1
|
Abstract
The metabolism, toxicity and results of tests for carcinogenicity have been reviewed with respect to the safety for humans of coumarin present in foodstuffs and from fragrance use in cosmetic products. Coumarin is a natural product which exhibits marked species differences in both metabolism and toxicity. The majority of tests for mutagenic and genotoxic potential suggest that coumarin is not a genotoxic agent. The target organs for toxicity and carcinogenicity in the rat and mouse are primarily the liver and lung. Moreover, the dose-response relationships for coumarin-induced toxicity and carcinogenicity are non-linear, with tumour formation only being observed at high doses which are associated with hepatic and pulmonary toxicity. Other species, including the Syrian hamster, are seemingly resistant to coumarin-induced toxicity. There are marked differences in coumarin metabolism between susceptible rodent species and other species including humans. It appears that the 7-hydroxylation pathway of coumarin metabolism, the major pathway in most human subjects but only a minor pathway in the rat and mouse, is a detoxification pathway. In contrast, the major route of coumarin metabolism in the rat and mouse is by a 3,4-epoxidation pathway resulting in the formation of toxic metabolites. The maximum daily human exposure to coumarin from dietary sources for a 60-kg consumer has been estimated to be 0.02 mg/kg/day. From fragrance use in cosmetic products, coumarin exposure has been estimated to be 0.04 mg/kg/day. The total daily human exposure from dietary sources together with fragrance use in cosmetic products is thus 0.06 mg/kg/day. No adverse effects of coumarin have been reported in susceptible species in response to doses which are more than 100 times the maximum human daily intake. The mechanism of coumarin-induced tumour formation in rodents is associated with metabolism-mediated, toxicity and it is concluded that exposure to coumarin from food and/or cosmetic products poses no health risk to humans.
Collapse
|
Review |
26 |
299 |
2
|
Lundov MD, Moesby L, Zachariae C, Johansen JD. Contamination versus preservation of cosmetics: a review on legislation, usage, infections, and contact allergy. Contact Dermatitis 2009; 60:70-8. [PMID: 19207376 DOI: 10.1111/j.1600-0536.2008.01501.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
16 |
123 |
3
|
Wong S, Street D, Delgado SI, Klontz KC. Recalls of foods and cosmetics due to microbial contamination reported to the U.S. Food and Drug Administration. J Food Prot 2000; 63:1113-6. [PMID: 10945589 DOI: 10.4315/0362-028x-63.8.1113] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the U.S., food product recalls serve as an important intervention in stemming the consumption of food products contaminated with infectious disease agents. We summarize the number and nature of foods and cosmetics recalled as a result of microbial contamination reported to the U.S. Food and Drug Administration (FDA) for the period 1 October 1993 through 30 September 1998. During this period, microbial contamination of food and cosmetic products was the leading cause for recalls, accounting for a total of 1,370 recalls (36% of all products recalled). Listeria monocytogenes accounted for the greatest number of food products recalled because of microbial contamination, whereas Pseudomonas aeruginosa was the most common microbe associated with recalls of cosmetic products. Dairy products, followed by seafood and pastry items, were the types of products most often associated with recalls due to microbial contamination. The FDA was the entity most often responsible for detecting microbial contamination of foods and cosmetics (33% of all such recalls), followed by state regulatory agencies (24%), and manufacturers/retailers (21%). Nineteen percent of recalls were associated with at least one reported case of illness. Salmonella was the pathogen most often implicated in reports of illness associated with these recalled products.
Collapse
|
Review |
25 |
81 |
4
|
Roosens L, Covaci A, Neels H. Concentrations of synthetic musk compounds in personal care and sanitation products and human exposure profiles through dermal application. CHEMOSPHERE 2007; 69:1540-7. [PMID: 17631381 DOI: 10.1016/j.chemosphere.2007.05.072] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 05/24/2007] [Accepted: 05/26/2007] [Indexed: 05/16/2023]
Abstract
Synthetic musks, such as 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN) and 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-gamma-2-benzopyran (HHCB), musk ketone (MK) and musk xylene (MX), are used as an alternative for natural musk. Due to their widespread use, these synthetic compounds turned up in different environmental compartments, such as wastewater, human and animal tissues. Yet, little is known about their distribution and occurrence in personal care and household products, information needed in order to evaluate the different human exposure routes. This paper gives an overview of the synthetic musk levels in six different product categories: body lotions, perfumes, deodorants, hair care products, shower products and sanitation products. Especially body lotions, perfumes and deodorants contained high levels of synthetic musks. Maximum concentrations of HHCB, AHTN, MX and MK were 22 mg g(-1), 8 mg g(-1), 26 microg g(-1) and 0.5 microg g(-1), respectively. By combining these results with the average usage of consumer products, low-, medium- and high-exposure profiles through dermal application could be estimated. HHCB was the highest contributor to the total amount of synthetic musks in every exposure profile (18-23 700 microg d(-1)). Exposure to MK and MX did not increase substantially (10-20-fold) between low- and high-exposure profiles, indicating that these compounds cover a less broad range. In comparison, exposure to HHCB and AHTN increased up to 10 000 fold between low- and high-exposure.
Collapse
|
|
18 |
73 |
5
|
Masmoudi H, Dréau YL, Piccerelle P, Kister J. The evaluation of cosmetic and pharmaceutical emulsions aging process using classical techniques and a new method: FTIR. Int J Pharm 2005; 289:117-31. [PMID: 15652205 DOI: 10.1016/j.ijpharm.2004.10.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 09/20/2004] [Accepted: 10/28/2004] [Indexed: 11/28/2022]
Abstract
The purpose of this paper is to show how the utilization of Fourier Transform Infrared (FTIR) spectroscopy can be interesting in stability studying of cosmetic or pharmaceutical "oil in water" (O/W) emulsions. In this study temperature storage tests were performed to accelerate the aging process and evaluate the stability of five emulsions. Emulsions were analyzed by FTIR and classical methods (conductivity, viscosity, pH, texture analysis) in order to determine a method that would enable predicting the emulsion's stability. During the aging process, modifications of chemical functions are measured by FTIR (using spectrometric indices), such modifications included: a decrease of unsaturation index, an increase of carbonyl index and a broadening of the carbonyl band. This band was deconvoluted to evaluate the contribution of different species in the broadening phenomenon, which seems to be caused by the appearance of free fatty acids. Conductimetry seems to be the most sensitive technique to assess physical modifications during emulsion's aging. Concerning the most unstable emulsions, a progressive increasing of conductivity was observed several months before the emulsion destabilizes. Consequently, FTIR and conductimetry are two complementary techniques. Conductimetry is a useful technique to predict emulsion destabilization while FTIR allows the measurement of chemical modifications and helps to understand the chemical mechanisms which occur during the oxidation.
Collapse
|
|
20 |
71 |
6
|
Kirkland DJ, Henderson L, Marzin D, Müller L, Parry JM, Speit G, Tweats DJ, Williams GM. Testing strategies in mutagenicity and genetic toxicology: An appraisal of the guidelines of the European Scientific Committee for Cosmetics and Non-Food Products for the evaluation of hair dyes. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 588:88-105. [PMID: 16326131 DOI: 10.1016/j.mrgentox.2005.09.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 08/12/2005] [Accepted: 09/09/2005] [Indexed: 11/23/2022]
Abstract
The European Scientific Committee on Cosmetics and Non-Food Products (SCCNFP) guideline for testing of hair dyes for genotoxic/mutagenic/carcinogenic potential has been reviewed. The battery of six in vitro tests recommended therein differs substantially from the batteries of two or three in vitro tests recommended in other guidelines. Our evaluation of the chemical types used in hair dyes and comparison with other guidelines for testing a wide range of chemical substances, lead to the conclusion that potential genotoxic activity may effectively be determined by the application of a limited number of well-validated test systems that are capable of detecting induced gene mutations and structural and numerical chromosomal changes. We conclude that highly effective screening for genotoxicity of hair dyes can be achieved by the use of three assays, namely the bacterial gene mutation assay, the mammalian cell gene mutation assay (mouse lymphoma tk assay preferred) and the in vitro micronucleus assay. These need to be combined with metabolic activation systems optimised for the individual chemical types. Recent published evidence [D. Kirkland, M. Aardema, L. Henderson, L. Müller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1-256] suggests that our recommended three tests will detect all known genotoxic carcinogens, and that increasing the number of in vitro assays further would merely reduce specificity (increase false positives). Of course there may be occasions when standard tests need to be modified to take account of special situations such as a specific pathway of biotransformation, but this should be considered as part of routine testing. It is clear that individual dyes and any other novel ingredients should be tested in this three-test battery. However, new products are formed on the scalp by reaction between the chemicals present in hair-dye formulations. Ideally, these should also be tested for genotoxicity, but at present such experiences are very limited. There is also the possibility that one component could mask the genotoxicity of another (e.g. by being more toxic), and so it is not practical at this time to recommend routine testing of complete hair-dye formulations as well. The most sensible approach would be to establish whether any reaction products within the hair-dye formulation penetrate the skin under normal conditions of use and test only those that penetrate at toxicologically relevant levels in the three-test in vitro battery. Recently published data [D. Kirkland, M. Aardema, L. Henderson, L. Müller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1-256] suggest the three-test battery will produce a significant number of false as well as real positives. Whilst we are aware of the desire to reduce animal experiments, determining the relevance of positive results in any of the three recommended in vitro assays will most likely have to be determined by use of in vivo assays. The bone marrow micronucleus test using routes of administration such as oral or intraperitoneal may be used where the objective is extended hazard identification. If negative results are obtained in this test, then a second in vivo test should be conducted. This could be an in vivo UDS in rat liver or a Comet assay in a relevant tissue. However, for hazard characterisation, tests using topical application with measurement of genotoxicity in the skin would be more appropriate. Such specific site-of-contact in vivo tests would minimise animal toxicity burden and invasiveness, and, especially for hair dyes, be more relevant to human routes of exposure, but there are not sufficient scientific data available to allow recommendations to be made. The generation of such data is encouraged.
Collapse
|
|
20 |
57 |
7
|
Subramaniam VD, Prasad SV, Banerjee A, Gopinath M, Murugesan R, Marotta F, Sun XF, Pathak S. Health hazards of nanoparticles: understanding the toxicity mechanism of nanosized ZnO in cosmetic products. Drug Chem Toxicol 2019; 42:84-93. [PMID: 30103634 DOI: 10.1080/01480545.2018.1491987] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, nanoparticles are being used extensively in personal healthcare products such as cosmetics, sunscreens, soaps, and shampoos. Particularly, metal oxide nanoparticles are gaining competence as key industrial constituents, progressing toward a remarkable rise in their applications. Zinc oxide and titanium oxide nanoparticles are the most commonly employed metal oxide nanoparticles in sunscreens, ointments, foot care, and over the counter topical products. Dermal exposure to these metal oxides predominantly occurs through explicit use of cosmetic products and airway exposure to nanoparticle dusts is primarily mediated via occupational exposure. There is a compelling need to understand the toxicity effects of nanoparticles which can easily enter the cells and induce oxidative stress. Consequently, these products have become a direct source of pollution in the environment and thereby greatly impact our ecosystem. A complete understanding of the toxicity mechanism of nano-ZnO is intended to resolve whether and to what extent such nanoparticles may pose a threat to the environment and to human beings. In this review article, we have discussed the characteristics of metal oxide nanoparticles and its applications in the cosmetic industry. We have also highlighted about their toxicity effects and their impact on human health.
Collapse
|
Review |
6 |
49 |
8
|
Bowman DM, van Calster G, Friedrichs S. Nanomaterials and regulation of cosmetics. NATURE NANOTECHNOLOGY 2010; 5:92. [PMID: 20130584 DOI: 10.1038/nnano.2010.12] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
|
Letter |
15 |
49 |
9
|
Gettings SD, Dipasquale LC, Bagley DM, Casterton PL, Chudkowski M, Curren RD, Demetrulias JL, Feder PI, Galli CL, Gay R. The CTFA Evaluation of Alternatives Program: an evaluation of in vitro alternatives to the Draize primary eye irritation test. (Phase II) oil/water emulsions. Food Chem Toxicol 1994; 32:943-76. [PMID: 7959449 DOI: 10.1016/0278-6915(94)90092-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Cosmetic, Toiletry and Fragrance Association (CTFA) Evaluation of Alternatives Program is an evaluation of the relationship between Draize ocular safety test data and comparable data from a selection of in vitro tests. In Phase II, 18 representative oil/water-based personal-care formulations were subjected to the Draize primary eye safety test and 30 in vitro assay protocols (14 different types of in vitro endpoints were evaluated; the remainder were protocol variations). Correlation of in vitro with in vivo data was evaluated using analysis of sensitivity/specificity and statistical analysis of the relationship between maximum average Draize score (MAS) and in vitro endpoint. Regression modelling is the primary approach adopted in the CTFA Program for evaluating in vitro assay performance. The objective of regression analysis is to predict MAS for a given test material (and to place upper and lower prediction interval bounds on the range in which the MAS is anticipated to fall with high probability) conditional on observing an in vitro assay score for that material. The degree of confidence in prediction is quantified in terms of the relative widths of prediction intervals constructed about the fitted regression curves: the narrower the prediction interval, the more predictive of the Draize score is the in vitro test result. 16 assays were shown to have the greatest agreement with the Draize procedure and were therefore selected for regression analysis. Based on the magnitude of the 95% prediction bounds of each of the 16 selected assays over the range of test data, it may be inferred that prediction of MAS values from experimentally determined in vitro scores is more accurate for oil/water-based formulations with lower rather than higher irritancy potential. The assays selected for modelling in Phase II generally exhibited weaker relationships with MAS than those selected in Phase I (evaluated using hydroalcoholic formulations), even though several assays were common to both Phases.
Collapse
|
Comparative Study |
31 |
48 |
10
|
Ceschin-Roques CG, Hänel H, Pruja-Bougaret SM, Luc J, Vandermander J, Michel G. Ciclopirox nail lacquer 8%: in vivo penetration into and through nails and in vitro effect on pig skin. SKIN PHARMACOLOGY : THE OFFICIAL JOURNAL OF THE SKIN PHARMACOLOGY SOCIETY 1991; 4:89-94. [PMID: 1831626 DOI: 10.1159/000210929] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This report presents original methods to assess the bioavailability of an antifungal drug from a varnish preparation in finger nails. For the studies with human volunteers a ciclopirox 8% nail lacquer was used to determine its efficacy in the treatment of onychomycoses. In vivo studies were performed on the fingernails of healthy volunteers by determining the total amount of ciclopirox penetrated per milligram of nail and the partition of the drug in the plate of the nails (technically divided into four layers). Ciclopirox concentrations were evaluated by measuring the inhibition of Candida pseudotropicalis growth in vitro. The ciclopirox concentration after 30 days treatment was determined as 3.35 +/- 0.82 micrograms/mg nail material. This is a sufficient amount to kill the fungal pathogens. In addition, in vitro penetration experiments were carried out with excised pig skin. Lacquer formulations from 0.5 to 8% were used to inhibit the growth of Trichophyton mentagrophytes. Formulations from 2 to 8% led to a strong to total inhibition of the dermatophyte after 30 min treatment time.
Collapse
|
|
34 |
42 |
11
|
Wilson LA, Julian AJ, Ahearn DG. The survival and growth of microorganisms in mascara during use. Am J Ophthalmol 1975; 79:596-601. [PMID: 1119519 DOI: 10.1016/0002-9394(75)90798-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Over 150 mascaras representing eight popular brands were examined for their susceptibility to microbial contamination during their use by study group members. Additional mascaras from patients with symptoms and clinical findings of long-term blepharitis also were investigated. Early in the study, two brands without preservatives supported reproducing populations of microorganisms, including potential eye pathogens. These products, as currently manufactured, were recalcitrant to microbial attack. Microbes associated with the facial skin and fingers of the study group users were typically isolated from mascaras after use. Initial microorganisms isolated from mascaras were usually transients. Establishment of reproducing populations within the cosmetics appeared related to the number of uses, personal habits of the user, and the formulation of the product. Four patients with staphylococcal blepharitis and cosmetics heavily laden with Staphylococcus epidermidis showed marked clinical improvement when they stopped using the contaminated cosmetics. The application of used eye area makeup prior to and following ocular surgery should be avoided.
Collapse
|
Comparative Study |
50 |
41 |
12
|
LeBlanc PM, Hollinger KA, Klontz KC. Tattoo ink-related infections--awareness, diagnosis, reporting, and prevention. N Engl J Med 2012; 367:985-7. [PMID: 22913662 DOI: 10.1056/nejmp1206063] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
|
13 |
33 |
13
|
Grimes PE, Thomas JA, Murphy DK. Safety and effectiveness of hyaluronic acid fillers in skin of color. J Cosmet Dermatol 2009; 8:162-8. [PMID: 19735512 DOI: 10.1111/j.1473-2165.2009.00457.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To assess the safety and effectiveness of hyaluronic acid (HA) fillers in skin of color. METHODS Two prospective studies followed up subjects with Fitzpatrick skin phototypes of IV, V, or VI for 24 weeks after dermal filler injections. In a double-blind, randomized study, subjects were injected with one of three high concentration (24 mg/mL) HA fillers (Juvéderm Ultra, Ultra Plus, and 30) in one nasolabial fold and Zyplast collagen in the other. In an open-label, randomized study, subjects received one of three low concentration (5.5 mg/mL) HA fillers (Hylaform, Hylaform Plus, and Captique) in both nasolabial folds. RESULTS A total of 160 subjects (a subset of 439 study subjects) were randomized and treated with one of the three high concentration fillers, and 119 subjects were randomized and treated with one of the three low concentration fillers. For subjects treated with the high concentration fillers there were no occurrences of hypersensitivity or hypertrophic scarring, and no increased incidence of hyperpigmentation or hypopigmentation in non-Caucasian vs. Caucasian subjects. For subjects treated with the low concentration fillers there were no occurrences of keloid formation, hypertrophic scarring, hypopigmentation, hypersensitivity, and three instances of mild hyperpigmentation. For all of the fillers the majority of subjects maintained >/=1 point improvement in nasolabial fold severity scores through 24 weeks. CONCLUSIONS All of the HA fillers were well tolerated in individuals with skin of color and demonstrated effectiveness throughout the 24 week period. Furthermore, the fillers provided smooth, natural-looking wrinkle correction in darker skin types.
Collapse
|
Randomized Controlled Trial |
16 |
30 |
14
|
Connolly P, Bloomfield SF, Denyer SP. The use of impedance for preservative efficacy testing of pharmaceuticals and cosmetic products. THE JOURNAL OF APPLIED BACTERIOLOGY 1994; 76:68-74. [PMID: 8144407 DOI: 10.1111/j.1365-2672.1994.tb04417.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Impedance was investigated for its applicability to preservative efficacy testing of pharmaceuticals and cosmetics. A good correlation between impedance detection time (Td) and total colony counts (colony-forming units (cfu)) was obtained for untreated suspensions of Staphylococcus aureus, Candida albicans, Aspergillus niger and Pseudomonas aeruginosa in phosphate-buffered saline (PBS). A good correlation between Td and the number of cfu was also obtained for suspensions of test organisms treated for varying contact periods with selected concentrations of chlorhexidine, methyl paraben and phenoxyethanol in PBS, and methyl paraben in cetomacrogol cream, but these correlations were significantly different from those for untreated suspensions. It was found that for any given number of cfu the Td for preservative treated cells was extended. It is concluded that impedance represents a valid method for preservative efficacy testing of pharmaceuticals and cosmetics which could be used to achieve more comprehensive but economic screening of formulations against a wider range of preservative systems and concentrations than is the current approach where only a limited range of systems are tested because of the workload involved.
Collapse
|
|
31 |
30 |
15
|
Abstract
A review of the procedures, methods used, and the data that are required to evaluate the safety of cosmetic ingredients is presented. The results of the program and the limitations placed upon the use of some ingredients are discussed.
Collapse
|
|
41 |
29 |
16
|
Okeke IN, Lamikanra A. Bacteriological quality of skin-moisturizing creams and lotions distributed in a tropical developing country. J Appl Microbiol 2001; 91:922-8. [PMID: 11722671 DOI: 10.1046/j.1365-2672.2001.01456.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To evaluate the bacteriological quality of skin moisturizing products in the South-west part of Nigeria and study factors predisposing their bacterial contamination under tropical conditions. METHODS AND RESULTS Viable counts for bacteria exceeded 10(3) cfu ml(-1) or cfu g(-1) in 8 (16.3%) commercially available creams and lotions at time of purchase. Escherichia coli (8), Pseudomonas spp. (7), Staphylococcus spp. (9) and Bacillus spp. (6) were the most commonly recovered bacteria. Following use by volunteers, the proportion of E. coli and other Gram-negative organisms recovered increased. Organic matter, particularly in the absence of preservatives, enhanced survival and growth of bacteria in creams stored under ambient tropical conditions during challenge experiments. CONCLUSIONS Contaminated products are relatively uncommon but some products present a potential health hazard because they are unable to suppress the growth of organisms of likely faecal origin during use. SIGNIFICANCE AND IMPACT OF THE STUDY Quality assurance during manufacture, pack size, preservative evaluation, organic matter and water content were identified as factors to be considered during the development of creams and lotions for use in tropical developing countries.
Collapse
|
|
24 |
28 |
17
|
Abstract
The Scientific Committee on Cosmetology (SCC) of the Commission of the European Communities was established in 1978 to assist the Commission in the application of the 76/768 Directive, which regulates the production and marketing of cosmetics products. The Committee has been asked to update the general guidelines, defined in 1982, for testing cosmetics ingredients with the aim of ensuring consumers' safety. In the present paper the full document approved by the SCC in October 1990 is reported. This new document is based on the experience of the Committee over the last 10 years, during which more than 400 cosmetics ingredients have been evaluated. The document also highlights the need to proceed to define standard methods to be used to assess dermal absorption and phototoxicity--areas in which international guidelines have not yet been approved. The document also includes some comments made by the author in order to explain better the position of the Committee in relation to certain items.
Collapse
|
Guideline |
33 |
27 |
18
|
McDonald JA, Llanos AAM, Morton T, Zota AR. The Environmental Injustice of Beauty Products: Toward Clean and Equitable Beauty. Am J Public Health 2022; 112:50-53. [PMID: 34936409 PMCID: PMC8713635 DOI: 10.2105/ajph.2021.306606] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
editorial |
3 |
27 |
19
|
Gouin T, van Egmond R, Price OR, Hodges JEN. Prioritising chemicals used in personal care products in China for environmental risk assessment: application of the RAIDAR model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 165:208-214. [PMID: 22265345 DOI: 10.1016/j.envpol.2011.12.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/24/2011] [Accepted: 12/11/2011] [Indexed: 05/31/2023]
Abstract
China represents a significant market for the sale of personal care products (PCPs). Given the continuous emission of hundreds of chemicals used in PCPs to waste water and the aquatic environment after regular use, methods for prioritising the environmental risk assessment for China are needed. In an effort to assess the prioritisation of chemicals used in PCPs in China, we have identified the chemical ingredients used in 2500 PCPs released to the Chinese market in 2009, and estimated the annual emission of these chemicals. The physical-chemical property data for these substances have been estimated and used as model inputs in the RAIDAR model. In general, the RAIDAR model provides an overall assessment of the multimedia fate of chemicals, and provides a holistic approach for prioritising chemical ingredients. The prioritisation exercise conducted in this study is shown to be strongly influenced by loss processes, such as the removal efficiencies of WWT plants and biotransformation.
Collapse
|
|
13 |
25 |
20
|
|
|
52 |
24 |
21
|
Henkler F, Tralau T, Tentschert J, Kneuer C, Haase A, Platzek T, Luch A, Götz ME. Risk assessment of nanomaterials in cosmetics: a European union perspective. Arch Toxicol 2012; 86:1641-6. [PMID: 23052193 PMCID: PMC3472063 DOI: 10.1007/s00204-012-0944-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 09/13/2012] [Indexed: 12/01/2022]
Abstract
In Europe, the data requirements for the hazard and exposure characterisation of chemicals are defined according to the REACH regulation and its guidance on information requirements and chemical safety assessment (Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), and its guidance documents; available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:396:0001:0849:EN:PDF ; and at: http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_en.htm ). This is the basis for any related risk assessment. The standard reference for the testing of cosmetic ingredients is the SCCP's 'Notes of Guidance for the Testing of Cosmetic Ingredients and their Safety Evaluation' (The SCCP's Notes of Guidance for the testing of cosmetic ingredients and their safety evaluation (2006); available at: http://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_03j.pdf ), which refers to the OECD guidelines for the testing of chemicals (The OECD Guidelines for the Testing of Chemicals as a collection of the most relevant internationally agreed testing methods used by government, industry and independent laboratories to assess the safety of chemical products; available at: http://www.oecd.org/topic/0,2686,en_2649_34377_1_1_1_1_37407,00.html ). According to the cosmetics directive [76/768/EEC], compounds that are classified as mutagenic, carcinogenic or toxic to reproduction are banned for the use in cosmetic products. Since December 2010, the respective labelling is based on the rules of regulation (EC) No. 1272/2008 (Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006, Official Journal L 353, 31/12/2008, pages 1-1355; available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:353:0001:1355:en:PDF ) on classification, labelling and packaging of substances and mixtures (CLP). There is no further impact from the CLP regulation on cosmetic products, because regulation (EC) No. 1223/2009 on cosmetic products defines its own labelling rules (Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products; available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:342:0059:0209:en:PDF ). Special notification procedures are mandatory for preservatives, colourants and UV-filters where a safety approval from the European 'Scientific Committee on Consumer Safety' (SCCS) is needed prior to marketing. The risk assessment of nanomaterials in consumer products still poses a significant challenge as highlighted by the example of UV-filters in sunscreens since nanomaterials cannot be classified as a homogenous group of chemicals but still need to be addressed in risk characterisation on a case by case basis.
Collapse
|
Journal Article |
13 |
24 |
22
|
Fatibello-Filho O, Vieira IC. Construction and analytical application of a biosensor based on stearic acid-graphite powder modified with sweet potato tissue in organic solvents. FRESENIUS' JOURNAL OF ANALYTICAL CHEMISTRY 2000; 368:338-43. [PMID: 11227501 DOI: 10.1007/s002160000467] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A biosensor based on stearic acid-graphite powder modified with sweet potato (Ipomoea batatas (L.) Lam.) tissue as peroxidase source was constructed and applied in organic solvents. Several parameters were studied to evaluate the performance of this biosensor such as stearic acid-graphite powder and tissue composition, type and concentration of supporting electrolyte, organic solvents, water/organic solvent ratio (% v/v) and hydrogen peroxide concentration. After selection of the best conditions, the biosensor was applied for the determination of hydroquinone in cosmetic creams in methanol. At the peroxidase electrode hydroquinone is oxidized in the presence of hydrogen peroxide and the radical formed was reduced back electrochemically at -180 mV vs Ag/AgCl (3.0 mol L(-1) KCl). The reduction current obtained was proportional to the concentration of hydroquinone from 6.2 x 10(-5) to 1.5 x 10(-3) mol L(-1) (r = 0.9990) with a detection limit of 8.5 x 10(-6) mol L(-1). The recovery of hydroquinone from two samples ranged from 98.8 to 104.1% and an RSD lower than 1.0% for a solution containing 7.3 x 10(-4) mol L(-1) hydroquinone and 1.0 x 10(-3) mol L(-1) hydrogen peroxide in 0.10 mol L(-1) tetrabutylammonium bromide methanol-phosphate buffer solution (95:5% v/v) (n = 10) was obtained.
Collapse
|
|
25 |
24 |
23
|
Fentem J, Chamberlain M, Sangster B. The feasibility of replacing animal testing for assessing consumer safety: a suggested future direction. Altern Lab Anim 2005; 32:617-23. [PMID: 15757499 DOI: 10.1177/026119290403200612] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
At present, we are unable to use much of the data derived from alternative (non-animal) tests for human health risk assessment. This brief Comment outlines why it is plausible that new paradigms could be developed to enable risk assessment to support consumer safety decisions, without the need to generate data in animal tests. The availability of technologies that did not exist 10 years ago makes this new approach possible. The approach is based on the concept that data and information derived from applying existing and new technologies to non-animal models can be interpreted in terms of harm and disease in man. A prerequisite is that similar data and information generated in a clinical setting are available to permit this "translation". The incorporation of this additional translation step should make it possible to use data and information generated in non-animal models as inputs to risk assessment. The new technologies include genomics, transcriptomics, proteomics and metabonomics. Their application to in vitro and human "models" enables large amounts of data to be generated very quickly. The processing, interpretation and translation of these data need to be supported by powerful informatics capabilities and statistical tools. The use of integrated "systems biology" approaches will further support the interpretation by providing better understanding of the underlying biological complexity and mechanisms of toxicity. Clinical medicine is using the opportunities offered by the new "omics" technologies to advance the understanding of disease. The application of these technologies in clinical medicine will generate massive amounts of data that will need processing and interpretation to allow clinicians to better diagnose disease and understand the patients' responses to therapeutic interventions. Support from clinical epidemiology will be essential. If these data and information can be made generally accessible in an ethical and legal way, they should also permit the "translation" of experimental non-animal data, so that they can then be used in risk assessment.
Collapse
|
Journal Article |
20 |
22 |
24
|
Zondlo Fiume M. Final report on the safety assessment of Tocopherol, Tocopheryl Acetate, Tocopheryl Linoleate, Tocopheryl Linoleate/Oleate, Tocopheryl Nicotinate, Tocopheryl Succinate, Dioleyl Tocopheryl Methylsilanol, Potassium Ascorbyl Tocopheryl Phosphate, and Tocophersolan. Int J Toxicol 2003; 21 Suppl 3:51-116. [PMID: 12537931 DOI: 10.1080/10915810290169819] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tocopherol and its several ester and ether derivatives all function as antioxidants in cosmetic formulations; they also have other functions, such as skin conditioning. Tocopheryl Acetate, Tocopherol, and Tocopheryl Linoleate are used in 2673 formulations, generally at concentrations of up to 36%, 5%, and 2%, respectively, although Tocopheryl Acetate is 100% of vitamin E oil. Tocophersolan, Tocopheryl Linoleate/Oleate, Tocopheryl Nicotinate, Tocopheryl Succinate, Dioleyl Tocopheryl Methylsilanol, and Potassium Ascorbyl Tocopheryl Phosphate, combined, are used in 36 formulations at concentrations lower than those reported for the frequently used ingredients. Tocopherol may be isolated from vegetable oils or synthesized using isophytol and methylhydroquinone. Tocopherol, Tocopheryl Acetate, Tocopheryl Linoleate, and Tocopheryl Succinate all were absorbed in human skin. In rat skin, Tocopheryl Acetate is hydrolyzed to Tocopherol. Tocopherol is a natural component of cell membranes thought to protect against oxidative damage. Tocopherol, Tocopheryl Acetate, and Tocopheryl Succinate each were reported to protect against ultraviolet radiation-induced skin damage. These ingredients are generally not toxic in animal feeding studies, although very high doses (>2 g/kg/day) have hemorrhagic activity. These ingredients are generally not irritating or sensitizing to skin or irritating to eyes, although a Tocopheryl Acetate did produce sensitization in one animal test, and Tocophersolan was a slight eye irritant in an animal test. Reproductive and developmental toxicity tests in animals using Tocopherol, Tocopheryl Acetate, Tocopheryl Succinate, and Tocophersolan were all negative or showed some effect of reducing toxicity. Tocopherol, Tocopheryl Acetate, Tocopheryl Succinate, and Dioleyl Tocopheryl Methylsilanol were almost uniformly negative. These ingredients exhibit antimutagenic activity consistent with their antioxidant properties. Tocopherol was not carcinogenic. The ability of Tocopherol, Tocopheryl Acetate, and Tocopheryl Succinate to modulate the carcinogenic effect of other agents (e.g., tumor promotion) has been extensively studied. One study showing tumor promotion in mice may be discounted as not reproducible and not consistent with the large volume of data suggesting that the antioxidant properties of these agents protect against tumor induction. Specifically, the frequent use of Tocopherol as a negative control in other tumor promotion studies suggests that Tocopherol is not a tumor promoter. Tocopherol has been shown to reduce the photocarcinogenic effect of ultraviolet radiation in mice. Similar studies with Tocopheryl Acetate and Tocopheryl Succinate, however, demonstrated some enhancement of photocarcinogenesis, although the effect was not dose related. In clinical studies, Tocopherol, Tocopheryl Acetate, and Tocopheryl Nicotinate were not irritants or sensitizers. A report of a large number of positive patch-tests to Tocopheryl Linoleate in one cosmetic product were considered to result from a contaminant or metabolite. The Cosmetic Ingredient Review Expert Panel considered that these data provide an adequate basis on which to conclude that Tocopherol, Tocophersolan, Tocopheryl Acetate, Tocopheryl Linoleate, Tocopheryl Linoleate/Oleate, Tocopheryl Nicotinate, Tocopheryl Succinate, Dioleyl Tocopheryl Methylsilanol, and Potassium Ascorbyl Tocopheryl Phosphate are safe as used in cosmetic formulations. Although there were no inhalation toxicity data, these ingredients are used at such low concentrations in hair sprays that no inhalation toxicity risk was considered likely. Because methylhydroquinone is used in the chemical synthesis of Tocopherol, there was concern that hydroquinone may be present as an impurity. In such cases, residual levels of hydroquinone would be expected to be limited to those achieved by good manufacturing practices.
Collapse
|
Review |
22 |
22 |
25
|
Farrington JK, Martz EL, Wells SJ, Ennis CC, Holder J, Levchuk JW, Avis KE, Hoffman PS, Hitchins AD, Madden JM. Ability of laboratory methods to predict in-use efficacy of antimicrobial preservatives in an experimental cosmetic. Appl Environ Microbiol 1994; 60:4553-8. [PMID: 7811091 PMCID: PMC202018 DOI: 10.1128/aem.60.12.4553-4558.1994] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The abilities of nine antimicrobial systems to preserve an experimental water-based cosmetic formulation were evaluated by six microbiological challenge tests: the U.S. Pharmacopeia test; the British Pharmacopeia test; the Cosmetic, Toiletry, and Fragrance Association test; the rapid screen test; the sequential challenge test; and the post-use test. The antimicrobial systems contained various combinations and amounts of two parabens and a quaternary compound in order to provide a broad range of preservation. The results obtained were compared with the abilities of the formulations to support maintenance and growth of microorganisms in microfloras obtained from human axilla areas and finger skin during an 8-week simulated in-use test. Without statistical analysis all of the tests predicted the results obtained with well-preserved or poorly preserved formulations. The rapid screen test was the best test for predicting differences at intermediate levels of preservation. Statistically, all of the tests were equivalent predictors of preservation efficacy in the in-use test (P = 0.05). At the P = 0.10 level, only the U.S. Pharmacopeia, British Pharmacopeia, rapid screen, Cosmetic, Toiletry, and Fragrance Association tests were significantly predictive. The results of prediction by a test, based on the preservative levels used, agreed well with the in-use test results (P = 0.01). A total of 20% of the formulations that contained excessive microbial levels contained human axilla microorganisms. The levels of preservation in failed products were similar to the levels of preservation in unused controls.
Collapse
|
research-article |
31 |
20 |