1
|
Roffey SJ, Cole S, Comby P, Gibson D, Jezequel SG, Nedderman ANR, Smith DA, Walker DK, Wood N. The disposition of voriconazole in mouse, rat, rabbit, guinea pig, dog, and human. Drug Metab Dispos 2003; 31:731-41. [PMID: 12756205 DOI: 10.1124/dmd.31.6.731] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Voriconazole is a new triazole antifungal agent with potent, wide-spectrum activity. Its pharmacokinetics and metabolism have been studied in mouse, rat, rabbit, dog, guinea pig, and humans after single and multiple administration by both oral and intravenous routes. Absorption of voriconazole is essentially complete in all species. The elimination of voriconazole is characterized by non-linear pharmacokinetics in all species. Consequently, pharmacokinetic parameters are dependent upon dose, and a superproportional increase in area under the curve is seen with increasing dose in rat and dog toxicology studies. Following multiple administration, there is a decrease in systemic exposure. This is most pronounced in mouse and rat, less so in dog, and not observed in guinea pig or rabbit. Repeat-dose toxicology studies in mouse, rat, and dog have demonstrated that induction of cytochrome P450 by voriconazole (autoinduction of metabolism) is responsible for the decreased exposure in these species. Autoinduction of metabolism is not observed in humans, and plasma steady-state concentrations remain constant with time. Voriconazole is extensively metabolized in all species. The major pathways in humans involve fluoropyrimidine N-oxidation, fluoropyrimidine hydroxylation, and methyl hydroxylation. Also, N-oxidation facilitates cleavage of the molecule, resulting in loss of the fluoropyrimidine moiety and subsequent conjugation with glucuronic acid. Major pathways are represented in animal species. The major circulating metabolite in rat, dog, and human is the N-oxide of voriconazole. It is not thought to contribute to efficacy since it is at least 100-fold less potent than voriconazole against fungal pathogens in vitro.
Collapse
|
|
22 |
245 |
2
|
Strizki JM, Xu S, Wagner NE, Wojcik L, Liu J, Hou Y, Endres M, Palani A, Shapiro S, Clader JW, Greenlee WJ, Tagat JR, McCombie S, Cox K, Fawzi AB, Chou CC, Pugliese-Sivo C, Davies L, Moreno ME, Ho DD, Trkola A, Stoddart CA, Moore JP, Reyes GR, Baroudy BM. SCH-C (SCH 351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of HIV-1 infection in vitro and in vivo. Proc Natl Acad Sci U S A 2001; 98:12718-23. [PMID: 11606733 PMCID: PMC60120 DOI: 10.1073/pnas.221375398] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2001] [Indexed: 11/18/2022] Open
Abstract
We describe here the identification and properties of SCH-C (SCH 351125), a small molecule inhibitor of HIV-1 entry via the CCR5 coreceptor. SCH-C, an oxime-piperidine compound, is a specific CCR5 antagonist as determined in multiple receptor binding and signal transduction assays. This compound specifically inhibits HIV-1 infection mediated by CCR5 in U-87 astroglioma cells but has no effect on infection of CXCR4-expressing cells. SCH-C has broad and potent antiviral activity in vitro against primary HIV-1 isolates that use CCR5 as their entry coreceptor, with mean 50% inhibitory concentrations ranging between 0.4 and 9 nM. Moreover, SCH-C strongly inhibits the replication of an R5-using HIV-1 isolate in SCID-hu Thy/Liv mice. SCH-C has a favorable pharmacokinetic profile in rodents and primates with an oral bioavailability of 50-60% and a serum half-life of 5-6 h. On the basis of its novel mechanism of action, potent antiviral activity, and in vivo pharmacokinetic profile, SCH-C is a promising new candidate for therapeutic intervention of HIV infection.
Collapse
|
research-article |
24 |
223 |
3
|
Mukhopadhyay P, Horváth B, Zsengellér Z, Zielonka J, Tanchian G, Holovac E, Kechrid M, Patel V, Stillman IE, Parikh SM, Joseph J, Kalyanaraman B, Pacher P. Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy. Free Radic Biol Med 2012; 52:497-506. [PMID: 22120494 PMCID: PMC3253235 DOI: 10.1016/j.freeradbiomed.2011.11.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/23/2011] [Accepted: 11/03/2011] [Indexed: 02/04/2023]
Abstract
Cisplatin is a widely used antineoplastic agent; however, its major limitation is the development of dose-dependent nephrotoxicity whose precise mechanisms are poorly understood. Here we show not only that mitochondrial dysfunction is a feature of cisplatin nephrotoxicity, but also that targeted delivery of superoxide dismutase mimetics to mitochondria largely prevents the renal effects of cisplatin. Cisplatin induced renal oxidative stress, deterioration of mitochondrial structure and function, an intense inflammatory response, histopathological injury, and renal dysfunction. A single systemic dose of mitochondrially targeted antioxidants, MitoQ or Mito-CP, dose-dependently prevented cisplatin-induced renal dysfunction. Mito-CP also prevented mitochondrial injury and dysfunction, renal inflammation, and tubular injury and apoptosis. Despite being broadly renoprotective against cisplatin, Mito-CP did not diminish cisplatin's antineoplastic effect in a human bladder cancer cell line. Our results highlight the central role of mitochondrially generated oxidants in the pathogenesis of cisplatin nephrotoxicity. Because similar compounds seem to be safe in humans, mitochondrially targeted antioxidants may represent a novel therapeutic approach against cisplatin nephrotoxicity.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
166 |
4
|
Sano T, Umeda F, Hashimoto T, Nawata H, Utsumi H. Oxidative stress measurement by in vivo electron spin resonance spectroscopy in rats with streptozotocin-induced diabetes. Diabetologia 1998; 41:1355-60. [PMID: 9833944 DOI: 10.1007/s001250051076] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Enhanced oxidative stress in diabetic patients may contribute to the pathogenesis of diabetic angiopathy. We have recently developed a method to determine the electron spin resonance (ESR, electron paramagnetic resonance; EPR) of reactive oxygen species and free radicals in vivo, using the nitroxide derivative, carbamoyl-PROXYL as a probe. In this study, diabetes was induced in Wistar rats by streptozotocin (STZ) injection (65 mg/kg, body weight, intravenously). Two, 4, and 8 weeks later, the animals received carbamoyl-PROXYL (300 nmol/g, intravenously), and ESR was measured at the upper abdominal level at a frequency of 300 MHz. The intensity of the carbamoyl-PROXYL ESR signal decreased gradually after the injection, and the spin clearance rate was determined over the first 5 min. At all time points, the spin clearance rate was significantly greater in the diabetic rats than in control rats. Moreover, the spin clearance rate in the diabetic rats was significantly correlated with urinary malondialdehyde (MDA) levels, which serve as a marker for lipid peroxidation. Daily treatment with 4 units neutral protamin Hagedorn (NPH) insulin for 4 weeks reduced the spin clearance rate in the diabetic rats. Simultaneous injection of carbamoyl-PROXYL and superoxide dismutase reduced the spin clearance rate in the diabetic rats in a dose-dependent manner. Injection of the antioxidant alpha-tocopherol (40 mg/kg, intraperitoneally) for 2 weeks restored the spin clearance rate in the diabetic rats without concomitant glycaemic restoration. These results suggest that a diabetic state enhances the generation of free radicals in vivo, and that both glycaemic control and antioxidant treatment can reduce this oxidative stress. Non-invasive in vivo ESR measurement may be useful for evaluating oxidative stress in diabetes.
Collapse
|
|
27 |
142 |
5
|
Hyodo F, Matsumoto KI, Matsumoto A, Mitchell JB, Krishna MC. Probing the Intracellular Redox Status of Tumors with Magnetic Resonance Imaging and Redox-Sensitive Contrast Agents. Cancer Res 2006; 66:9921-8. [PMID: 17047054 DOI: 10.1158/0008-5472.can-06-0879] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitroxide radicals are paramagnetic contrast agents, used in magnetic resonance imaging (MRI), that also exert antioxidant effects. Participating in cellular redox reactions, they lose their ability to provide contrast as a function of time after administration. In this study, the rate of contrast loss was correlated to the reducing power of the tissue or the "redox status." The preferential reduction of nitroxides in tumors compared with normal tissue was observed by MRI. The influence of the structure of the nitroxide on the reduction rate was investigated by MRI using two cell-permeable nitroxides, 4-hydroxy-2,2,6,6,-tetramethyl-1-piperidynyloxyl (Tempol) and 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (3CP), and one cell-impermeable nitroxide, 3-carboxy-2,2,5,5,5-tetramethylpyrrolidine-1-oxyl (3CxP). Pharmacokinetic images of these nitroxides in normal tissue, tumor, kidney, and artery regions in mice were simultaneously obtained using MRI. The decay of Tempol and 3CP in tumor tissue was significantly faster than in normal tissue. No significant change in the total nitroxide (oxidized + reduced forms) was noted from tissue extracts, suggesting that the loss in contrast as a function of time is a result of intracellular bioreduction. However, in the case of 3CxP (membrane impermeable), there was no difference in the reduction rates between normal and tumor tissue. The time course of T(1) enhancement by 3CxP and the total amount of 3CxP (oxidized + reduced) in the femoral region showed similar pharmacokinetics. These results show that the differential bioreduction of cell-permeable nitroxides in tumor and normal tissue is supported by intracellular processes and the reduction rates are a means by which the intracellular redox status can be assessed noninvasively.
Collapse
|
|
19 |
137 |
6
|
Metz JM, Smith D, Mick R, Lustig R, Mitchell J, Cherakuri M, Glatstein E, Hahn SM. A phase I study of topical Tempol for the prevention of alopecia induced by whole brain radiotherapy. Clin Cancer Res 2005; 10:6411-7. [PMID: 15475427 DOI: 10.1158/1078-0432.ccr-04-0658] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Complete alopecia is a universal complication of whole brain radiation therapy which contributes to patient anxiety over treatment. Tempol, a nitroxide radioprotector, has been shown to protect against radiation-induced alopecia in an animal model. This phase Ib study was designed to evaluate the safety and side effect profile of topical Tempol in patients with brain metastases being treated with whole brain radiotherapy. EXPERIMENTAL DESIGN Twelve patients with metastatic cancer to the brain were enrolled in the study between October 2000 and February 2003. Tempol (70 mg/ml concentration solution) was applied topically to the scalp 15 minutes before and washed off immediately after the completion of each of 10 fractions of whole brain radiation. Pharmacokinetic studies to evaluate the systemic absorption of Tempol were performed. Patients were assessed for toxicity before, during, and after Tempol administration. A secondary end point of the study, hair retention, was also scored. RESULTS Eleven patients were treated with topical Tempol. Adverse events that were considered possibly, probably, or definitely related to Tempol, included asymptomatic grade 2 (two patients) and grade 1 (one patient) hypoglycemia, grade 1 forehead skin redness (one patient), grade 1 dry scalp (one patient), and grade 1 tingling sensation on the scalp (one patient). Tempol was not detected in blood samples from more than 50% of the patients. Mean maximum Tempol levels for individual patients at any time point varied from 0.4 to 3.1 micromol/L. Hair retention was localized to the base of the scalp where the Tempol solution pooled after application in the first four patients on the study. Subsequently, full scalp hair retention was seen in three of final five evaluable patients after gauze had been wrapped around the head to hold the solution against the scalp. CONCLUSIONS This study demonstrates that topical application of Tempol to the scalp before whole brain radiation is safe and well tolerated. Evidence of protection against radiation-induced alopecia was observed. A phase II study that uses a gel formulation to increase the exposure of scalp to Tempol has been initiated.
Collapse
|
Journal Article |
20 |
118 |
7
|
Khan N, Wilmot CM, Rosen GM, Demidenko E, Sun J, Joseph J, O'Hara J, Kalyanaraman B, Swartz HM. Spin traps: in vitro toxicity and stability of radical adducts. Free Radic Biol Med 2003; 34:1473-81. [PMID: 12757857 DOI: 10.1016/s0891-5849(03)00182-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have evaluated the effects of DMPO, CMPO, EMPO, BMPO, and DEPMPO on functioning CHO cells and the stability of the radical adducts in the presence of cells. The potential toxic effects of the spin traps were measured by two estimates of cell viability (trypan blue exclusion and colony formation) and one of cell function (rate of oxygen consumption). We also studied the effects of the spin traps on colony formation in a second cell line, 9L tumor cells. Toxicity varied with the type of cell line and the parameter that was measured. In aqueous solutions the order of stability for all spin adducts was SO(3) > OH > CH(3), while in cell suspensions it was SO(3) > OH approximately CH(3). The radical adducts of the new spin traps have significantly increased stability as compared to DMPO. These results indicate that the new spin traps potentially offer increased stability of spin adducts in functioning cells. It also is clear that it is necessary to carry out appropriate studies of the stability and toxicity in the system that is to be studied for any particular use of these spin traps. It then should be feasible to select the spin trap(s) best suited for the proposed study.
Collapse
|
Comparative Study |
22 |
94 |
8
|
Thiemermann C. Membrane-permeable radical scavengers (tempol) for shock, ischemia-reperfusion injury, and inflammation. Crit Care Med 2003; 31:S76-84. [PMID: 12544980 DOI: 10.1097/00003246-200301001-00011] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
Review |
22 |
91 |
9
|
Tagat JR, Steensma RW, McCombie SW, Nazareno DV, Lin SI, Neustadt BR, Cox K, Xu S, Wojcik L, Murray MG, Vantuno N, Baroudy BM, Strizki JM. Piperazine-based CCR5 antagonists as HIV-1 inhibitors. II. Discovery of 1-[(2,4-dimethyl-3-pyridinyl)carbonyl]-4- methyl-4-[3(S)-methyl-4-[1(S)-[4-(trifluoromethyl)phenyl]ethyl]-1-piperazinyl]- piperidine N1-oxide (Sch-350634), an orally bioavailable, potent CCR5 antagonist. J Med Chem 2001; 44:3343-6. [PMID: 11585438 DOI: 10.1021/jm0155401] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Truncation of the original piperidino-2(S)-methyl piperazine lead structure 2, from a family of muscarinic antagonists, gave compound 8 which has improved selectivity for the HIV-1 co-receptor CCR5 over muscarinic receptors. Further optimization for pharmacokinetic properties afforded Sch-350634 (1), a prototypical piperazine-based CCR5 antagonist, which is a potent inhibitor of HIV-1 entry and replication in PBMCs. The title compound (1) has excellent oral bioavailability in rat, dog, and monkey.
Collapse
|
|
24 |
88 |
10
|
Abstract
Cellular toxicity, pharmacokinetics, and the in vitro and in vivo stability of the SO3*- spin adduct of the spin trap, 5-diethoxyphosphoryl-5-methyl-1-pyrroline-n-oxide (DEPMPO), was investigated, and the results were compared with those of the widely used spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). Similar to DMPO, DEPMPO was quickly taken up (<15 min) after intraperitoneal injection, and distributed evenly in the liver, heart, and blood of the mice. In the presence of ascorbate the in vitro stability of the adduct DEPMPO/SO3*- was 7 times better than DMPO/SO3*-. Under in vivo conditions, the spin adduct DEPMPO/SO3*- was 2-4 times more stable than DMPO/ SO3*-, depending on the route of administration of the adducts. Using a low frequency EPR spectrometer, we were able to observe the spin trapped SO3*- radical both with DMPO and DEPMPO directly in the intact mouse. DEPMPO had a detectable spin adduct signal at a concentration as low as 1 mM, as compared to 5 mM for DMPO. We conclude that DEPMPO is potentially a good candidate for trapping radicals in functioning biological systems, and represents an improvement over the commonly used trap DMPO.
Collapse
|
Comparative Study |
26 |
74 |
11
|
Elmedal B, de Dam MY, Mulvany MJ, Simonsen U. The superoxide dismutase mimetic, tempol, blunts right ventricular hypertrophy in chronic hypoxic rats. Br J Pharmacol 2003; 141:105-13. [PMID: 14656807 PMCID: PMC1574166 DOI: 10.1038/sj.bjp.0705580] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The purpose of this study was to investigate whether a membrane-permeable superoxide dismutase mimetic, tempol, added either alone or in combination with the nitric oxide (NO) donor molsidomine, prevents the development of pulmonary hypertension (PH) in chronic hypoxic rats. 2. Chronic hypobaric hypoxia (10% oxygen) for 2 weeks increased the right ventricular systolic pressure (RVSP), right ventricle and lung wet weight. Relaxations evoked by acetylcholine (ACh) and the molsidomine metabolite SIN-1 were impaired in isolated proximal, but not distal pulmonary arteries, from chronic hypoxic rats. 3. Treatment with tempol (86 mg x kg(-1) day(-1) in drinking water) normalized RVSP and reduced right ventricular hypertrophy, while systemic blood pressure, lung and liver weights, and blunted ACh relaxation of pulmonary arteries were unchanged. 4. Treatment with molsidomine (15 mg x kg(-1) day(-1) in drinking water) had the same effects as tempol, except that liver weight was reduced, and potassium and U46619-evoked vasoconstrictions in pulmonary arteries were increased. Combining tempol and molsidomine did not have additional effects compared to tempol alone. ACh relaxation in pulmonary arteries was not normalized by these treatments. 5. The media to lumen diameter ratio of the pulmonary arteries was greater for the hypoxic rats compared to the normoxic rats, and was not reversed by treatment with tempol, molsidomine, or the combination of tempol and molsidomine. 6. We conclude that tempol, like molsidomine, is able to correct RVSP and reduce right ventricular weight in the rat hypoxic model. Functional and structural properties of pulmonary small arteries were little affected. The results support the possibility that superoxide dismutase mimetics may be a useful means for the treatment of PH.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/administration & dosage
- Acetylcholine/pharmacology
- Administration, Oral
- Animals
- Body Weight/drug effects
- Body Weight/physiology
- Chronic Disease
- Cyclic N-Oxides/administration & dosage
- Cyclic N-Oxides/pharmacokinetics
- Cyclic N-Oxides/therapeutic use
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Synergism
- Drug Therapy, Combination
- Endothelin-1/pharmacology
- Free Radical Scavengers/administration & dosage
- Free Radical Scavengers/pharmacokinetics
- Free Radical Scavengers/therapeutic use
- Heart Rate/drug effects
- Hypertrophy, Right Ventricular/complications
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/prevention & control
- Hypoxia/complications
- Hypoxia/drug therapy
- Hypoxia/physiopathology
- Male
- Molsidomine/analogs & derivatives
- Molsidomine/metabolism
- Molsidomine/pharmacology
- Molsidomine/therapeutic use
- Muscle, Smooth, Vascular
- Organ Size/drug effects
- Pulmonary Artery/anatomy & histology
- Pulmonary Artery/drug effects
- Rats
- Rats, Wistar
- Spin Labels
- Superoxide Dismutase/administration & dosage
- Superoxide Dismutase/therapeutic use
- Vasoconstriction/drug effects
- Vasodilation/drug effects
- Ventricular Pressure/drug effects
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
74 |
12
|
Palani A, Shapiro S, Clader JW, Greenlee WJ, Cox K, Strizki J, Endres M, Baroudy BM. Discovery of 4-[(Z)-(4-bromophenyl)- (ethoxyimino)methyl]-1'-[(2,4-dimethyl-3- pyridinyl)carbonyl]-4'-methyl-1,4'- bipiperidine N-oxide (SCH 351125): an orally bioavailable human CCR5 antagonist for the treatment of HIV infection. J Med Chem 2001; 44:3339-42. [PMID: 11585437 DOI: 10.1021/jm015526o] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structure-activity studies on piperidino-piperidine 3 led to the discovery of SCH 351125 (1), a selective CCR5 antagonist with potent activity against RANTES binding (K(i) = 2 nM), which possesses subnanomolar activity in blocking viral entry and has excellent antiviral potency versus a panel of primary HIV-1 viral isolates. Compound 1, which has good oral bioavailability in rats, dogs, and monkeys, is proposed as a potential therapeutic agent for the treatment of HIV-1 and has entered human clinical trials.
Collapse
|
|
24 |
71 |
13
|
Garland LL, Taylor C, Pilkington DL, Cohen JL, Von Hoff DD. A phase I pharmacokinetic study of HMN-214, a novel oral stilbene derivative with polo-like kinase-1-interacting properties, in patients with advanced solid tumors. Clin Cancer Res 2006; 12:5182-9. [PMID: 16951237 DOI: 10.1158/1078-0432.ccr-06-0214] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE HMN-214 is an oral prodrug of HMN-176, a stilbene derivative that interferes with the subcellular spatial location of polo-like kinase-1, a serine/threonine kinase that regulates critical mitotic events. We conducted a dose escalation study of HMN-214 in patients with advanced cancer to assess the safety profile and pharmacokinetics of HMN-214 and to establish the maximum tolerated dose. EXPERIMENTAL DESIGN Thirty-three patients were enrolled onto four dosing cohorts of HMN-214 from 3 to 9.9 mg/m2/d using a continuous 21-day dosing schedule every 28 days, with pharmacokinetic sampling during cycle 1. RESULTS A severe myalgia/bone pain syndrome and hyperglycemia were dose-limiting toxicities at 9.9 mg/m2/d. A dose reduction and separate enrollment by pretreatment status (lightly versus heavily pretreated) was undertaken, with one dose-limiting toxicity (grade 3 bone pain) at 8 mg/m2/d. The maximum tolerated dose was defined as 8 mg/m2/d for both treatment cohorts. Dose-proportional increases were observed in AUC but not Cmax. There was no accumulation of HMN-176, the metabolite of HMN-214, with repeated dosing. Seven of 29 patients had stable disease as best tumor response, including 6-month stable disease in a heavily pretreated breast cancer patient. A transient decline in carcinoembryonic antigen in a patient with colorectal cancer was noted. CONCLUSIONS The maximum tolerated dose and recommended phase II dose of HMN-214 when administered on this schedule was 8 mg/m2/d regardless of pretreatment status. Further development of HMN-214 will focus on patient populations for which high expression of polo-like kinase-1 is seen (i.e., prostate and pancreatic cancer patients).
Collapse
|
Clinical Trial, Phase I |
19 |
69 |
14
|
Hahn SM, Sullivan FJ, DeLuca AM, Krishna CM, Wersto N, Venzon D, Russo A, Mitchell JB. Evaluation of tempol radioprotection in a murine tumor model. Free Radic Biol Med 1997; 22:1211-6. [PMID: 9098095 DOI: 10.1016/s0891-5849(96)00556-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tempol, a stable nitroxide free radical compound, is an in vitro and in vivo radioprotector. Previous studies have shown that Tempol protects C3H mice against whole-body radiation-induced bone marrow failure. In this study, the radioprotection of tumor tissue was evaluated. RIF-1 tumor cells were implanted in female C3H mice 10 d prior to radiation. Groups of mice were injected intraperitoneally with Tempol (275 mg/kg) or PBS followed 10 min later by a single dose of radiation to the tumor bed. Tumor growth curves generated after 10 and 33.3 Gy doses of radiation showed no difference in growth between the Tempol- and PBS-treated animals. A full radiation dose-response experiment revealed a tumor control dose in 50% of the animals in 30 d (TCD(50/30)) value of 36.7 Gy for Tempol-treated mice and 41.8 Gy for saline-treated mice suggesting no protection of the RIF-1 tumor by Tempol. Tumor pharmacokinetics were done to determine why Tempol differentially protected bone marrow and not tumor cells. Differential reduction of Tempol in the RIF-1 tumor and bone marrow was evaluated with EPR spectroscopy 10, 20, and 30 min after injection. Bioreduction of Tempol to its corresponding hydroxylamine (which is not a radioprotector) occurred to a greater extent in RIF-1 tumor cells compared to bone marrow. We conclude that the differences in radioprotection may result from enhanced intratumor bioreduction of Tempol to its nonradioprotective hydroxylamine analogue. The nitroxides as a class of compounds may provide a means to exploit the redox differences between normal tissues and tumors.
Collapse
|
|
28 |
66 |
15
|
Friesen RW, Ducharme Y, Ball RG, Blouin M, Boulet L, Côté B, Frenette R, Girard M, Guay D, Huang Z, Jones TR, Laliberté F, Lynch JJ, Mancini J, Martins E, Masson P, Muise E, Pon DJ, Siegl PKS, Styhler A, Tsou NN, Turner MJ, Young RN, Girard Y. Optimization of a tertiary alcohol series of phosphodiesterase-4 (PDE4) inhibitors: structure-activity relationship related to PDE4 inhibition and human ether-a-go-go related gene potassium channel binding affinity. J Med Chem 2003; 46:2413-26. [PMID: 12773045 DOI: 10.1021/jm0204542] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A SAR study on the tertiary alcohol series of phosphodiesterase-4 (PDE4) inhibitors related to 1 is described. In addition to inhibitory potency against PDE4 and the lipopolysaccharide-induced production of TNFalpha in human whole blood, the binding affinity of these compounds for the human ether-a-go-go related gene (hERG) potassium channel (an in vitro measure for the potential to cause QTc prolongation) was assessed. Four key structural moieties in the molecule were studied, and the impact of the resulting modifications in modulating these activities was evaluated. From these studies, (+)-3d (L-869,298) was identified as an optimized structure with respect to PDE4 inhibitory potency, lack of binding affinity to the hERG potassium channel, and pharmacokinetic behavior. (+)-3d exhibited good in vivo efficacy in several models of pulmonary function with a wide therapeutic index with respect to emesis and prolongation of the QTc interval.
Collapse
|
|
22 |
57 |
16
|
Karmeli F, Eliakim R, Okon E, Samuni A, Rachmilewitz D. A stable nitroxide radical effectively decreases mucosal damage in experimental colitis. Gut 1995; 37:386-93. [PMID: 7590435 PMCID: PMC1382820 DOI: 10.1136/gut.37.3.386] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
TEMPOL, a cyclic nitroxide stable radical blocks biological damage by breaking chain reactions through termination reaction with free radicals, and by inhibiting the catalytic effect of transition metals. This study tested its protective effect on two models of experimental colitis as free radicals play an important part in their pathogenesis. TEMPOL was given intragastrically immediately after induction of colitis with acetic acid or trinitrobenzene sulphonic acid (TNB) and mucosal damage was assessed one, three, or seven days later. Cellular partition of TEMPOL was determined by electron paramagnetic resonance spectroscopy. In vitro experiments showed that TEMPOL immediately penetrates colonic mucosa and, following its intragastric administration, it persists in both gastric and colonic mucosa for several hours. Intragastric administration of TEMPOL, 0.5 g/kg/bw, immediately after intracaecal administration of 5% acetic acid significantly decreased mucosal lesion area, myeloperoxidase activity, and leukotriene B4 and C4 generation when assessed 24 hours after damage induction. Intragastric administration of TEMPOL, 0.5 g/kg/bw, immediately after intracolonic administration of 30 mg TNB in 0.25 ml 50% ethanol, and once daily thereafter, significantly decreased mucosal lesion area assessed after one, three, and seven days, having no effect on LTC4 generation and affecting colonic weight, myeloperoxidase activity, and LTB4 generation only sporadically. In conclusion, TNB and acetic acid induced colitis can be pharmacologically manipulated by TEMPOL. TEMPOL may be beneficial in the treatment or prevention of inflammatory bowel disease.
Collapse
|
research-article |
30 |
55 |
17
|
Hunter FW, Young RJ, Shalev Z, Vellanki RN, Wang J, Gu Y, Joshi N, Sreebhavan S, Weinreb I, Goldstein DP, Moffat J, Ketela T, Brown KR, Koritzinsky M, Solomon B, Rischin D, Wilson WR, Wouters BG. Identification of P450 Oxidoreductase as a Major Determinant of Sensitivity to Hypoxia-Activated Prodrugs. Cancer Res 2015; 75:4211-23. [PMID: 26297733 DOI: 10.1158/0008-5472.can-15-1107] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/15/2015] [Indexed: 11/16/2022]
|
|
10 |
54 |
18
|
Miura Y, Utsumi H, Hamada A. Effects of inspired oxygen concentration on in vivo redox reaction of nitroxide radicals in whole mice. Biochem Biophys Res Commun 1992; 182:1108-14. [PMID: 1311567 DOI: 10.1016/0006-291x(92)91846-i] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Effects of inspired oxygen concentration on metabolism of nitroxide radical were measured in whole mice by using in vivo ESR. Oxygen concentration influenced spin-clearance of nitroxide differently in abdomen and head, suggesting that either O2 concentrations or metabolic mechanisms of nitroxide in the two domains were different.
Collapse
|
|
33 |
53 |
19
|
Tong W, Chowdhury SK, Chen JC, Zhong R, Alton KB, Patrick JE. Fragmentation of N-oxides (deoxygenation) in atmospheric pressure ionization: investigation of the activation process. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2001; 15:2085-2090. [PMID: 11746872 DOI: 10.1002/rcm.475] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The diagnostic fragmentation of N-oxides resulting from loss of the oxygen atom (MH+ --> MH+-O) in electrospray and atmospheric pressure chemical ionization (APCI) mass spectra was investigated. When the temperature of the heated capillary tube was elevated, the ratio of the intensity of the [MH+ -16] fragment to the precursor ion (MH+) increased. This 'deoxygenation' process was associated with thermal activation and did not result from collisional activation in the desolvation region of the API source. Although the extent of 'deoxygenation' is compound-dependent, it can provide evidence for the presence of an N-oxide in a sample and can be used to distinguish N-oxides from hydroxylated metabolites (Ramanathan et al. Anal. Chem. 2000; 72: 1352). To demonstrate the practical application of thermal fragmentation of N-oxides, liquid chromatography (LC)/APCI-MS was used to distinguish an N-oxide drug from its hydroxylated metabolite in an unprocessed rat urine sample, despite the fact that the drug and its metabolite were not fully resolved by HPLC.
Collapse
|
|
24 |
51 |
20
|
Turjeman K, Bavli Y, Kizelsztein P, Schilt Y, Allon N, Katzir TB, Sasson E, Raviv U, Ovadia H, Barenholz Y. Nano-Drugs Based on Nano Sterically Stabilized Liposomes for the Treatment of Inflammatory Neurodegenerative Diseases. PLoS One 2015; 10:e0130442. [PMID: 26147975 PMCID: PMC4492950 DOI: 10.1371/journal.pone.0130442] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/20/2015] [Indexed: 12/28/2022] Open
Abstract
The present study shows the advantages of liposome-based nano-drugs as a novel strategy of delivering active pharmaceutical ingredients for treatment of neurodegenerative diseases that involve neuroinflammation. We used the most common animal model for multiple sclerosis (MS), mice experimental autoimmune encephalomyelitis (EAE). The main challenges to overcome are the drugs’ unfavorable pharmacokinetics and biodistribution, which result in inadequate therapeutic efficacy and in drug toxicity (due to high and repeated dosage). We designed two different liposomal nano-drugs, i.e., nano sterically stabilized liposomes (NSSL), remote loaded with: (a) a “water-soluble” amphipathic weak acid glucocorticosteroid prodrug, methylprednisolone hemisuccinate (MPS) or (b) the amphipathic weak base nitroxide, Tempamine (TMN). For the NSSL-MPS we also compared the effect of passive targeting alone and of active targeting based on short peptide fragments of ApoE or of β-amyloid. Our results clearly show that for NSSL-MPS, active targeting is not superior to passive targeting. For the NSSL-MPS and the NSSL-TMN it was demonstrated that these nano-drugs ameliorate the clinical signs and the pathology of EAE. We have further investigated the MPS nano-drug’s therapeutic efficacy and its mechanism of action in both the acute and the adoptive transfer EAE models, as well as optimizing the perfomance of the TMN nano-drug. The highly efficacious anti-inflammatory therapeutic feature of these two nano-drugs meets the criteria of disease-modifying drugs and supports further development and evaluation of these nano-drugs as potential therapeutic agents for diseases with an inflammatory component.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
47 |
21
|
Halpern HJ, Peric M, Yu C, Barth ED, Chandramouli GV, Makinen MW, Rosen GM. In vivo spin-label murine pharmacodynamics using low-frequency electron paramagnetic resonance imaging. Biophys J 1996; 71:403-9. [PMID: 8804623 PMCID: PMC1233491 DOI: 10.1016/s0006-3495(96)79241-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A novel, very-low-frequency electron paramagnetic resonance (EPR) technique is used to image the distribution of several nitroxides with distinct pharmacologic compartment affinities in the abdomens of living mice. Image acquisition is sufficiently rapid to allow a time sequence of the distribution for each compound. The spectra and concentrations of these nitroxides are imaged with the use of spectral-spatial imaging to distinguish a single spatial dimension. Liver and bladder of the mouse anatomy are distinguished by this technique. After an intraperitoneal injection of the spin-label probes, a shift in the distribution of the compounds from the upper abdomen (primarily liver) to the lower abdomen (primarily bladder) is observed. The time dependence of the shift in regional distribution depends on the structural properties of the side chain attached to the spin label. These results indicate that this application of in vivo electron paramagnetic resonance imaging will provide a new method of magnetic resonance imaging for determination of pharmacodynamics in the body of an intact animal.
Collapse
|
research-article |
29 |
44 |
22
|
Gomi F, Utsumi H, Hamada A, Matsuo M. Aging retards spin clearance from mouse brain and food restriction prevents its age-dependent retardation. Life Sci 1993; 52:2027-33. [PMID: 8388983 DOI: 10.1016/0024-3205(93)90687-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
After the nitroxyl radical 3-carbamoyl-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl (carbamoylPROXYL) was intraperitoneally administered to mice, the time courses of changes in the intensity of signals in L-band electron spin resonance spectra from their brains were measured. The spin clearance rate of old, ad libitum-fed mice was lower than that of young, ad libitum-fed mice. The rate of old, food-restricted mice was significantly higher than that of old, ad libitum-fed mice and was comparable to that of young, ad libitum-fed mice. The spin clearance was found to be due to the one-electron reduction of the nitroxyl radical, because a decreased spin intensity of it in serum was restored to the original level by potassium hexacyanoferrate (III) oxidation in vitro. These results suggest that reducing capacity in the cardiovascular system of mice is decreased with advancing age, and that food restriction prevents an age-dependent decrease in the reducing capacity.
Collapse
|
|
32 |
43 |
23
|
Cotrim AP, Sowers AL, Lodde BM, Vitolo JM, Kingman A, Russo A, Mitchell JB, Baum BJ. Kinetics of tempol for prevention of xerostomia following head and neck irradiation in a mouse model. Clin Cancer Res 2006; 11:7564-8. [PMID: 16243832 DOI: 10.1158/1078-0432.ccr-05-0958] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Radiotherapy is commonly used to treat the majority of patients with head and neck cancers. Salivary glands in the radiation field are dramatically affected by this procedure. The purpose of this study was to examine pharmacokinetic characteristics of the stable nitroxide 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol) with respect to radioprotection of the salivary glands. EXPERIMENTAL DESIGN To evaluate the effect of different doses and times of administration, the heads of C3H mice were exposed to a single irradiation dose of 15 Gy, with i.p. tempol injection. To analyze other routes of administration, we injected 275 mg/kg tempol by an i.m., i.v., or s.c. route, 10 minutes before irradiation. We also tested whether oral administration of tempol in a topical form (either in a mouthwash or gel) provided any salivary gland protection. RESULTS Tempol treatment (137.5 or 275 mg/kg, i.p., 10 minutes before irradiation) significantly reduced irradiation-induced salivary hypofunction (approximately 50-60%). I.v. or s.c. administration of tempol also showed significant radioprotection, whereas i.m. administration proved to be ineffective. Topical use of tempol, either as a mouthwash or gel, also was radioprotective. CONCLUSIONS Our results strongly suggest that tempol is a promising candidate for clinical application to protect salivary glands in patients undergoing radiotherapy for head and neck cancers.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
41 |
24
|
Alecci M, Ferrari M, Quaresima V, Sotgiu A, Ursini CL. Simultaneous 280 MHz EPR imaging of rat organs during nitroxide free radical clearance. Biophys J 1994; 67:1274-9. [PMID: 7811942 PMCID: PMC1225484 DOI: 10.1016/s0006-3495(94)80599-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A radio frequency (RF) (280 MHz) electron paramagnetic resonance (EPR) spectroscopy and imaging apparatus has been used to localize a pyrrolidine nitroxide free radical in the rat abdomen and thorax. The nitroxide 2,2.5.5,-tetramethylpyrrolidine-1-oxyl-3- carboxylic acid (PCA) had a whole body monoexponential decay with half-life of 13.3 +/- 0.7 (n = 4), 19.4 +/- 0.2 (n = 3), and 23 +/- 2 (n = 6) min for 1, 2, and 3 mmol/kg PCA, respectively. Up to seven one-dimensional longitudinal projections were collected on six rats in the presence of a 8 mT/m field gradient. With an injection dose of 3 mmol/kg, PCA half-lives were 19 +/- 1, 17 +/- 2, and 22 +/- 2 min (n = 6) in the lower abdomen, in the liver, and in the thorax, respectively. Thorax half-life was significantly longer than liver half-life. Sequential two-dimensional images of PCA distribution in a plane longitudinal to the rat body were obtained from eight spectra in the presence of a gradient of 12 mT/m (acquisition time 5 min; spatial resolution 8 mm). After 7 min, the nitroxide was detectable in the left side of the thorax area, but it was mostly localized in the liver. PCA was more uniformly distributed in the image collected after 17 min.
Collapse
|
research-article |
31 |
40 |
25
|
Abstract
Low-field in vivo electron spin resonance (ESR) has been used to follow the course of metabolism and distribution of a paramagnetic spin probe, 3-carboxamido-2,2,5,5-tetramethylpyrrolidine-1-oxyl. Sprague-Dawley rats (250-300 g) were catheterized in the jugular vein and given serial doses of the nitroxide spin probe above. The decrease in the tail blood nitroxide ESR spectrum with the time was followed. This reflects both normal distribution/excretion and a significant metabolic step--reversible reduction of the nitroxide group to its hydroxylamine. The studies serve as important and useful comparisons to the nitroxide reduction kinetics in vitro while offering the important advantage of avoiding those non-steady-state artifacts frequently expected in ex vivo procedures. This study represents the first report of systematic in vivo pharmacokinetics of a paramagnetic probe.
Collapse
|
|
36 |
38 |