1
|
Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 1992; 89:1827-31. [PMID: 1542678 PMCID: PMC48546 DOI: 10.1073/pnas.89.5.1827] [Citation(s) in RCA: 2257] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The modulation of DNA-protein interactions by methylation of protein-binding sites in DNA and the occurrence in genomic imprinting, X chromosome inactivation, and fragile X syndrome of different methylation patterns in DNA of different chromosomal origin have underlined the need to establish methylation patterns in individual strands of particular genomic sequences. We report a genomic sequencing method that provides positive identification of 5-methylcytosine residues and yields strand-specific sequences of individual molecules in genomic DNA. The method utilizes bisulfite-induced modification of genomic DNA, under conditions whereby cytosine is converted to uracil, but 5-methylcytosine remains nonreactive. The sequence under investigation is then amplified by PCR with two sets of strand-specific primers to yield a pair of fragments, one from each strand, in which all uracil and thymine residues have been amplified as thymine and only 5-methylcytosine residues have been amplified as cytosine. The PCR products can be sequenced directly to provide a strand-specific average sequence for the population of molecules or can be cloned and sequenced to provide methylation maps of single DNA molecules. We tested the method by defining the methylation status within single DNA strands of two closely spaced CpG dinucleotides in the promoter of the human kininogen gene. During the analysis, we encountered in sperm DNA an unusual methylation pattern, which suggests that the high methylation level of single-copy sequences in sperm may be locally modulated by binding of protein factors in germ-line cells.
Collapse
|
research-article |
33 |
2257 |
2
|
Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Norden B, Nielsen PE. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 1993; 365:566-8. [PMID: 7692304 DOI: 10.1038/365566a0] [Citation(s) in RCA: 1554] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
DNA analogues are currently being intensely investigated owing to their potential as gene-targeted drugs. Furthermore, their properties and interaction with DNA and RNA could provide a better understanding of the structural features of natural DNA that determine its unique chemical, biological and genetic properties. We recently designed a DNA analogue, PNA, in which the backbone is structurally homomorphous with the deoxyribose backbone and consists of N-(2-aminoethyl)glycine units to which the nucleobases are attached. We showed that PNA oligomers containing solely thymine and cytosine can hybridize to complementary oligonucleotides, presumably by forming Watson-Crick-Hoogsteen (PNA)2-DNA triplexes, which are much more stable than the corresponding DNA-DNA duplexes, and bind to double-stranded DNA by strand displacement. We report here that PNA containing all four natural nucleobases hybridizes to complementary oligonucleotides obeying the Watson-Crick base-pairing rules, and thus is a true DNA mimic in terms of base-pair recognition.
Collapse
|
|
32 |
1554 |
3
|
Auffinger P, Hays FA, Westhof E, Ho PS. Halogen bonds in biological molecules. Proc Natl Acad Sci U S A 2004; 101:16789-94. [PMID: 15557000 PMCID: PMC529416 DOI: 10.1073/pnas.0407607101] [Citation(s) in RCA: 1297] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Indexed: 11/18/2022] Open
Abstract
Short oxygen-halogen interactions have been known in organic chemistry since the 1950s and recently have been exploited in the design of supramolecular assemblies. The present survey of protein and nucleic acid structures reveals similar halogen bonds as potentially stabilizing inter- and intramolecular interactions that can affect ligand binding and molecular folding. A halogen bond in biomolecules can be defined as a short C-X...O-Y interaction (C-X is a carbon-bonded chlorine, bromine, or iodine, and O-Y is a carbonyl, hydroxyl, charged carboxylate, or phosphate group), where the X...O distance is less than or equal to the sums of the respective van der Waals radii (3.27 A for Cl...O, 3.37 A for Br...O, and 3.50 A for I...O) and can conform to the geometry seen in small molecules, with the C-X...O angle approximately 165 degrees (consistent with a strong directional polarization of the halogen) and the X...O-Y angle approximately 120 degrees . Alternative geometries can be imposed by the more complex environment found in biomolecules, depending on which of the two types of donor systems are involved in the interaction: (i) the lone pair electrons of oxygen (and, to a lesser extent, nitrogen and sulfur) atoms or (ii) the delocalized pi -electrons of peptide bonds or carboxylate or amide groups. Thus, the specific geometry and diversity of the interacting partners of halogen bonds offer new and versatile tools for the design of ligands as drugs and materials in nanotechnology.
Collapse
|
research-article |
21 |
1297 |
4
|
Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2004; 2:E104. [PMID: 15024409 PMCID: PMC350667 DOI: 10.1371/journal.pbio.0020104] [Citation(s) in RCA: 1121] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 02/05/2004] [Indexed: 11/19/2022] Open
Abstract
Multicellular eukaryotes produce small RNA molecules (approximately 21-24 nucleotides) of two general types, microRNA (miRNA) and short interfering RNA (siRNA). They collectively function as sequence-specific guides to silence or regulate genes, transposons, and viruses and to modify chromatin and genome structure. Formation or activity of small RNAs requires factors belonging to gene families that encode DICER (or DICER-LIKE [DCL]) and ARGONAUTE proteins and, in the case of some siRNAs, RNA-dependent RNA polymerase (RDR) proteins. Unlike many animals, plants encode multiple DCL and RDR proteins. Using a series of insertion mutants of Arabidopsis thaliana, unique functions for three DCL proteins in miRNA (DCL1), endogenous siRNA (DCL3), and viral siRNA (DCL2) biogenesis were identified. One RDR protein (RDR2) was required for all endogenous siRNAs analyzed. The loss of endogenous siRNA in dcl3 and rdr2 mutants was associated with loss of heterochromatic marks and increased transcript accumulation at some loci. Defects in siRNA-generation activity in response to turnip crinkle virus in dcl2 mutant plants correlated with increased virus susceptibility. We conclude that proliferation and diversification of DCL and RDR genes during evolution of plants contributed to specialization of small RNA-directed pathways for development, chromatin structure, and defense.
Collapse
|
Research Support, N.I.H., Extramural |
21 |
1121 |
5
|
Gehring K, Leroy JL, Guéron M. A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature 1993; 363:561-5. [PMID: 8389423 DOI: 10.1038/363561a0] [Citation(s) in RCA: 934] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Oligomers containing tracts of cytidine form hemiprotonated base pairs at acid pH and have been considered to be double-stranded. We have solved the structure of the DNA oligomer 5'-d(TCCCCC) at acid pH and find that it is a four-stranded complex in which two base-paired parallel-stranded duplexes are intimately associated, with their base pairs fully intercalated. The relative orientation of the duplexes is antiparallel, so that each base pair is face-to-face with its neighbours. The NMR spectrum displays only six spin systems, showing that the structure is highly symmetrical on the NMR timescale; the four strands are equivalent. A model derived by energy minimization and constrained molecular dynamics shows excellent compatibility with the observed nuclear Overhauser effects (NOEs) particularly for the very unusual inter-residue sugar-sugar NOEs H1'-H1', H1'-H2" and H1'-H4'. These NOEs are probably diagnostic for such tetrameric structures.
Collapse
|
|
32 |
934 |
6
|
Bruner SD, Norman DP, Verdine GL. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 2000; 403:859-66. [PMID: 10706276 DOI: 10.1038/35002510] [Citation(s) in RCA: 768] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spontaneous oxidation of guanine residues in DNA generates 8-oxoguanine (oxoG). By mispairing with adenine during replication, oxoG gives rise to a G x C --> T x A transversion, a frequent somatic mutation in human cancers. The dedicated repair pathway for oxoG centres on 8-oxoguanine DNA glycosylase (hOGG1), an enzyme that recognizes oxoG x C base pairs, catalysing expulsion of the oxoG and cleavage of the DNA backbone. Here we report the X-ray structure of the catalytic core of hOGG1 bound to oxoG x C-containing DNA at 2.1 A resolution. The structure reveals the mechanistic basis for the recognition and catalytic excision of DNA damage by hOGG1 and by other members of the enzyme superfamily to which it belongs. The structure also provides a rationale for the biochemical effects of inactivating mutations and polymorphisms in hOGG1. One known mutation, R154H, converts hOGG1 to a promutator by relaxing the specificity of the enzyme for the base opposite oxoG.
Collapse
|
|
25 |
768 |
7
|
Abstract
The crystal structure has been determined at 2.8 A resolution for a chemically-trapped covalent reaction intermediate between the HhaI DNA cytosine-5-methyltransferase, S-adenosyl-L-homocysteine, and a duplex 13-mer DNA oligonucleotide containing methylated 5-fluorocytosine at its target. The DNA is located in a cleft between the two domains of the protein and has the characteristic conformation of B-form DNA, except for a disrupted G-C base pair that contains the target cytosine. The cytosine residue has swung completely out of the DNA helix and is positioned in the active site, which itself has undergone a large conformational change. The DNA is contacted from both the major and the minor grooves, but almost all base-specific interactions between the enzyme and the recognition bases occur in the major groove, through two glycine-rich loops from the small domain. The structure suggests how the active nucleophile reaches its target, directly supports the proposed mechanism for cytosine-5 DNA methylation, and illustrates a novel mode of sequence-specific DNA recognition.
Collapse
|
|
31 |
747 |
8
|
Globisch D, Münzel M, Müller M, Michalakis S, Wagner M, Koch S, Brückl T, Biel M, Carell T. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 2010; 5:e15367. [PMID: 21203455 PMCID: PMC3009720 DOI: 10.1371/journal.pone.0015367] [Citation(s) in RCA: 671] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 11/11/2010] [Indexed: 01/04/2023] Open
Abstract
5-Hydroxymethylcytosine (hmC) was recently detected as the sixth base in mammalian tissue at so far controversial levels. The function of the modified base is currently unknown, but it is certain that the base is generated from 5-methylcytosine (mC). This fuels the hypothesis that it represents an intermediate of an active demethylation process, which could involve further oxidation of the hydroxymethyl group to a formyl or carboxyl group followed by either deformylation or decarboxylation. Here, we use an ultra-sensitive and accurate isotope based LC-MS method to precisely determine the levels of hmC in various mouse tissues and we searched for 5-formylcytosine (fC), 5-carboxylcytosine (caC), and 5-hydroxymethyluracil (hmU) as putative active demethylation intermediates. Our data suggest that an active oxidative mC demethylation pathway is unlikely to occur. Additionally, we show using HPLC-MS analysis and immunohistochemistry that hmC is present in all tissues and cell types with highest concentrations in neuronal cells of the CNS.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
671 |
9
|
Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A, Sowers LC. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res 2004; 32:4100-8. [PMID: 15302911 PMCID: PMC514367 DOI: 10.1093/nar/gkh739] [Citation(s) in RCA: 566] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cytosine methylation in CpG dinucleotides is believed to be important in gene regulation, and is generally associated with reduced levels of transcription. Methylation-mediated gene silencing involves a series of DNA-protein and protein-protein interactions that begins with the binding of methyl-CpG binding proteins (MBPs) followed by the recruitment of histone-modifying enzymes that together promote chromatin condensation and inactivation. It is widely known that alterations in methylation patterns, and associated gene activities, are often found in human tumors. However, the mechanisms by which methylation patterns are altered are not currently understood. In this paper, we investigate the impact of oxidative damage to a methyl-CpG site on MBP binding by the selective placement of 8-oxoguanine (8-oxoG) and 5-hydroxymethylcytosine (HmC) in a MBP recognition sequence. Duplexes containing these specific modifications were assayed for binding to the methyl-CpG binding domain (MBD) of one member of the MBP family, methyl-CpG binding protein 2 (MeCP2). Our results reveal that oxidation of either a single guanine to 8-oxoG or of a single 5mC to HmC, significantly inhibits binding of the MBD to the oligonucleotide duplex, reducing the binding affinity by at least an order of magnitude. Oxidative damage to DNA could therefore result in heritable, epigenetic changes in chromatin organization.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
566 |
10
|
Abstract
The five main natural nucleobases adenine, cytosine, guanine, thymine and uracil are involved in the self-assembly of one of nature's most interesting and intriguing class of biopolymers, namely the nucleic acids DNA and RNA. As such, these nucleobases have held a fascination to researchers in a diverse range of fields. With the growth in the field of supramolecular chemistry and consequently a better understanding of how molecules interact with each other, more and more information is emerging on the complex supramolecular behaviour of these nucleobase. This tutorial review tries to bring together some of the basic concepts of how nucleobases can interact not only with each other, but also with other small organic molecules as well as metals and then looks at how such an understanding is starting to influence the development of new materials and polymers.
Collapse
|
|
20 |
464 |
11
|
Gao J, Xia X. A priori evaluation of aqueous polarization effects through Monte Carlo QM-MM simulations. Science 1992; 258:631-5. [PMID: 1411573 DOI: 10.1126/science.1411573] [Citation(s) in RCA: 463] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A Monte Carlo quantum mechanical-molecular mechanical (QM-MM) simulation method was used to determine the contributions of the solvent polarization effect to the total interaction energies between solute and solvent for amino acid side chains and nucleotide bases in aqueous solution. In the present AM1-TIP3P approach, the solute molecule is characterized by valence electrons and nucleus cores with Hartree-Fock theory incorporating explicit solvent effects into the total Hamiltonian, while the solvent is approximated by the three-point charge TIP3P model. The polarization energy contributes 10 to 20 percent of the total electrostatic energy in these systems. The performance of the hybrid AM1-TIP3P model was further validated by consideration of bimolecular complexes with water and by computation of the free energies of solvation of organic molecules using statistical perturbation theory. Excellent agreement with ab initio 6-31G(d) results and experimental solvation free energies was obtained.
Collapse
|
|
33 |
463 |
12
|
Bachman M, Uribe-Lewis S, Yang X, Williams M, Murrell A, Balasubramanian S. 5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nat Chem 2014; 6:1049-55. [PMID: 25411882 PMCID: PMC4382525 DOI: 10.1038/nchem.2064] [Citation(s) in RCA: 402] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 08/18/2014] [Indexed: 12/18/2022]
Abstract
5-Hydroxymethylcytosine (hmC) is an oxidation product of 5-methylcytosine which is present in the deoxyribonucleic acid (DNA) of most mammalian cells. Reduction of hmC levels in DNA is a hallmark of cancers. Elucidating the dynamics of this oxidation reaction and the lifetime of hmC in DNA is fundamental to understanding hmC function. Using stable isotope labelling of cytosine derivatives in the DNA of mammalian cells and ultrasensitive tandem liquid-chromatography mass spectrometry, we show that the majority of hmC is a stable modification, as opposed to a transient intermediate. In contrast with DNA methylation, which occurs immediately during replication, hmC forms slowly during the first 30 hours following DNA synthesis. Isotopic labelling of DNA in mouse tissues confirmed the stability of hmC in vivo and demonstrated a relationship between global levels of hmC and cell proliferation. These insights have important implications for understanding the states of chemically modified DNA bases in health and disease.
Collapse
|
research-article |
11 |
402 |
13
|
Grayson DR, Jia X, Chen Y, Sharma RP, Mitchell CP, Guidotti A, Costa E. Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci U S A 2005; 102:9341-6. [PMID: 15961543 PMCID: PMC1166626 DOI: 10.1073/pnas.0503736102] [Citation(s) in RCA: 391] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Reelin mRNA and protein levels are reduced by approximately 50% in various cortical structures of postmortem brain from patients diagnosed with schizophrenia or bipolar illness with psychosis. In addition, the mRNA encoding the methylating enzyme, DNA methyltransferase 1, is up-regulated in the same neurons that coexpress reelin and glutamic acid decarboxylase 67. We have analyzed the extent and pattern of methylation within the CpG island of the reelin promoter in genomic DNA isolated from cortices of schizophrenia patients and nonpsychiatric subjects. Ten (The Stanley Foundation Neuropathology Consortium) and five (Harvard Brain Collection) schizophrenia patients and an equal number of nonpsychiatric subjects were selected from each brain collection. Genomic DNA was isolated, amplified (from base pair -527 to base pair +322) after bisulphite treatment, and sequenced. The results show that within the promoter region there were interesting regional variations. There was increased methylation at positions -134 and 139, which is particularly important for regulation, because this portion of the promoter is functionally competent based on transient transfection assays. This promoter region binds a protein present in neuronal precursor nuclear extracts that express very low levels of reelin mRNA; i.e., an oligonucleotide corresponding to this region and that contains methylated cytosines binds more tightly to extracts from nonexpressing cells than the nonmethylated counterpart. Collectively, the data show that this promoter region has positive and negative properties and that the function of this complex cis element relates to its methylation status.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
391 |
14
|
Galmarini CM, Mackey JR, Dumontet C. Nucleoside analogues: mechanisms of drug resistance and reversal strategies. Leukemia 2001; 15:875-90. [PMID: 11417472 DOI: 10.1038/sj.leu.2402114] [Citation(s) in RCA: 361] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nucleoside analogues (NA) are essential components of AML induction therapy (cytosine arabinoside), effective treatments of lymphoproliferative disorders (fludarabine, cladribine) and are also used in the treatment of some solid tumors (gemcitabine). These important compounds share some general common characteristics, namely in terms of requiring transport by specific membrane transporters, metabolism and interaction with intracellular targets. However, these compounds differ in regard to the types of transporters that most efficiently transport a given compound, and their preferential interaction with certain targets which may explain why some compounds are more effective against rapidly proliferating tumors and others on neoplasia with a more protracted evolution. In this review, we analyze the available data concerning mechanisms of action of and resistance to NA, with particular emphasis on recent advances in the characterization of nucleoside transporters and on the potential role of activating or inactivating enzymes in the induction of clinical resistance to these compounds. We performed an extensive search of published in vitro and clinical data in which the levels of expression of nucleoside-activating or inactivating enzymes have been correlated with tumor response or patient outcome. Strategies aiming to increase the intracellular concentrations of active compounds are presented.
Collapse
|
Review |
24 |
361 |
15
|
Hobza P, Sponer J. Toward true DNA base-stacking energies: MP2, CCSD(T), and complete basis set calculations. J Am Chem Soc 2002; 124:11802-8. [PMID: 12296748 DOI: 10.1021/ja026759n] [Citation(s) in RCA: 332] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Stacking energies in low-energy geometries of pyrimidine, uracil, cytosine, and guanine homodimers were determined by the MP2 and CCSD(T) calculations utilizing a wide range of split-valence, correlation-consistent, and bond-functions basis sets. Complete basis set MP2 (CBS MP2) stacking energies extrapolated using aug-cc-pVXZ (X = D, T, and for pyrimidine dimer Q) basis sets equal to -5.3, -12.3, and -11.2 kcal/mol for the first three dimers, respectively. Higher-order correlation corrections estimated as the difference between MP2 and CCSD(T) stacking energies amount to 2.0, 0.7, and 0.9 kcal/mol and lead to final estimates of the genuine stacking energies for the three dimers of -3.4, -11.6, and -10.4 kcal/mol. The CBS MP2 stacking-energy estimate for guanine dimer (-14.8 kcal/mol) was based on the 6-31G(0.25) and aug-cc-pVDZ calculations. This simplified extrapolation can be routinely used with a meaningful accuracy around 1 kcal/mol for large aromatic stacking clusters. The final estimate of the guanine stacking energy after the CCSD(T) correction amounts to -12.9 kcal/mol. The MP2/6-31G(0.25) method previously used as the standard level to calculate aromatic stacking in hundreds of geometries of nucleobase dimers systematically underestimates the base stacking by ca. 1.0-2.5 kcal/mol per stacked dimer, covering 75-90% of the intermolecular correlation stabilization. We suggest that this correction is to be considered in calibration of force fields and other cheaper computational methods. The quality of the MP2/6-31G(0.25) predictions is nevertheless considerably better than suggested on the basis of monomer polarizability calculations. Fast and very accurate estimates of the MP2 aromatic stacking energies can be achieved using the RI-MP2 method. The CBS MP2 calculations and the CCSD(T) correction, when taken together, bring only marginal changes to the relative stability of H-bonded and stacked base pairs, with a slight shift of ca. 1 kcal/mol in favor of H-bonding. We suggest that the present values are very close to ultimate predictions of the strength of aromatic base stacking of DNA and RNA bases.
Collapse
|
Research Support, Non-U.S. Gov't |
23 |
332 |
16
|
Jurecka P, Hobza P. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment. J Am Chem Soc 2004; 125:15608-13. [PMID: 14664608 DOI: 10.1021/ja036611j] [Citation(s) in RCA: 312] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Planar H-bonded and stacked structures of guanine...cytosine (G.C), adenine...thymine (A...T), 9-methylguanine...1-methylcytosine (mG...mC), and 9-methyladenine...1-methylthymine (mA...mT) were optimized at the RI-MP2 level using the TZVPP ([5s3p2d1f/3s2p1d]) basis set. Planar H-bonded structures of G...C, mG...mC, and A...T correspond to the Watson-Crick (WC) arrangement, in contrast to mA...mT for which the Hoogsteen (H) structure is found. Stabilization energies for all structures were determined as the sum of the complete basis set limit of MP2 energies and a (DeltaE(CCSD(T)) - DeltaE(MP2)) correction term evaluated with the cc-pVDZ(0.25,0.15) basis set. The complete basis set limit of MP2 energies was determined by two-point extrapolation using the aug-cc-pVXZ basis sets for X = D and T and X = T and Q. This procedure is required since the convergency of the MP2 interaction energy for the present complexes is rather slow, and it is thus important to include the extrapolation to the complete basis set limit. For the MP2/aug-cc-pVQZ level of theory, stabilization energies for all complexes studied are already very close to the complete basis set limit. The much cheaper D-->T extrapolation provided a complete basis set limit close (by less than 0.7 kcal/mol) to the more accurate T-->Q term, and the D-->T extrapolation can be recommended for evaluation of complete basis set limits of more extended complexes (e.g. larger motifs of DNA). The convergency of the (DeltaE(CCSD(T)) - DeltaE(MP2)) term is known to be faster than that of the MP2 or CCSD(T) correlation energy itself, and the cc-pVDZ(0.25,0.15) basis set provides reasonable values for planar H-bonded as well as stacked structures. Inclusion of the CCSD(T) correction is essential for obtaining reliable relative values for planar H-bonding and stacking interactions; neglecting the CCSD(T) correction results in very considerable errors between 2.5 and 3.4 kcal/mol. Final stabilization energies (kcal/mol) for the base pairs studied are very substantial (A...T WC, 15.4; mA...mT H, 16.3; A...T stacked, 11.6; mA...mT stacked, 13.1; G...C WC, 28.8; mG...mC WC, 28.5; G...C stacked, 16.9; mG...mC stacked, 18.0), much larger than published previously. On the basis of comparison with experimental data, we conclude that our values represent the lower boundary of the true stabilization energies. On the basis of error analysis, we expect the present H-bonding energies to be fairly close to the true values, while stacked energies are still expected to be about 10% too low. The stacking energy for the mG...mC pair is considerably lower than the respective H-bonding energy, but it is larger than the mA...mT H-bonding energy. This conclusion could significantly change the present view on the importance of specific H-bonding interactions and nonspecific stacking interactions in nature, for instance, in DNA. Present stabilization energies for H-bonding and stacking energies represent the most accurate and reliable values and can be considered as new reference data.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
312 |
17
|
Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK. Electrophilicity-Based Charge Transfer Descriptor. J Phys Chem A 2007; 111:1358-61. [PMID: 17256919 DOI: 10.1021/jp0649549] [Citation(s) in RCA: 311] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In line with the charge transfer (DeltaNmax = -mu/eta) proposed by Parr et al. (Parr, R. G.; Szentpály, L. V.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922), we propose an electrophilicity-based charge transfer (ECT) descriptor in this paper and validate it through the interaction between a series of chlorophenols and DNA bases. Application of ECT can be extended to the interaction of any toxin with the biosystem.
Collapse
|
|
18 |
311 |
18
|
Reinisch KM, Chen L, Verdine GL, Lipscomb WN. The crystal structure of HaeIII methyltransferase convalently complexed to DNA: an extrahelical cytosine and rearranged base pairing. Cell 1995; 82:143-53. [PMID: 7606780 DOI: 10.1016/0092-8674(95)90060-8] [Citation(s) in RCA: 299] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Many organisms expand the information content of their genome through enzymatic methylation of cytosine residues. Here we report the 2.8 A crystal structure of a bacterial DNA (cytosine-5)-methyltransferase (DCMtase), M. HaeIII, bound covalently to DNA. In this complex, the substrate cytosine is extruded from the DNA helix and inserted into the active site of the enzyme, as has been observed for another DCMtase, M. HhaI. The DNA is bound in a cleft between the two domains of the protein and is distorted from the characteristic B-form conformation at its recognition sequence. A comparison of structures shows a variation in the mode of DNA recognition: M. HaeIII differs from M. HhaI in that the remaining bases in its recognition sequence undergo an extensive rearrangement in their pairing. In this process, the bases are unstacked, and a gap 8 A long opens in the DNA.
Collapse
|
|
30 |
299 |
19
|
Dou H, Mitra S, Hazra TK. Repair of oxidized bases in DNA bubble structures by human DNA glycosylases NEIL1 and NEIL2. J Biol Chem 2003; 278:49679-84. [PMID: 14522990 DOI: 10.1074/jbc.m308658200] [Citation(s) in RCA: 278] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Repair of oxidatively damaged bases in the genome via the base excision repair pathway is initiated with excision of these lesions by DNA glycosylases with broad substrate range. The newly discovered human DNA glycosylases, NEIL1 and NEIL2, are distinct in structural features and reaction mechanism from the previously characterized NTH1 and OGG1 but act on many of the same substrates. However, NEIL2 shows a unique preference for excising lesions from a DNA bubble, whereas NTH1 and OGG1 are only active with duplex DNA. NEIL1 also excises efficiently 5-hydroxyuracil, an oxidation product of cytosine, from the bubble and single-stranded DNA but does not have strong activity toward 8-oxoguanine in the bubble. The dichotomy in the activity of NEILs versus NTH1/OGG1 for bubble versus duplex DNA substrates is consistent with higher affinity of the NEILs for the bubble structures of both damaged and undamaged DNA relative to duplex structure. These observations suggest that the NEILs are functionally distinct from OGG1/NTH1 in vivo. OGG1/NTH1-independent repair of oxidized bases in the transcribed sequences supports the possibility that NEILs are preferentially involved in repair of lesions in DNA bubbles generated during transcription and/or replication.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
22 |
278 |
20
|
Ismail N, Blancafort L, Olivucci M, Kohler B, Robb MA. Ultrafast decay of electronically excited singlet cytosine via a pi,pi* to n(O),pi* state switch. J Am Chem Soc 2002; 124:6818-9. [PMID: 12059190 DOI: 10.1021/ja0258273] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Singlet fluorescence lifetimes of adenosine, cytidine, guanosine, and thymidine, determined by femtosecond pump-probe spectroscopy (Pecourt, J.-M. L.; Peon, J.; Kohler, B. J. Am. Chem. Soc. 2000, 122, 9348. Pecourt, J.-M. L.; Peon, J.; Kohler, B. J. Am. Chem. Soc. 2001, 123, 10370), show that the excited states produced by 263 nm light in these nucleosides decay in the subpicosecond range (290-720 fs). Ultrafast radiationless decay to the ground state greatly reduces the probability of photochemical damage. In this work we present a theoretical study of isolated cytosine, the chromophore of cytidine. The experimental lifetime of 720 fs indicates that there must be an ultrafast decay channel for this species. We have documented the possible decay channels and approximate energetics, using a valence-bond derived analysis to rationalize the structural details of the paths. The mechanism favored by our calculations and the experimental data involves (1) a two-mode decay coordinate composed of initial bond length inversion followed by internal vibrational energy redistribution (IVR) to populate a carbon pyramidalization mode, (2) a state switch between the pi,pi* and nO,pi* (excitation from oxygen lone pair) excited states, and (3) decay to the ground state through a conical intersention. A second decay path through the nN,pi* state (excitation from the nitrogen lone pair), with a higher barrier, involves out-of-plane bending of the amino substituent.
Collapse
|
|
23 |
274 |
21
|
Sobolewski AL, Domcke W, Hättig C. Tautomeric selectivity of the excited-state lifetime of guanine/cytosine base pairs: the role of electron-driven proton-transfer processes. Proc Natl Acad Sci U S A 2005; 102:17903-6. [PMID: 16330778 PMCID: PMC1312371 DOI: 10.1073/pnas.0504087102] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The UV spectra of three different conformers of the guanine/cytosine base pair were recorded recently with UV-IR double-resonance techniques in a supersonic jet [Abo-Riziq, A., Grace, L., Nir, E., Kabelac, M., Hobza, P. & de Vries, M. S. (2005) Proc. Natl. Acad. Sci. USA 102, 20-23]. The spectra provide evidence for a very efficient excited-state deactivation mechanism that is specific for the Watson-Crick structure and may be essential for the photostability of DNA. Here we report results of ab initio electronic-structure calculations for the excited electronic states of the three lowest-energy conformers of the guanine/cytosine base pair. The calculations reveal that electron-driven interbase proton-transfer processes play an important role in the photochemistry of these systems. The exceptionally short lifetime of the UV-absorbing states of the Watson-Crick conformer is tentatively explained by the existence of a barrierless reaction path that connects the spectroscopic (1)pi pi * excited state with the electronic ground state via two electronic curve crossings. For the non-Watson-Crick structures, the photochemically reactive state is located at higher energies, resulting in a barrier for proton transfer and, thus, a longer lifetime of the UV-absorbing (1)pi pi * state. The computational results support the conjecture that the photochemistry of hydrogen bonds plays a decisive role for the photostability of the molecular encoding of the genetic information in isolated DNA base pairs.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
258 |
22
|
Fraga MF, Esteller M. DNA methylation: a profile of methods and applications. Biotechniques 2002; 33:632, 634, 636-49. [PMID: 12238773 DOI: 10.2144/02333rv01] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ever since methylcytosine was found in genomic DNA, this epigenetic alteration has become a center of scientific attraction, especially because of its relation to gene silencing in disease. There is currently a wide range of methods designed to yield quantitative and qualitative information on genomic DNA methylation. The earliest approaches were concentrated on the study of overall levels of methylcytosine, but more recent efforts havefocused on the study ofthe methylation status of specific DNA sequences. Particularly, optimization of the methods based on bisulfite modification of DNA permits the analysis of limited CpGs in restriction enzyme sites (e.g., combined bisulfite restriction analyses and methylation-sensitive single nucleotide primer extension) and the overall characterization based on differential methylation states (e.g., methylation-specific PCR, MethyLight, and methylation-sensitive single-stranded conformational polymorphism) and allows very specific patterns of methylation to be revealed (bisulfite DNA sequencing). In addition, novel methods designed to search for new methylcytosine hot spots have yielded further data without requiring prior knowledge of the DNA sequence. We hope this review will be a valuable tool in selecting the best techniques to address particular questions concerning the cytosine methylation status of genomic DNA.
Collapse
|
Review |
23 |
257 |
23
|
Lee JH, Skalnik DG. CpG-binding protein (CXXC finger protein 1) is a component of the mammalian Set1 histone H3-Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex. J Biol Chem 2005; 280:41725-31. [PMID: 16253997 DOI: 10.1074/jbc.m508312200] [Citation(s) in RCA: 250] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CpG-binding protein (CXXC finger protein 1 (CFP1)) binds to DNA containing unmethylated CpG motifs and is required for mammalian embryogenesis, normal cytosine methylation, and cellular differentiation. Studies were performed to identify proteins that interact with CFP1 to gain insight into the molecular function of this protein. Immunoprecipitation and mass spectrometry reveal that human CFP1 associates with a approximately 450-kDa complex that contains the mammalian homologues of six of the seven components of the Set1/COMPASS complex, the sole histone H3-Lys4 methyltransferase in yeast. In vitro assays demonstrate that the human Set1/CFP1 complex is a histone methyltransferase that produces mono-, di-, and trimethylated histone H3 at Lys4. Confocal microscopy reveals that CFP1 and Set1 co-localize to nuclear speckles associated with euchromatin. A Set1 complex of reduced mass persists in murine embryonic stem cells lacking CFP1. These cells carry elevated levels of methylated histone H3-Lys4 and reduced levels of methylated histone H3-Lys9. Together with the previous finding of reduced levels of cytosine methylation, these data indicate that cells lacking CFP1 contain reduced levels of heterochromatin. Furthermore, ES cells lacking CFP1 exhibit a 4-fold excess of histone H3-Lys4 methylation following induction of differentiation, indicating that CFP1 restricts the activity of the Set1 histone methyltransferase complex. These results reveal a mammalian counterpart to the yeast Set1/COMPASS complex. The presence of CFP1 in this complex implicates this protein as a critical epigenetic regulator of histone modification in addition to cytosine methylation and reveals one mechanism by which this protein intersects with the epigenetic machinery.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
250 |
24
|
Reha D, Kabelác M, Ryjácek F, Sponer J, Sponer JE, Elstner M, Suhai S, Hobza P. Intercalators. 1. Nature of stacking interactions between intercalators (ethidium, daunomycin, ellipticine, and 4',6-diaminide-2-phenylindole) and DNA base pairs. Ab initio quantum chemical, density functional theory, and empirical potential study. J Am Chem Soc 2002; 124:3366-76. [PMID: 11916422 DOI: 10.1021/ja011490d] [Citation(s) in RCA: 247] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Properties of isolated intercalators (ethidium (E), daunomycin (D), ellipticine (EL), and 4,6'-diaminide-2-phenylindole (DAPI)) and their stacking interactions with adenine...thymine (AT) and guanine...cytosine (GC) nucleic acid base pairs were investigated by means of a nonempirical correlated ab initio method. All intercalators exhibit large charge delocalization, and none of them (including the DAPI dication) exhibits a site with dominant charge. All intercalators have large polarizability and are good electron acceptors, while base pairs are good electron donors. MP2/6-31G*(0.25) stabilization energies of intercalator...base pair complexes are large (E...AT, 22.4 kcal/mol; D...GC, 17.8 kcal/mol; EL...GC, 18.2 kcal/mol; DAPI...GC, 21.1 kcal/mol) and are well reproduced by modified AMBER potential (van der Waals radii of intercalator atoms are enlarged and their energy depths are increased). Standard AMBER potential underestimates binding, especially for DAPI-containing complexes. Because the DAPI dication is the best electron acceptor (among all intercalators studied), this difference is explained by the importance of the charge-transfer term, which is not included in the AMBER potential. For the neutral EL molecule, the standard AMBER force field provides correct results. The Hartree-Fock and DFT/B3LYP methods, not covering the dispersion energy, fail completely to reveal any energy minimum at the potential energy curve of the E...AT complex, and these methods thus cannot be recommended for a study of intercalation process. On the other hand, an approximate version of the DFT method, which was extended to cover London dispersion energy, yields for all complexes very good stabilization energies that are well comparable with referenced ab initio data. Besides the vertical dependence of the interaction, an energy twist dependence of the interaction energy was also investigated by a reference correlated ab initio method and empirical potentials. It is concluded that, despite the cationic (E +1, D +1, DAPI +2) or polar (EL) character of the intercalators investigated, it is the dispersion energy which predominantly contributes to the stability of intercalator...base pair complexes. Any procedure which does not cover dispersion energy is thus not suitable for studying the process of intercalation.
Collapse
|
|
23 |
247 |
25
|
Owczarzy R, You Y, Moreira BG, Manthey JA, Huang L, Behlke MA, Walder JA. Effects of Sodium Ions on DNA Duplex Oligomers: Improved Predictions of Melting Temperatures. Biochemistry 2004; 43:3537-54. [PMID: 15035624 DOI: 10.1021/bi034621r] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Melting temperatures, T(m), were systematically studied for a set of 92 DNA duplex oligomers in a variety of sodium ion concentrations ranging from 69 mM to 1.02 M. The relationship between T(m) and ln [Na(+)] was nonlinear over this range of sodium ion concentrations, and the observed melting temperatures were poorly predicted by existing algorithms. A new empirical relationship was derived from UV melting data that employs a quadratic function, which better models the melting temperatures of DNA duplex oligomers as sodium ion concentration is varied. Statistical analysis shows that this improved salt correction is significantly more accurate than previously suggested algorithms and predicts salt-corrected melting temperatures with an average error of only 1.6 degrees C when tested against an independent validation set of T(m) measurements obtained from the literature. Differential scanning calorimetry studies demonstrate that this T(m) salt correction is insensitive to DNA concentration. The T(m) salt correction function was found to be sequence-dependent and varied with the fraction of G.C base pairs, in agreement with previous studies of genomic and polymeric DNAs. The salt correction function is independent of oligomer length, suggesting that end-fraying and other end effects have little influence on the amount of sodium counterions released during duplex melting. The results are discussed in the context of counterion condensation theory.
Collapse
|
|
21 |
246 |