1
|
Abstract
This year marks the 25th anniversary of the first Annual Review of Immunology article to describe features of the T cell antigen receptor (TCR). In celebration of this anniversary, we begin with a brief introduction outlining the chronology of the earliest studies that established the basic paradigm for how the engaged TCR transduces its signals. This review continues with a description of the current state of our understanding of TCR signaling, as well as a summary of recent findings examining other key aspects of T cell activation, including cross talk between the TCR and integrins, the role of costimulatory molecules, and how signals may negatively regulate T cell function.Acronyms and DefinitionsAdapter protein: cellular protein that functions to bridge molecular interactions via characteristic domains able to mediate protein/protein or protein/lipid interactions Costimulation: signals delivered to T cells by cell surface receptors other than the TCR itself that potentiate T cell activation cSMAC: central supramolecular activation cluster Immunoreceptor tyrosine-based activation motif (ITAM): a short peptide sequence in the cytoplasmic tails of key surface receptors on hematopoietic cells that is characterized by tyrosine residues that are phosphorylated by Src family PTKs, enabling the ITAM to recruit activated Syk family kinases Inside-out signaling: signals initiated by engagement of immunoreceptors that lead to conformational changes and clustering of integrins, thereby increasing the affinity and avidity of the integrins for their ligands NFAT: nuclear factor of activated T cells PI3K: phosphoinositide 3-kinase PKC: protein kinase C PLC: phospholipase C pMHC: peptide major histocompatibility complex (MHC) complex pSMAC: peripheral supramolecular activation cluster PTK: protein tyrosine kinase Signal transduction: biochemical events linking surface receptor engagement to cellular responses TCR: T cell antigen receptor
Collapse
|
Review |
16 |
1487 |
2
|
Wiedenmann B, Franke WW. Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell 1985; 41:1017-28. [PMID: 3924408 DOI: 10.1016/s0092-8674(85)80082-9] [Citation(s) in RCA: 1130] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A polypeptide of Mr 38,000 has been identified as a specific component of the membrane of presynaptic vesicles, using the monoclonal antibody SY38. This protein, which is acidic (isoelectric at approximately pH 4.8) and glycosylated, appears to be an integral membrane protein, as suggested by its solubilization with the nonionic detergent Triton X-100 and the finding that the epitope recognized by antibody SY38 is located on the cytoplasmic surface of those vesicles. It is found in presynaptic vesicles of neurons of the brain, spinal cord, and retina as well as at neuromuscular junctions. It is also found in the adrenal medulla. Its occurrence in diverse vertebrate species indicates its stability during evolution. This protein, for which we propose the name synaptophysin*, provides a molecular marker for the presynaptic vesicle membrane and may be involved in synaptic vesicle formation and exocytosis.
Collapse
|
|
40 |
1130 |
3
|
Kosik KS, Joachim CL, Selkoe DJ. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A 1986; 83:4044-8. [PMID: 2424016 PMCID: PMC323662 DOI: 10.1073/pnas.83.11.4044] [Citation(s) in RCA: 966] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The detailed protein composition of the paired helical filaments (PHF) that accumulate in human neurons in aging and Alzheimer disease is unknown. However, the identity of certain components has been surmised by using immunocytochemical techniques. Whereas PHF share epitopes with neurofilament proteins and microtubule-associated protein (MAP) 2, we report evidence that the MAP tau (tau) appears to be their major antigenic component. Immunization of rabbits with NaDodSO4-extracted, partially purified PHF (free of normal cytoskeletal elements, including tau) consistently produces antibodies to tau but not, for example, to neurofilaments. Such PHF antibodies label all of the heterogeneous fetal and mature forms of tau from rat and human brain. Absorption of PHF antisera with heat-stable MAPs (rich in tau) results in almost complete loss of staining of neurofibrillary tangles (NFT) in human brain sections. An affinity-purified antibody to tau specifically labels NFT and the neurites of senile plaques in human brain sections as well as NaDodSO4-extracted NFT. tau-Immunoreactive NFT frequently extend into the apical dendrites of pyramidal neurons, suggesting an aberrant intracellular locus for this axonal protein. tau and PHF antibodies label tau proteins identically on electrophoretic transfer blots and stain the gel-excluded protein representing NaDodSO4-insoluble PHF in homogenates of human brain. The progressive accumulation of altered tau protein in neurons in Alzheimer disease may result in instability of microtubules, consequent loss of effective transport of molecules and organelles, and, ultimately, neuronal death.
Collapse
|
research-article |
39 |
966 |
4
|
Dustin ML, Cooper JA. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nat Immunol 2000; 1:23-9. [PMID: 10881170 DOI: 10.1038/76877] [Citation(s) in RCA: 505] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The actin cytoskeleton seems to play two critical roles in the activation of T cells. One of these roles is T cell shape development and movement, including formation of the immunological synapse. The other is the formation of a scaffold for signaling components. This review focuses on the recent convergence of cell biology and immunology studies to explain the role of the actin cytoskeleton in creating the molecular basis for immunological synapse formation and T cell signaling.
Collapse
|
Review |
25 |
505 |
5
|
Wood JG, Mirra SS, Pollock NJ, Binder LI. Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). Proc Natl Acad Sci U S A 1986; 83:4040-3. [PMID: 2424015 PMCID: PMC323661 DOI: 10.1073/pnas.83.11.4040] [Citation(s) in RCA: 488] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The relationship of the neurofibrillary tangle, found in Alzheimer disease and aged brains, to normal or abnormal cytoskeletal proteins remains elusive. Although immunohistochemical studies have yielded disparate results, most antigenic determinants localized to neurofibrillary tangles are cytoskeletal constituents normally present in neuronal perikarya or dendrites. We report light and electron microscopic immunolabeling of neurofibrillary tangles by a monoclonal antibody to the microtubule-associated protein tau (tau). Dephosphorylation of tissue slices not only increased the number of tau-positive tangles but also produced marked positive immunoreactivity of neuritic plaques. The localization of tau, an axonal protein, to neurofibrillary tangles in the perikaryon in particular suggests that abnormal synthesis, modification, or aggregation of tau may induce aberrant cytoskeletal--cell organelle interactions, subsequent interference with axonal flow, and resultant tangle formation.
Collapse
|
research-article |
39 |
488 |
6
|
Woods A, Sherwin T, Sasse R, MacRae TH, Baines AJ, Gull K. Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. J Cell Sci 1989; 93 ( Pt 3):491-500. [PMID: 2606940 DOI: 10.1242/jcs.93.3.491] [Citation(s) in RCA: 478] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The detergent-insoluble T. brucei cytoskeleton consists of several morphologically distinct regions and organelles, many of which are detectable only by electron microscopy. We have produced a set of monoclonal antibodies that define each structural component of this highly ordered cytoskeleton. The monoclonal antibodies were selected by cloning of hybridomas produced from mice injected with complex mixtures of proteins of either the cytoskeleton itself or salt extracts thereof. Four antibodies define particular tubulin isotypes and locate the microtubules of the axoneme and sub-pellicular array; two antibodies recognize the flagellum attachment zone; one recognizes the paraflagellar rod and another the basal bodies. Finally, one antibody defines a detergent-insoluble component of the nucleus. The antigens detected by each monoclonal antibody have been analysed by immunofluorescence microscopy, immunogold electron microscopy and Western blotting.
Collapse
|
|
36 |
478 |
7
|
Abstract
Engagement of the T cell antigen receptor (TCR) leads to a complex series of molecular changes at the plasma membrane, in the cytoplasm, and at the nucleus that lead ultimately to T cell effector function. Activation at the TCR of a set of protein tyrosine kinases (PTKs) is an early event in this process. This chapter reviews some of the critical substrates of these PTKs, the adapter proteins that, following phosphorylation on tyrosine residues, serve as binding sites for many of the critical effector enzymes and other adapter proteins required for T cell activation. The role of these adapters in binding various proteins, the interaction of adapters with plasma membrane microdomains, and the function of adapter proteins in control of the cytoskeleton are discussed.
Collapse
|
Review |
23 |
441 |
8
|
Abstract
Integrins are the principal cell adhesion receptors that mediate leukocyte migration and activation in the immune system. These receptors signal bidirectionally through the plasma membrane in pathways referred to as inside-out and outside-in signaling. Each of these pathways is mediated by conformational changes in the integrin structure. Such changes allow high-affinity binding of the receptor with counter-adhesion molecules on the vascular endothelium or extracellular matrix and lead to association of the cytoplasmic tails of the integrins with intracellular signaling molecules. Leukocyte functional responses resulting from outside-in signaling include migration, proliferation, cytokine secretion, and degranulation. Here, we review the key signaling events that occur in the inside-out versus outside-in pathways, highlighting recent advances in our understanding of how integrins are activated by a variety of stimuli and how they mediate a diverse array of cellular responses.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
411 |
9
|
Lane EB. Monoclonal antibodies provide specific intramolecular markers for the study of epithelial tonofilament organization. J Cell Biol 1982; 92:665-73. [PMID: 6177700 PMCID: PMC2112033 DOI: 10.1083/jcb.92.3.665] [Citation(s) in RCA: 398] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The tonofilament-associated protein antigens recognized in epithelial cells by a group of six monoclonal antibodies have been studied by immunofluorescence and gel immunoautoradiography. The monoclonal antibodies were generated against detergent insoluble cytoskeleton extracts from a cultured simple epithelium derived cell line, Ptk1 cells. They show various tissue specificities, and while they all recognize components at the low end of the molecular weight range for intermediate filament proteins, they confirm that single antibody species can react with multiple polypeptides of different molecular weights in the tonofilament complex. The monoclonal antibodies described here demonstrate the presence of a simple epithelium antigenic determinant associated with intermediate filaments that is not detectable in the specialized cells of squamous and keratinizing epithelia but can reappear in such cells after transformation.
Collapse
|
research-article |
43 |
398 |
10
|
Abstract
Phagocytosis is an evolutionarily conserved process utilized by many cells to ingest microbial pathogens, and apoptotic and necrotic corpses. Recent investigation has revealed a fundamental requirement for two co-ordinated cellular processes--cytoskeletal alterations and membrane trafficking--in the phagocytic event. Some elements of this machinery are co-opted by certain pathogens to gain entry into host cells.
Collapse
|
Review |
23 |
390 |
11
|
Franke WW, Weber K, Osborn M, Schmid E, Freudenstein C. Antibody to prekeratin. Decoration of tonofilament like arrays in various cells of epithelial character. Exp Cell Res 1978; 116:429-45. [PMID: 361424 DOI: 10.1016/0014-4827(78)90466-4] [Citation(s) in RCA: 380] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
|
47 |
380 |
12
|
Lazarides E, Hubbard BD. Immunological characterization of the subunit of the 100 A filaments from muscle cells. Proc Natl Acad Sci U S A 1976; 73:4344-8. [PMID: 1069986 PMCID: PMC431448 DOI: 10.1073/pnas.73.12.4344] [Citation(s) in RCA: 290] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We report the immunological characterization of the subunit of the intermediate sized (100 A) filaments from muscle cells. The protein as isolated from smooth muscle (chicken gizzard) has an apparent molecular weight of 50,000. It is insoluble in buffers that solubilize myosin and the majority of actin, but becomes soluble in the presence of urea. Under a variety of experimental conditions, that include the presence of 8 M urea, this new protein comigrates with actin during purification studies. The two proteins can be separated from each other by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, and antibodies have been elicited against the 50,000 dalton protein purified by using this technique. These antibodies crossreact with the partially purified protein in urea, but show no detectable cross reaction with actin or myosin. Indirect immunofluorescence reveals that in skeletal muscle this protein is found in close association with the Z lines of the sarcomeres and extends between the Z lines of adjacent myofibrils; it is also associated with filamentous structures that run along the length of a muscle fiber both in close association with the plasma membrane and between myofibrils at the level of their Z lines. In heart muscle, the protein shows the same distribution as in skeletal muscle. In addition, it is found intimately associated with intercalated disks and areas of membrane interaction between laterally associated heart muscle cells. The immunofluorescent localization to the subunit of the 100 A filaments suggests that in muscle cells this molecule may serve to link actin filaments at the level of the Z line (or intercalated disk) with the muscle plasma membrane. We believe that it functions in muscle primarily as a three dimensional matrix which interconnects individual myofibrils to one another and to the plasma membrane at the level of their Z lines. In this manner, this molecule may provide a framework that mechanically integrates all the contractile myofilaments during the contraction and relaxation of muscle. As a means of indicating its linking role in muscle, we have termed the protein desmin (from the Greek delta epsilon sigma mu os = link, bond).
Collapse
|
research-article |
49 |
290 |
13
|
Abstract
To become activated, T cells must efficiently recognize antigen-presenting cells or target cells through several complex cytoskeleton-dependent processes, including integrin-mediated adhesion, immunological-synapse formation, cellular polarization, receptor sequestration and signalling. The actin and microtubule systems provide the dynamic cellular framework that is required to orchestrate these processes and ultimately contol T-cell activation. Here, we discuss recent advances that have furthered our understanding of the crucial importance of the T-cell cytoskeleton in controlling these aspects of T-cell immune recognition.
Collapse
|
Review |
18 |
289 |
14
|
Vicente-Manzanares M, Sánchez-Madrid F. Role of the cytoskeleton during leukocyte responses. Nat Rev Immunol 2004; 4:110-22. [PMID: 15040584 DOI: 10.1038/nri1268] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cytoskeleton is a cellular network of structural, adaptor and signalling molecules that regulates most cellular functions that are related to the immune response, including migration, extravasation, antien recognition, activation and phagocytosis by different subsets of leukocytes. Recently, a large number of regulatory elements and structural constituents of the leukocyte cytoskeleton have been identified. In this review, we discuss the composition and regulation of the different cytoskeletal elements and their role in immune responses.
Collapse
|
Review |
21 |
268 |
15
|
Mattila PK, Feest C, Depoil D, Treanor B, Montaner B, Otipoby KL, Carter R, Justement LB, Bruckbauer A, Batista FD. The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling. Immunity 2013; 38:461-74. [PMID: 23499492 DOI: 10.1016/j.immuni.2012.11.019] [Citation(s) in RCA: 264] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 11/06/2012] [Indexed: 10/27/2022]
Abstract
A key role is emerging for the cytoskeleton in coordinating receptor signaling, although the underlying molecular requirements remain unclear. Here we show that cytoskeleton disruption triggered signaling requiring not only the B cell receptor (BCR), but also the coreceptor CD19 and tetraspanin CD81, thus providing a mechanism for signal amplification upon surface-bound antigen stimulation. By using superresolution microscopy, we demonstrated that endogenous IgM, IgD, and CD19 exhibited distinct nanoscale organization within the plasma membrane of primary B cells. Upon stimulation, we detect a local convergence of receptors, although their global organization was not dramatically altered. Thus, we postulate that cytoskeleton reorganization releases BCR nanoclusters, which can interact with CD19 held in place by the tetraspanin network. These results not only suggest that receptor compartmentalization regulates antigen-induced activation but also imply a potential role for CD19 in mediating ligand-independent "tonic" BCR signaling necessary for B cell survival.
Collapse
MESH Headings
- Actins/immunology
- Actins/metabolism
- Animals
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- Antigens, CD19/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cytoskeleton/immunology
- Cytoskeleton/metabolism
- Flow Cytometry
- Immunoblotting
- Immunoglobulin D/immunology
- Immunoglobulin D/metabolism
- Immunoglobulin M/immunology
- Immunoglobulin M/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Fluorescence
- Models, Immunological
- Nanostructures
- Protein Binding/immunology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/immunology
- Tetraspanin 28/genetics
- Tetraspanin 28/immunology
- Tetraspanin 28/metabolism
Collapse
|
|
12 |
264 |
16
|
Clemente MG, De Virgiliis S, Kang JS, Macatagney R, Musu MP, Di Pierro MR, Drago S, Congia M, Fasano A. Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut 2003; 52:218-23. [PMID: 12524403 PMCID: PMC1774976 DOI: 10.1136/gut.52.2.218] [Citation(s) in RCA: 254] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Despite the progress made in understanding the immunological aspects of the pathogenesis of coeliac disease (CD), the early steps that allow gliadin to cross the intestinal barrier are still largely unknown. The aim of this study was to establish whether gliadin activates a zonulin dependent enterocyte intracellular signalling pathway(s) leading to increased intestinal permeability. METHODS The effect of gliadin on the enterocyte actin cytoskeleton was studied on rat intestinal epithelial (IEC-6) cell cultures by fluorescence microscopy and spectrofluorimetry. Zonulin concentration was measured on cell culture supernatants by enzyme linked immunosorbent assay. Transepithelial intestinal resistance (Rt) was measured on ex vivo intestinal tissues mounted in Ussing chambers. RESULTS Incubation of cells with gliadin led to a reversible protein kinase C (PKC) mediated actin polymerisation temporarily coincident with zonulin release. A significant reduction in Rt was observed after gliadin addition on rabbit intestinal mucosa mounted in Ussing chambers. Pretreatment with the zonulin inhibitor FZI/0 abolished the gliadin induced actin polymerisation and Rt reduction but not zonulin release. CONCLUSIONS Gliadin induces zonulin release in intestinal epithelial cells in vitro. Activation of the zonulin pathway by PKC mediated cytoskeleton reorganisation and tight junction opening leads to a rapid increase in intestinal permeability.
Collapse
|
research-article |
22 |
254 |
17
|
Starger JM, Brown WE, Goldman AE, Goldman RD. Biochemical and immunological analysis of rapidly purified 10-nm filaments from baby hamster kidney (BHK-21) cells. J Cell Biol 1978; 78:93-109. [PMID: 566763 PMCID: PMC2110160 DOI: 10.1083/jcb.78.1.93] [Citation(s) in RCA: 247] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Juxtanuclear birefringent caps (FC) containing 10-nm filaments form during the early stages of baby hamster kidney (BHK-21) cell spreading. FC are isolated from spreading cells after replating by treatment with 0.6 M KCl, 1% Triton X-100 (Rohm & Haas Co., Philadelphia, Pa.) and DNase I in phosphate-buffered saline. Purified FC are birefringent and retain the pattern of distribution of 10-nm filaments that is seen in situ. Up to 90% of the FC protein is resolved as two polypeptides of approximately 54,000 and 55,000 molecular weight on sodium dodecyl sulfate (SDS) polyacrylamide gels. The protein is immunologically and biochemically distinct from tubulin as determined by indirect immunofluorescence, double immunodiffusion, one-dimensional peptide mapping by limited proteolysis in SDS gels, and amino acid analysis. The BHK-21 FC amino acid composition, however, is very similar to that obtained for 10-nm filament protein derived from other sources including brain and smooth muscle. Partial disassembly of 10-nm filaments has been achieved by treatment of FC with 6 mM sodium-potassium phosphate buffer, pH 7.4. The solubilized components assemble into distinct 10-nm filaments upon the addition of 0.171 M sodium chloride.
Collapse
|
research-article |
47 |
247 |
18
|
Abstract
Rho family GTPases, and the proteins that regulate them, have important roles in many cellular processes, including cell division, survival, migration and adhesion. Although most of our understanding of these proteins has come from studies using cell lines, more recent gene targeting studies in mice are providing insights into the in vivo function of these proteins. Here we review recent progress revealing crucial roles for these proteins in lymphocyte development, activation, differentiation and migration. The emerging picture shows that Rho family GTPases transduce signals from receptors for antigens, chemokines and cytokines, as well as adhesion molecules and pattern recognition receptors, and that they function as focal points for crosstalk between different signalling pathways.
Collapse
|
Review |
16 |
227 |
19
|
Abstract
Hybrid cell lines secreting monoclonal antibodies against mammalian neurofilaments have been prepared. An improved protocol for the preparation of neurofilaments and methods for the identification and isolation of such hybridomas are presented. The antibodies produced specifically stain only neuronal cell types in both cerebellar sections and culture.
Collapse
|
|
44 |
227 |
20
|
Gomez TS, Kumar K, Medeiros RB, Shimizu Y, Leibson PJ, Billadeau DD. Formins regulate the actin-related protein 2/3 complex-independent polarization of the centrosome to the immunological synapse. Immunity 2007; 26:177-90. [PMID: 17306570 PMCID: PMC2836258 DOI: 10.1016/j.immuni.2007.01.008] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 12/20/2006] [Accepted: 01/08/2007] [Indexed: 12/23/2022]
Abstract
T cell receptor (TCR)-mediated cytoskeletal reorganization is considered to be actin-related protein (Arp) 2/3 complex dependent. We therefore examined the requirement for Arp2/3- and formin-dependent F-actin nucleation during T cell activation. We demonstrated that without Arp2/3-mediated actin nucleation, stimulated T cells could not form an F-actin-rich lamellipod, but instead produced polarized filopodia-like structures. Moreover, the microtubule-organizing center (MTOC, or centrosome), which rapidly reorients to the immunological synapse through an unknown mechanism, polarized in the absence of Arp2/3. Conversely, the actin-nucleating formins, Diaphanous-1 (DIA1) and Formin-like-1 (FMNL1), did not affect TCR-stimulated F-actin-rich structures, but instead displayed unique patterns of centrosome colocalization and controlled TCR-mediated centrosome polarization. Depletion of FMNL1 or DIA1 in cytotoxic lymphocytes abrogated cell-mediated killing. Altogether, our results have identified Arp2/3 complex-independent cytoskeletal reorganization events in T lymphocytes and indicate that formins are essential cytoskeletal regulators of centrosome polarity in T cells.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
220 |
21
|
Schreiner GF, Unanue ER. Membrane and cytoplasmic changes in B lymphocytes induced by ligand-surface immunoglobulin interaction. Adv Immunol 1976; 24:37-165. [PMID: 798475 DOI: 10.1016/s0065-2776(08)60329-6] [Citation(s) in RCA: 219] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
Review |
49 |
219 |
22
|
Bennett GS, Fellini SA, Toyama Y, Holtzer H. Redistribution of intermediate filament subunits during skeletal myogenesis and maturation in vitro. J Biophys Biochem Cytol 1979; 82:577-84. [PMID: 383729 PMCID: PMC2110470 DOI: 10.1083/jcb.82.2.577] [Citation(s) in RCA: 211] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The distribution of intermediate filament (IF) subunits during maturation of skeletal myotubes in vitro was examined by immunofluorescence, using antibodies against two different types of chick IF subunits: (a) 58-kdalton subunits of fibroblasts (anti-58K), and (b) 55-kdalton subunits of smooth muscle (anti-55K). Anti-58K bound to a filament network in replicating presumptive myoblasts and fibroblasts, as well as in immature myotubes. The distribution in immature myotubes was in longitudinal filaments throughout the cytoplasm. With maturation, staining of myotubes by anti-58K diminished and eventually disappeared. Anti-55K selectively stained myotubes, and the fluorescence localization underwent a drastic change in distribution with maturation--from dense, longitudinal filaments in immature myotubes to a cross-striated distribution in mature myotubes that was associated with the I--Z region of myofibrils. However, the emergence of a cross-striated anti-55K pattern did not coincide temperally with the emergence of striated myofibrils, but occurred over a period of days thereafter.
Collapse
|
research-article |
46 |
211 |
23
|
Astarita JL, Cremasco V, Fu J, Darnell MC, Peck JR, Nieves-Bonilla JM, Song K, Kondo Y, Woodruff MC, Gogineni A, Onder L, Ludewig B, Weimer RM, Carroll MC, Mooney DJ, Xia L, Turley SJ. The CLEC-2-podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture. Nat Immunol 2015; 16:75-84. [PMID: 25347465 PMCID: PMC4270928 DOI: 10.1038/ni.3035] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/20/2014] [Indexed: 01/11/2023]
Abstract
In lymph nodes, fibroblastic reticular cells (FRCs) form a collagen-based reticular network that supports migratory dendritic cells (DCs) and T cells and transports lymph. A hallmark of FRCs is their propensity to contract collagen, yet this function is poorly understood. Here we demonstrate that podoplanin (PDPN) regulates actomyosin contractility in FRCs. Under resting conditions, when FRCs are unlikely to encounter mature DCs expressing the PDPN receptor CLEC-2, PDPN endowed FRCs with contractile function and exerted tension within the reticulum. Upon inflammation, CLEC-2 on mature DCs potently attenuated PDPN-mediated contractility, which resulted in FRC relaxation and reduced tissue stiffness. Disrupting PDPN function altered the homeostasis and spacing of FRCs and T cells, which resulted in an expanded reticular network and enhanced immunity.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
210 |
24
|
Abstract
We have decorated neurofilaments with antibodies against three polypeptides (designated here as H [mol wt = 195,000], 45[mol wt = 145,000], and 46[mol wt = 73,000]) in an effort to understand the arrangement of these polypeptides within neurofilaments. The three polypeptides were purified and antibodies were raised against each. The cross-reactivity of the antibodies suggested that each polypeptide contains both shared and unique antigenic determinants. The differential reactivities of each antibody preparation were enhanced by adsorption with the two heterologous polypeptides, and the resulting preparations were used to decorate purified neurofilaments, which were then negatively stained and examined in an electron microscope. The appearance of the antibody-decorated structures led to the following conclusions: All three polypeptides are physically associated with the same neurofilament. However, the disposition of H and 46 within a filament is different; 46 antigens appear to be associated with a "central core" of the filament, whereas H antigens compose a structure more loosely and peripherally attached to the central core and periodically arranged along its axis. The antibody-decorated H-containing structure assumes variable configurations; in some cases it appears asa bridge connecting two filaments; in other cases it appears as a helix wrapping the central core with a period of approximately 1,000 A and an apparent unit length of approximately 1.5 periods. These configurations suggest several functional implications, including the possibility that H is a component of the cross-bridges observed between filaments in situ. We also note that the central core-helix relationship could be used in the design of an intracellular transport motor.
Collapse
|
research-article |
44 |
204 |
25
|
Peng I, Binder LI, Black MM. Biochemical and immunological analyses of cytoskeletal domains of neurons. J Biophys Biochem Cytol 1986; 102:252-62. [PMID: 3510221 PMCID: PMC2114054 DOI: 10.1083/jcb.102.1.252] [Citation(s) in RCA: 197] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have used cultured sympathetic neurons to identify microtubule proteins (tubulin and microtubule-associated proteins [MAPs]) and neurofilament (NF) proteins in pure preparations of axons and also to examine the distribution of these proteins between axons and cell bodies + dendrites. Pieces of sympathetic ganglia containing thousands of neurons were plated onto culture dishes and allowed to extend neurites. Dendrites remained confined to the ganglionic explant or cell body mass (CBM), while axons extended away from the CBM for several millimeters. Axons were separated from cell bodies and dendrites by dissecting the CBM away from cultures, and the resulting axonal and CBM preparations were analyzed using biochemical, immunoblotting, and immunoprecipitation methods. Cultures were used after 17 d in vitro, when 40-60% of total protein was in the axons. The 68,000-mol-wt NF subunit is present in both axons and CBM in roughly equal amounts. The 145,000- and 200,000-mol-wt NF subunits each consist of several variants which differ in phosphorylation state; poorly and nonphosphorylated species are present only in the CBM, whereas more heavily phosphorylated forms are present in axons and, to a lesser extent, the CBM. One 145,000-mol-wt NF variant was axon specific. Tubulin is roughly equally distributed between CBM and axon-like neurites of explant cultures. MAP-1a, MAP-1b, MAP-3, and the 60,000-mol-wt MAP are also present in the CBM and axon-like neurites and show distribution patterns similar to that of tubulin. In contrast, MAP-2 was detected only in the CBM, while tau and the 210,000-mol-wt MAP were greatly enriched in axons compared to the CBM. In immunostaining analyses, MAP-2 localized to cell bodies and dendrite-like neurites, but not to axon-like neurites, whereas antibodies to tubulin and MAP-1b localized to all regions of the neurons. The regional differences in composition of the neuronal cytoskeleton presumably generate corresponding differences in its structure, which may, in turn, contribute to the morphological differences between axons and dendrites.
Collapse
|
research-article |
39 |
197 |