of humans, pigs, and cats. A mouse line transgenic for the receptor of human coronavirus-229E (HCoV-229E) was created using human APN (hAPN) cDNA driven by a hAPN promoter. hAPN-transgenic mice expressed hAPN mRNA in the kidney, small intestine, liver, and lung. hAPN protein was specifically expressed on epithelial cells of the proximal convoluted renal tubules, bronchi, alveolar sacs, and intestinal villi. The hAPN expression pattern within transgenic mouse tissues matched that of mouse APN and was similar in mice heterozygous or homozygous for the transgene. Primary embryonic cells and bone marrow dendritic cells derived from hAPN-transgenic mice also expressed hAPN protein. Although hAPN-transgenic mice were resistant to HCoV-229E in vivo, primary embryonic cells and bone marrow dendritic cells were infected in vitro. hAPN-transgenic mice are valuable as a source of primary mouse cells expressing hAPN. This hAPN-transgenic line will also be used for crossbreeding experiments with other knockout, immune deficient, or transgenic mice to identify factors, in addition to hAPN, that are required for HCoV-229E infection.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
33 |
20
|
von Brunn A, Ciesek S, von Brunn B, Carbajo-Lozoya J. Genetic deficiency and polymorphisms of cyclophilin A reveal its essential role for Human Coronavirus 229E replication. Curr Opin Virol 2015; 14:56-61. [PMID: 26318518 PMCID: PMC7102849 DOI: 10.1016/j.coviro.2015.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 12/15/2022]
Abstract
Replication of coronaviruses is inhibited in vitro by cyclosporin A, a well-known immunosuppressive drug which binds to cellular cyclophilins thus inactivating their enzymatic cis-trans peptidyl-prolyl isomerase function. Latter is required for proper folding of cellular proteins and of proteins of several viruses. Here, we summarize present knowledge on the role of cyclophilin A during coronavirus replication. We present data on the effect of cyclophilin A single nucleotide polymorphism mutants on the replication of human CoV-229E demonstrating the requirement of proper cyclophilin A function for virus propagation. Results define cellular cyclophilin A as a host target for inhibition of coronaviruses ranging from relatively mild common cold to highly pathogenic SARS-CoV and MERS-CoV viruses with the perspective of disclosing non-immunosuppressive cyclosporin A analogs to broadly inactivate the coronavirus family.
Collapse
|
Review |
10 |
26 |
21
|
Leneva I, Kartashova N, Poromov A, Gracheva A, Korchevaya E, Glubokova E, Borisova O, Shtro A, Loginova S, Shchukina V, Khamitov R, Faizuloev E. Antiviral Activity of Umifenovir In Vitro against a Broad Spectrum of Coronaviruses, Including the Novel SARS-CoV-2 Virus. Viruses 2021; 13:1665. [PMID: 34452529 PMCID: PMC8402645 DOI: 10.3390/v13081665] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
An escalating pandemic of the novel SARS-CoV-2 virus is impacting global health, and effective antivirals are needed. Umifenovir (Arbidol) is an indole-derivative molecule, licensed in Russia and China for prophylaxis and treatment of influenza and other respiratory viral infections. It has been shown that umifenovir has broad spectrum activity against different viruses. We evaluated the sensitivity of different coronaviruses, including the novel SARS-CoV-2 virus, to umifenovir using in vitro assays. Using a plaque assay, we revealed an antiviral effect of umifenovir against seasonal HCoV-229E and HCoV-OC43 coronaviruses in Vero E6 cells, with estimated 50% effective concentrations (EC50) of 10.0 ± 0.5 µM and 9.0 ± 0.4 µM, respectively. Umifenovir at 90 µM significantly suppressed plaque formation in CMK-AH-1 cells infected with SARS-CoV. Umifenovir also inhibited the replication of SARS-CoV-2 virus, with EC50 values ranging from 15.37 ± 3.6 to 28.0 ± 1.0 µM. In addition, 21-36 µM of umifenovir significantly suppressed SARS-CoV-2 virus titers (≥2 log TCID50/mL) in the first 24 h after infection. Repurposing of antiviral drugs is very helpful in fighting COVID-19. A safe, pan-antiviral drug such as umifenovir could be extremely beneficial in combating the early stages of a viral pandemic.
Collapse
|
research-article |
4 |
23 |
22
|
Vougogiannopoulou K, Corona A, Tramontano E, Alexis MN, Skaltsounis AL. Natural and Nature-Derived Products Targeting Human Coronaviruses. Molecules 2021; 26:448. [PMID: 33467029 PMCID: PMC7831024 DOI: 10.3390/molecules26020448] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/18/2023] Open
Abstract
The ongoing pandemic of severe acute respiratory syndrome (SARS), caused by the SARS-CoV-2 human coronavirus (HCoV), has brought the international scientific community before a state of emergency that needs to be addressed with intensive research for the discovery of pharmacological agents with antiviral activity. Potential antiviral natural products (NPs) have been discovered from plants of the global biodiversity, including extracts, compounds and categories of compounds with activity against several viruses of the respiratory tract such as HCoVs. However, the scarcity of natural products (NPs) and small-molecules (SMs) used as antiviral agents, especially for HCoVs, is notable. This is a review of 203 publications, which were selected using PubMed/MEDLINE, Web of Science, Scopus, and Google Scholar, evaluates the available literature since the discovery of the first human coronavirus in the 1960s; it summarizes important aspects of structure, function, and therapeutic targeting of HCoVs as well as NPs (19 total plant extracts and 204 isolated or semi-synthesized pure compounds) with anti-HCoV activity targeting viral and non-viral proteins, while focusing on the advances on the discovery of NPs with anti-SARS-CoV-2 activity, and providing a critical perspective.
Collapse
|
Review |
4 |
20 |
23
|
Zhu Y, Scholle F, Kisthardt SC, Xie DY. Flavonols and dihydroflavonols inhibit the main protease activity of SARS-CoV-2 and the replication of human coronavirus 229E. Virology 2022; 571:21-33. [PMID: 35439707 PMCID: PMC9002334 DOI: 10.1016/j.virol.2022.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 12/14/2022]
Abstract
Since December 2019, the deadly novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the current COVID-19 pandemic. To date, vaccines are available in the developed countries to prevent the infection of this virus; however, medicines are necessary to help control COVID-19. Human coronavirus 229E (HCoV-229E) causes the common cold. The main protease (Mpro) is an essential enzyme required for the multiplication of these two viruses in the host cells, and thus is an appropriate candidate to screen potential medicinal compounds. Flavonols and dihydroflavonols are two groups of plant flavonoids. In this study, we report docking simulation with two Mpro enzymes and five flavonols and three dihydroflavonols, in vitro inhibition of the SARS-CoV-2 Mpro, and in vitro inhibition of the HCoV 229E replication. The docking simulation results predicted that (+)-dihydrokaempferol, (+)- dihydroquercetin, (+)-dihydromyricetin, kaempferol, quercetin, myricentin, isoquercitrin, and rutin could bind to at least two subsites (S1, S1', S2, and S4) in the binding pocket and inhibit the activity of SARS-CoV-2 Mpro. Their affinity scores ranged from -8.8 to -7.4 (kcal/mol). Likewise, these compounds were predicted to bind and inhibit the HCoV-229E Mpro activity with affinity scores ranging from -7.1 to -7.8 (kcal/mol). In vitro inhibition assays showed that seven available compounds effectively inhibited the SARS-CoV-2 Mpro activity and their IC50 values ranged from 0.125 to 12.9 μM. Five compounds inhibited the replication of HCoV-229E in Huh-7 cells. These findings indicate that these antioxidative flavonols and dihydroflavonols are promising candidates for curbing the two viruses.
Collapse
|
research-article |
3 |
18 |
24
|
Sampson AT, Heeney J, Cantoni D, Ferrari M, Sans MS, George C, Di Genova C, Mayora Neto M, Einhauser S, Asbach B, Wagner R, Baxendale H, Temperton N, Carnell G. Coronavirus Pseudotypes for All Circulating Human Coronaviruses for Quantification of Cross-Neutralizing Antibody Responses. Viruses 2021; 13:1579. [PMID: 34452443 PMCID: PMC8402765 DOI: 10.3390/v13081579] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/17/2021] [Accepted: 08/01/2021] [Indexed: 12/23/2022] Open
Abstract
The novel coronavirus SARS-CoV-2 is the seventh identified human coronavirus. Understanding the extent of pre-existing immunity induced by seropositivity to endemic seasonal coronaviruses and the impact of cross-reactivity on COVID-19 disease progression remains a key research question in immunity to SARS-CoV-2 and the immunopathology of COVID-2019 disease. This paper describes a panel of lentiviral pseudotypes bearing the spike (S) proteins for each of the seven human coronaviruses (HCoVs), generated under similar conditions optimized for high titre production allowing a high-throughput investigation of antibody neutralization breadth. Optimal production conditions and most readily available permissive target cell lines were determined for spike-mediated entry by each HCoV pseudotype: SARS-CoV-1, SARS-CoV-2 and HCoV-NL63 best transduced HEK293T/17 cells transfected with ACE2 and TMPRSS2, HCoV-229E and MERS-CoV preferentially entered HUH7 cells, and CHO cells were most permissive for the seasonal betacoronavirus HCoV-HKU1. Entry of ACE2 using pseudotypes was enhanced by ACE2 and TMPRSS2 expression in target cells, whilst TMPRSS2 transfection rendered HEK293T/17 cells permissive for HCoV-HKU1 and HCoV-OC43 entry. Additionally, pseudotype viruses were produced bearing additional coronavirus surface proteins, including the SARS-CoV-2 Envelope (E) and Membrane (M) proteins and HCoV-OC43/HCoV-HKU1 Haemagglutinin-Esterase (HE) proteins. This panel of lentiviral pseudotypes provides a safe, rapidly quantifiable and high-throughput tool for serological comparison of pan-coronavirus neutralizing responses; this can be used to elucidate antibody dynamics against individual coronaviruses and the effects of antibody cross-reactivity on clinical outcome following natural infection or vaccination.
Collapse
|
research-article |
4 |
16 |
25
|
Yan L, Meng B, Xiang J, Wilson IA, Yang B. Crystal structure of the post-fusion core of the Human coronavirus 229E spike protein at 1.86 Å resolution. Acta Crystallogr D Struct Biol 2018; 74:841-851. [PMID: 30198895 PMCID: PMC6130466 DOI: 10.1107/s2059798318008318] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/05/2018] [Indexed: 01/12/2023] Open
Abstract
Human coronavirus 229E (HCoV-229E) usually causes mild upper respiratory infections in heathy adults, but may lead to severe complications or mortality in individuals with weakened immune systems. Virus entry of HCoV-229E is mediated by its spike (S) protein, where the S1 domain facilitates attachment to host cells and the S2 domain is involved in subsequent fusion of the virus and host membranes. During the fusion process, two heptad repeats, HR1 and HR2, in the S2 domain assemble into a six-helix membrane-fusion structure termed the fusion core. Here, the complete fusion-core structure of HCoV-229E has been determined at 1.86 Å resolution, representing the most complete post-fusion conformation thus far among published human alphacoronavirus (α-HCoV) fusion-core structures. The overall structure of the HCoV-229E fusion core is similar to those of SARS, MERS and HCoV-NL63, but the packing of its 3HR1 core differs from those of SARS and MERS in that it contains more noncanonical `x' and `da' layers. Side-by-side electrostatic surface comparisons reveal that the electrostatic surface potentials are opposite in α-HCoVs and β-HCoVs at certain positions and that the HCoV-229E surface also appears to be the most hydrophobic among the various HCoVs. In addition to the highly conserved hydrophobic interactions between HR1 and HR2, some polar and electrostatic interactions are also well preserved across different HCoVs. This study adds to the structural profiling of HCoVs to aid in the structure-based design of pan-coronavirus small molecules or peptides to inhibit viral fusion.
Collapse
|
research-article |
7 |
16 |