1
|
Taylor KA, Glaeser RM. Retrospective on the early development of cryoelectron microscopy of macromolecules and a prospective on opportunities for the future. J Struct Biol 2008; 163:214-23. [PMID: 18606231 PMCID: PMC3291472 DOI: 10.1016/j.jsb.2008.06.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 06/03/2008] [Indexed: 11/24/2022]
Abstract
Methods for preserving specimen hydration in protein crystals were pursued in the early 1970s as a prerequisite for protein crystallography using an electron microscope. Three laboratories approached this question from very different directions. One built a differentially pumped hydration chamber that could maintain the crystal in a liquid water environment, a second maintained hydration by rapidly freezing the protein crystal and examining it in a cold stage, and the third replaced the water of hydration by using glucose in the same way as one had previously used "negative stains". Each of these early efforts succeeded in preserving the structures of protein crystals at high resolution within the vacuum of the electron microscope, as demonstrated by electron diffraction patterns. The next breakthrough came in the early 1980s when a technique was devised to preserve noncrystalline specimens by freezing them within vitreous ice. Since then, with the development of high stability cold stages and transfer mechanisms compatible with many instrument platforms, and by using commercially provided low dose imaging techniques to avoiding radiation damage, there has been an explosion of applications. These now include single particles, helical filaments, 2-D arrays and even whole cells, where the most exciting recent applications involve cryoelectron tomography. These achievements and possibilities generate a new set of research opportunities associated with increasing the reliability and throughput with which specimens can be studied by cryoEM.
Collapse
|
Historical Article |
17 |
103 |
2
|
Abstract
Advances in cryoEM and single-particle reconstruction have led to results at increasingly high resolutions. However, to sustain continuing improvements in resolution it will be necessary to increase the number of particles included in performing the reconstructions. Manual selection of particles, even when assisted by computer preselection, is a bottleneck that will become significant as single-particle reconstructions are scaled up to achieve near-atomic resolutions. This review describes various approaches that have been developed to address the problem of automatic particle selection. The principal conclusions that have been drawn from the results so far are: (1) cross-correlation with a reference image ("matched filtering") is an effective way to identify candidate particles, but it is inherently unable to avoid also selecting false particles; (2) false positives can be eliminated efficiently on the basis of estimates of particle size, density, and texture; (3) successful application of edge detection (or contouring) to particle identification may require improvements over currently available methods; and (4) neural network techniques, while computationally expensive, must also be investigated as a technology for eliminating false particles.
Collapse
|
Review |
24 |
81 |
3
|
Wang H, Wang J. How cryo-electron microscopy and X-ray crystallography complement each other. Protein Sci 2017; 26:32-39. [PMID: 27543495 PMCID: PMC5192981 DOI: 10.1002/pro.3022] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 11/09/2022]
Abstract
With the ability to resolve structures of macromolecules at atomic resolution, X-ray crystallography has been the most powerful tool in modern structural biology. At the same time, recent technical improvements have triggered a resolution revolution in the single particle cryo-EM method. While the two methods are different in many respects, from sample preparation to structure determination, they both have the power to solve macromolecular structures at atomic resolution. It is important to understand the unique advantages and caveats of the two methods in solving structures and to appreciate the complementary nature of the two methods in structural biology. In this review we provide some examples, and discuss how X-ray crystallography and cryo-EM can be combined in deciphering structures of macromolecules for our full understanding of their biological mechanisms.
Collapse
|
Review |
8 |
79 |
4
|
Subramaniam S. Bridging the imaging gap: visualizing subcellular architecture with electron tomography. Curr Opin Microbiol 2005; 8:316-22. [PMID: 15939356 PMCID: PMC1647296 DOI: 10.1016/j.mib.2005.04.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 04/25/2005] [Indexed: 11/22/2022]
Abstract
Transmission electron microscopy is a powerful tool that is used to explore the internal structure of tissues, cells, organelles and macromolecular complexes. By integrating data from a series of images in which the orientation of the specimen is progressively varied relative to the incident electron beam it is also possible to extend electron microscopic imaging into the third dimension. This approach, commonly referred to as electron tomography, has been greatly aided in recent years by advances in technology for imaging specimens at cryogenic temperatures, as well as by substantial progress in procedures for automated data collection and image processing. The intense pace of developments in this field is inspired, in a large part, by the hope that the quality of the data will ultimately be good enough to allow interpretation of tomograms of cells, organelles, bacteria and viruses in terms of the three-dimensional spatial arrangements of the constituent molecules.
Collapse
|
Review |
20 |
66 |
5
|
Abstract
Recent advances in electron tomography are beginning to reveal the internal structure of eukaryotic cells in their native states in three dimensions at molecular resolution. These observations represent the culmination of years of effort to develop protocols for automated data collection, image reconstruction and cryogenic preservation. Cryo-tomograms of Dictyostelium cells depict distinct populations of ribosomes, proteasomes and networks of actin filaments interconnected by branching or bundling, apparently controlled by strategically placed actin-associated proteins.
Collapse
|
Review |
22 |
60 |
6
|
Abstract
Emerging methods in cryo-electron microscopy allow determination of the three-dimensional architectures of objects ranging in size from small proteins to large eukaryotic cells, spanning a size range of more than 12 orders of magnitude. Advances in determining structures by "single particle" microscopy and by "electron tomography" provide exciting opportunities to describe the structures of subcellular assemblies that are either too large or too heterogeneous to be investigated by conventional crystallographic methods. Here, we review selected aspects of progress in structure determination by cryo-electron microscopy at molecular resolution, with a particular emphasis on topics at the interface of single particle and tomographic approaches. The rapid pace of development in this field suggests that comprehensive descriptions of the structures of whole cells and organelles in terms of the spatial arrangements of their molecular components may soon become routine.
Collapse
|
|
21 |
57 |
7
|
|
Editorial |
7 |
28 |
8
|
Frank J. Generalized single-particle cryo-EM--a historical perspective. Microscopy (Oxf) 2016; 65:3-8. [PMID: 26566976 PMCID: PMC4749046 DOI: 10.1093/jmicro/dfv358] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/15/2015] [Indexed: 11/14/2022] Open
Abstract
This is a brief account of the earlier history of single-particle cryo-EM of biological molecules lacking internal symmetry, which goes back to the mid-seventies. The emphasis of this review is on the mathematical concepts and computational approaches. It is written as the field experiences a turning point in the wake of the introduction of digital cameras capable of single electron counting, and near-atomic resolution can be reached even for smaller molecules.
Collapse
|
Historical Article |
9 |
24 |
9
|
Norlén L, Masich S, Goldie KN, Hoenger A. Structural analysis of vimentin and keratin intermediate filaments by cryo-electron tomography. Exp Cell Res 2007; 313:2217-27. [PMID: 17499715 DOI: 10.1016/j.yexcr.2007.03.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 03/20/2007] [Accepted: 03/26/2007] [Indexed: 11/25/2022]
Abstract
Intermediate filaments are a large and structurally diverse group of cellular filaments that are classified into five different groups. They are referred to as intermediate filaments (IFs) because they are intermediate in diameter between the two other cytoskeletal filament systems that is filamentous actin and microtubules. The basic building block of IFs is a predominantly alpha-helical rod with variable length globular N- and C-terminal domains. On the ultra-structural level there are two major differences between IFs and microtubules or actin filaments: IFs are non-polar, and they do not exhibit large globular domains. IF molecules associate via a coiled-coil interaction into dimers and higher oligomers. Structural investigations into the molecular building plan of IFs have been performed with a variety of biophysical and imaging methods such as negative staining and metal-shadowing electron microscopy (EM), mass determination by scanning transmission EM, X-ray crystallography on fragments of the IF stalk and low-angle X-ray scattering. The actual packing of IF dimers into a long filament varies between the different families. Typically the dimers form so called protofibrils that further assemble into a filament. Here we introduce new cryo-imaging methods for structural investigations of IFs in vitro and in vivo, i.e., cryo-electron microscopy and cryo-electron tomography, as well as associated techniques such as the preparation and handling of vitrified sections of cellular specimens.
Collapse
|
|
18 |
23 |
10
|
|
Review |
20 |
22 |
11
|
Renault L, Chou HT, Chiu PL, Hill RM, Zeng X, Gipson B, Zhang ZY, Cheng A, Unger V, Stahlberg H. Milestones in electron crystallography. J Comput Aided Mol Des 2006; 20:519-27. [PMID: 17103018 PMCID: PMC2194810 DOI: 10.1007/s10822-006-9075-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 08/29/2006] [Indexed: 10/23/2022]
Abstract
Electron crystallography determines the structure of membrane embedded proteins in the two-dimensionally crystallized state by cryo-transmission electron microscopy imaging and computer structure reconstruction. Milestones on the path to the structure are high-level expression, purification of functional protein, reconstitution into two-dimensional lipid membrane crystals, high-resolution imaging, and structure determination by computer image processing. Here we review the current state of these methods. We also created an Internet information exchange platform for electron crystallography, where guidelines for imaging and data processing method are maintained. The server (http://2dx.org) provides the electron crystallography community with a central information exchange platform, which is structured in blog and Wiki form, allowing visitors to add comments or discussions. It currently offers a detailed step-by-step introduction to image processing with the MRC software program. The server is also a repository for the 2dx software package, a user-friendly image processing system for 2D membrane protein crystals.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
21 |
12
|
Stuart DI, Abrescia NGA. From lows to highs: using low-resolution models to phase X-ray data. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2257-65. [PMID: 24189238 PMCID: PMC3817700 DOI: 10.1107/s0907444913022336] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 08/08/2013] [Indexed: 11/11/2022]
Abstract
The study of virus structures has contributed to methodological advances in structural biology that are generally applicable (molecular replacement and noncrystallographic symmetry are just two of the best known examples). Moreover, structural virology has been instrumental in forging the more general concept of exploiting phase information derived from multiple structural techniques. This hybridization of structural methods, primarily electron microscopy (EM) and X-ray crystallography, but also small-angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) spectroscopy, is central to integrative structural biology. Here, the interplay of X-ray crystallography and EM is illustrated through the example of the structural determination of the marine lipid-containing bacteriophage PM2. Molecular replacement starting from an ~13 Å cryo-EM reconstruction, followed by cycling density averaging, phase extension and solvent flattening, gave the X-ray structure of the intact virus at 7 Å resolution This in turn served as a bridge to phase, to 2.5 Å resolution, data from twinned crystals of the major coat protein (P2), ultimately yielding a quasi-atomic model of the particle, which provided significant insights into virus evolution and viral membrane biogenesis.
Collapse
|
Review |
12 |
11 |
13
|
Khatib F, Desfosses A, Koepnick B, Flatten J, Popović Z, Baker D, Cooper S, Gutsche I, Horowitz S. Building de novo cryo-electron microscopy structures collaboratively with citizen scientists. PLoS Biol 2019; 17:e3000472. [PMID: 31714936 PMCID: PMC6850521 DOI: 10.1371/journal.pbio.3000472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
With the rapid improvement of cryo-electron microscopy (cryo-EM) resolution, new computational tools are needed to assist and improve upon atomic model building and refinement options. This communication demonstrates that microscopists can now collaborate with the players of the computer game Foldit to generate high-quality de novo structural models. This development could greatly speed the generation of excellent cryo-EM structures when used in addition to current methods.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
9 |
14
|
Rouiller I, Pulokas J, Butel VM, Milligan RA, Wilson-Kubalek EM, Potter CS, Carragher BO. Automated image acquisition for single-particle reconstruction using p97 as the biological sample. J Struct Biol 2001; 133:102-7. [PMID: 11472082 DOI: 10.1006/jsbi.2001.4367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used Leginon, a fully automatic system capable of acquiring cryo-electron micrographs, to collect data of single particles, specifically of the AAA ATPase p97. The images were acquired under low-dose conditions and required no operator intervention other than the initial setup and periodic refilling of the cold-stage dewar. Each image was acquired at two different defocus values. Two-dimensional projection maps of p97 were calculated from these data and compared to results previously obtained using the conventional manual data collection methods to film. The results demonstrate that Leginon performs as well as an experienced microscopist for the acquisition of single-particle data. The general advantages of automation are discussed.
Collapse
|
Comparative Study |
24 |
8 |
15
|
Xu XP, Volkmann N. Validation methods for low-resolution fitting of atomic structures to electron microscopy data. Arch Biochem Biophys 2015; 581:49-53. [PMID: 26116787 DOI: 10.1016/j.abb.2015.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/12/2015] [Accepted: 06/23/2015] [Indexed: 12/19/2022]
Abstract
Fitting of atomic-resolution structures into reconstructions from electron cryo-microscopy is routinely used to understand the structure and function of macromolecular machines. Despite the fact that a plethora of fitting methods has been developed over recent years, standard protocols for quality assessment and validation of these fits have not been established. Here, we present the general concepts underlying current validation ideas as they relate to fitting of atomic-resolution models into electron cryo-microscopy reconstructions, with an emphasis on reconstructions with resolutions below the sub-nanometer range.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
6 |
16
|
Beale JH. Macromolecular X-ray crystallography: soon to be a road less travelled? Acta Crystallogr D Struct Biol 2020; 76:400-405. [PMID: 32355036 PMCID: PMC7193534 DOI: 10.1107/s2059798320004660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/03/2020] [Indexed: 11/14/2023] Open
Abstract
The number of new X-ray crystallography-based submissions to the Protein Data Bank appears to be at the beginning of a decline, perhaps signalling an end to the era of the dominance of X-ray crystallography within structural biology. This letter, from the viewpoint of a young structural biologist, applies the Copernican method to the life expectancy of crystallography and asks whether the technique is still the mainstay of structural biology. A study of the rate of Protein Data Bank depositions allows a more nuanced analysis of the fortunes of macromolecular X-ray crystallography and shows that cryo-electron microscopy might now be outcompeting crystallography for new labour and talent, perhaps heralding a change in the landscape of the field.
Collapse
|
Letter |
5 |
2 |
17
|
|
|
2 |
1 |
18
|
|
Editorial |
21 |
1 |
19
|
Ravi RT, Leung MR, Zeev-Ben-Mordehai T. Looking back and looking forward: contributions of electron microscopy to the structural cell biology of gametes and fertilization. Open Biol 2020; 10:200186. [PMID: 32931719 PMCID: PMC7536082 DOI: 10.1098/rsob.200186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/25/2020] [Indexed: 01/22/2023] Open
Abstract
Mammalian gametes-the sperm and the egg-represent opposite extremes of cellular organization and scale. Studying the ultrastructure of gametes is crucial to understanding their interactions, and how to manipulate them in order to either encourage or prevent their union. Here, we survey the prominent electron microscopy (EM) techniques, with an emphasis on considerations for applying them to study mammalian gametes. We review how conventional EM has provided significant insight into gamete ultrastructure, but also how the harsh sample preparation methods required preclude understanding at a truly molecular level. We present recent advancements in cryo-electron tomography that provide an opportunity to image cells in a near-native state and at unprecedented levels of detail. New and emerging cellular EM techniques are poised to rekindle exploration of fundamental questions in mammalian reproduction, especially phenomena that involve complex membrane remodelling and protein reorganization. These methods will also allow novel lines of enquiry into problems of practical significance, such as investigating unexplained causes of human infertility and improving assisted reproductive technologies for biodiversity conservation.
Collapse
|
Review |
5 |
1 |
20
|
Farsad K, Unger V. Electron cryo-microscopy: the frozen frontier of structural biology. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2001; 74:355-60. [PMID: 11769341 PMCID: PMC2588737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
review-article |
24 |
|
21
|
Callaway E. These 'movies' of proteins in action are revealing the hidden biology of cells. Nature 2024; 627:480-482. [PMID: 38509281 DOI: 10.1038/d41586-024-00817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
|
News |
1 |
|
22
|
Nogales E, Mahamid J. Bridging structural and cell biology with cryo-electron microscopy. Nature 2024; 628:47-56. [PMID: 38570716 PMCID: PMC11211576 DOI: 10.1038/s41586-024-07198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/13/2024] [Indexed: 04/05/2024]
Abstract
Most life scientists would agree that understanding how cellular processes work requires structural knowledge about the macromolecules involved. For example, deciphering the double-helical nature of DNA revealed essential aspects of how genetic information is stored, copied and repaired. Yet, being reductionist in nature, structural biology requires the purification of large amounts of macromolecules, often trimmed off larger functional units. The advent of cryogenic electron microscopy (cryo-EM) greatly facilitated the study of large, functional complexes and generally of samples that are hard to express, purify and/or crystallize. Nevertheless, cryo-EM still requires purification and thus visualization outside of the natural context in which macromolecules operate and coexist. Conversely, cell biologists have been imaging cells using a number of fast-evolving techniques that keep expanding their spatial and temporal reach, but always far from the resolution at which chemistry can be understood. Thus, structural and cell biology provide complementary, yet unconnected visions of the inner workings of cells. Here we discuss how the interplay between cryo-EM and cryo-electron tomography, as a connecting bridge to visualize macromolecules in situ, holds great promise to create comprehensive structural depictions of macromolecules as they interact in complex mixtures or, ultimately, inside the cell itself.
Collapse
|
Review |
1 |
|
23
|
Wu X, Wu X. [A review of automatic particle recognition in Cryo-EM images]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2010; 27:1178-1182. [PMID: 21089695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Advances in cryo-electron microscopy (Cryo-EM) and single-particle reconstruction have led to increasingly high resolutions of macromolecular three-dimensional reconstruction. However, for keeping up the continuing improvements in resolution, it is necessary to increase the number of particles included in performing reconstructions. Manual selection of particles, even assisted by computer, is a bottleneck of single-particle reconstruction. Cryo-EM image has low signal-to-noise ratio and low contrast, which leads to difficulty in particle picking. Various approaches have been developed to address the problem of automatic particle. This paper describes the application of template-based method, edge based method, feature-based method, neural network, DoG-based and simulated annealing approach in particle picking. The characteristics of various approaches are discussed, and the future development is presented.
Collapse
|
Review |
15 |
|
24
|
Editorial overview: Cryo electron microscopy: The impact of the cryo-EM revolution in biology. Curr Opin Struct Biol 2018; 52:iii-v. [PMID: 30554601 DOI: 10.1016/j.sbi.2018.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
Editorial |
7 |
|
25
|
Zheng T, Cai S. Recent technical advances in cellular cryo-electron tomography. Int J Biochem Cell Biol 2024; 175:106648. [PMID: 39181502 DOI: 10.1016/j.biocel.2024.106648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Understanding the in situ structure, organization, and interactions of macromolecules is essential for elucidating their functions and mechanisms of action. Cellular cryo-electron tomography (cryo-ET) is a cutting-edge technique that reveals in situ molecular-resolution architectures of macromolecules in their lifelike states. It also provides insights into the three-dimensional distribution of macromolecules and their spatial relationships with various subcellular structures. Thus, cellular cryo-ET bridges the gap between structural biology and cell biology. With rapid advancements, this technique achieved substantial improvements in throughput, automation, and resolution. This review presents the fundamental principles and methodologies of cellular cryo-ET, highlighting recent developments in sample preparation, data collection, and image processing. We also discuss emerging trends and potential future directions. As cellular cryo-ET continues to develop, it is set to play an increasingly vital role in structural cell biology.
Collapse
|
Review |
1 |
|