1
|
Adage T, Trillat AC, Quattropani A, Perrin D, Cavarec L, Shaw J, Guerassimenko O, Giachetti C, Gréco B, Chumakov I, Halazy S, Roach A, Zaratin P. In vitro and in vivo pharmacological profile of AS057278, a selective d-amino acid oxidase inhibitor with potential anti-psychotic properties. Eur Neuropsychopharmacol 2008; 18:200-14. [PMID: 17681761 DOI: 10.1016/j.euroneuro.2007.06.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 06/20/2007] [Accepted: 06/27/2007] [Indexed: 11/15/2022]
Abstract
Non-competitive N-methyl-d-aspartate (NMDA) blockers induce schizophrenic-like behavior in healthy volunteers and exacerbate symptomatology in schizophrenic patients. Hence, a compound able to enhance NMDA neurotransmission by increasing levels of d-serine, an endogenous full agonist at the glycine site of the NMDA receptors, could have anti-psychotic activity. One way to increase d-serine levels is the inhibition of d-amino acid oxidase (DAAO), the enzyme responsible for d-serine oxidation. Indeed AS057278, a potent in vitro (IC(50)=0.91 microM) and ex vivo (ED(50)=2.2-3.95 microM) DAAO inhibitor, was able to increase d-serine fraction in rat cortex and midbrain (10 mg/kg i.v.). AS057278 was able to normalize phencyclidine (PCP)-induced prepulse inhibition after acute (80 mg/kg) and chronic (20 mg/kg b.i.d.) oral administration in mice. Finally, AS057278 after oral chronic treatment (10 mg/kg b.i.d.) was able to normalize PCP-induced hyperlocomotion. These results suggest that AS057278 has the potential to anti-psychotic action toward both cognitive and positive symptoms of schizophrenia.
Collapse
|
|
17 |
106 |
2
|
Errico F, Pirro MT, Affuso A, Spinelli P, De Felice M, D'Aniello A, Di Lauro R. A physiological mechanism to regulate d-aspartic acid and NMDA levels in mammals revealed by d-aspartate oxidase deficient mice. Gene 2006; 374:50-7. [PMID: 16516413 DOI: 10.1016/j.gene.2006.01.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 01/13/2006] [Indexed: 11/18/2022]
Abstract
Free D-aspartic acid and NMDA are present in the mammalian central nervous system and endocrine glands at significant concentrations, but their physiological role is still matter of debate. The only enzyme known to metabolize in vitro selectively these D-amino acids is D-aspartate oxidase (DDO). To clarify the role in vivo of the enzyme, we generated mice with targeted deletion of Ddo gene by homologous recombination. Mutated animals showed increased amounts of both D-aspartic acid and NMDA in all tissues examined demonstrating a physiological role of DDO in the regulation of their endogenous levels.
Collapse
|
|
19 |
55 |
3
|
Weil ZM, Huang AS, Beigneux A, Kim PM, Molliver ME, Blackshaw S, Young SG, Nelson RJ, Snyder SH. Behavioural alterations in male mice lacking the gene for d-aspartate oxidase. Behav Brain Res 2006; 171:295-302. [PMID: 16725213 DOI: 10.1016/j.bbr.2006.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2006] [Revised: 03/31/2006] [Accepted: 04/05/2006] [Indexed: 11/20/2022]
Abstract
D-serine and D-aspartate are important regulators of mammalian physiology. D-aspartate is found in nervous and endocrine tissue, specifically in hypothalamic supraoptic and paraventricular nuclei, pituitary, and adrenal medullary cells. Endogenous D-aspartate is selectively degraded by D-aspartate oxidase. We previously reported that adult male mice lacking the gene for D-aspartate oxidase (Ddo(-/-) mice) display elevated concentrations of D-aspartate in several neuronal and neuroendocrine tissues as well as impaired sexual performance and altered autogrooming behaviour. In the present study, we analyzed behaviours relevant to affect, cognition, and motor control in Ddo(-/-) mice. Ddo(-/-) mice display deficits in sensorimotor gating and motor coordination as well as reduced immobility in the forced swim test. Basal corticosterone concentrations are elevated. The Ddo(-/-) mice have D-aspartate immunoreactive cells in the cerebellum and adrenal glands that are not observed in the wild-type mice. However, no differences in anxiety-like behaviour are detected in open field or light-dark preference tests. Also, Ddo(-/-) mice do not differ from wild-type mice in either passive avoidance or spontaneous alternation tasks. Although many of these behavioural deficits may be due to the lack of Ddo during development, our results are consistent with the widespread distribution of D-aspartate and the hypothesis that endogenous D-aspartate serves diverse behavioural functions.
Collapse
|
|
19 |
26 |
4
|
Benton MC, Sutherland HG, Macartney-Coxson D, Haupt LM, Lea RA, Griffiths LR. Methylome-wide association study of whole blood DNA in the Norfolk Island isolate identifies robust loci associated with age. Aging (Albany NY) 2017; 9:753-768. [PMID: 28255110 PMCID: PMC5391229 DOI: 10.18632/aging.101187] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/28/2017] [Indexed: 01/07/2023]
Abstract
Epigenetic regulation of various genomic functions, including gene expression, provide mechanisms whereby an organism can dynamically respond to changes in its environment and modify gene expression accordingly. One epigenetic mechanism implicated in human aging and age-related disorders is DNA methylation. Isolated populations such as Norfolk Island (NI) should be advantageous for the identification of epigenetic factors related to aging due to reduced genetic and environmental variation. Here we conducted a methylome-wide association study of age using whole blood DNA in 24 healthy female individuals from the NI genetic isolate (aged 24-47 years). We analysed 450K methylation array data using a machine learning approach (GLMnet) to identify age-associated CpGs. We identified 497 CpG sites, mapping to 422 genes, associated with age, with 11 sites previously associated with age. The strongest associations identified were for a single CpG site in MYOF and an extended region within the promoter of DDO. These hits were validated in curated public data from 2316 blood samples (MARMAL-AID). This study is the first to report robust age associations for MYOF and DDO, both of which have plausible functional roles in aging. This study also illustrates the value of genetic isolates to reveal new associations with epigenome-level data.
Collapse
|
research-article |
8 |
25 |
5
|
Katane M, Seida Y, Sekine M, Furuchi T, Homma H. Caenorhabditis eleganshas two genes encoding functionald-aspartate oxidases. FEBS J 2006; 274:137-49. [PMID: 17140416 DOI: 10.1111/j.1742-4658.2006.05571.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four cDNA clones that were annotated in the database as encoding d-amino acid oxidase (DAAO) or d-aspartate oxidase (DASPO) were isolated by RT-PCR from Caenorhabditis elegans RNA. The proteins (Y69Ap, C47Ap, F18Ep, and F20Hp) encoded by the cloned cDNAs were expressed in Escherichia coli as recombinant proteins with an N-terminal His-tag. All proteins except F20Hp were recovered in the soluble fractions. The recombinant Y69Ap has functional DAAO activity, as it can deaminate neutral and basic d-amino acids, whereas the recombinants C47Ap and F18Ep have functional DASPO activities, as they can deaminate acidic d-amino acids. Additional experiments using purified recombinant proteins revealed that Y69Ap deaminates d-Arg more efficiently than d-Ala and d-Met, and that C47Ap and F18Ep show distinct kinetic properties against d-Asp, d-Glu, and N-methyl-d-Asp. This is the first time that cDNA cloning of invertebrate DAAO and DASPO genes has been reported. In addition, our study reveals for the first time that C. elegans has at least two genes encoding functional DASPOs and one gene encoding DAAO, although it had previously been thought that organisms only bear one copy each of these genes. The two C. elegans DASPOs differ in their substrate specificities and possibly also in their subcellular localization.
Collapse
|
|
19 |
25 |
6
|
Setoyama C, Nishina Y, Mizutani H, Miyahara I, Hirotsu K, Kamiya N, Shiga K, Miura R. Engineering the substrate specificity of porcine kidney D-amino acid oxidase by mutagenesis of the "active-site lid". J Biochem 2006; 139:873-9. [PMID: 16751595 DOI: 10.1093/jb/mvj094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Comparison of the primary structures of pig kidney D-amino acid oxidase (DAO) and human brain D-aspartate oxidase (DDO) revealed a notable difference at I215-N225 of DAO and the corresponding region, R216-G220, of DDO. A DAO mutant, in which I215-N225 is substituted by R216-G220 of DDO, showed D-aspartate-oxidizing activity that wild-type DAO does not exhibit, together with a considerable decrease in activity toward D-alanine. These findings indicate that I215-N225 of DAO contributes profoundly to its substrate specificity. Based on these results and the crystal structure of DAO, we systematically mutated the E220-Y224 region within the short stretch in question and obtained five mutants (220D224G, 221D224G, 222D224G, 223D224G, and 224D), in each of which an aspartate residue is mutated to E220-Y224. All of the mutants exhibited decreased apparent K(m) values toward D-arginine, i.e., to one-seventh to one-half that of wild type DAO. The specificity constant, k(cat app)/K(m app), for D-arginine increased by one order of magnitude for the 221D224G or 222D224G mutant, whereas that for D-alanine or D-serine decreased to marginal or nil.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
21 |
7
|
Katane M, Furuchi T, Sekine M, Homma H. Molecular cloning of a cDNA encoding mouse D-aspartate oxidase and functional characterization of its recombinant proteins by site-directed mutagenesis. Amino Acids 2006; 32:69-78. [PMID: 17469229 DOI: 10.1007/s00726-006-0350-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cDNA encoding D-aspartate oxidase (DASPO) was cloned from mouse kidney RNA by RT-PCR. Sequence analysis showed that it contained a 1023-bp open reading frame encoding a protein of 341 amino acid residues. The protein was expressed in Escherichia coli with or without an N-terminal His-tag and had functional DASPO activity that was highly specific for D-aspartate and N-methyl-D-aspartate. To investigate the roles of the Arg-216 and Arg-237 residues of the mouse DASPO (mDASPO), we generated clones with several single amino acid substitutions of these residues in an N-terminally His-tagged mDASPO. These substitutions significantly reduced the activity of the recombinant enzyme against acidic D-amino acids and did not confer any additional specificity to other amino acids. These results suggest that the Arg-216 and Arg-237 residues of mDASPO are catalytically important for full enzyme activity.
Collapse
|
|
19 |
20 |
8
|
Takahashi S, Kakuichi T, Fujii K, Kera Y, Yamada RH. Physiological role of D-aspartate oxidase in the assimilation and detoxification of D-aspartate in the yeast Cryptococcus humicola. Yeast 2006; 22:1203-12. [PMID: 16278929 DOI: 10.1002/yea.1303] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The physiological role of D-aspartate oxidase (ChDASPO) in the yeast Cryptococcus humicola was analysed through the growth characteristics of a ChDASPO gene-disrupted strain (daspoDelta) and the expression profile of ChDASPO on various combinations of carbon and nitrogen sources. The daspoDelta strain, constructed by homologous integration of the yeast URA3 marker, grew as well as the wild-type strain on ammonium chloride, L-aspartate or D-alanine as the sole nitrogen source. In contrast, the daspoDelta strain did not grow at all on D-aspartate, not only as the sole nitrogen source but also as the sole carbon source or as the sole nitrogen and carbon source, and grew more slowly than the wild-type strain on D-glutamate as the sole nitrogen source. In the wild-type strain, the induction of ChDASPO activity strictly depended on the presence of D-aspartate and was little affected by the co-presence of ammonium chloride, but it was significantly reduced by the co-presence of both glucose and ammonium chloride, which, however, did not abolish the induction, allowing considerable expression of ChDASPO. This expression pattern was consistent with that shown by Northern blot analysis. The daspoDelta strain was more sensitive than the wild-type to the growth retardation by acidic D-amino acids, but not to that by the corresponding L-isomers or D-alanine. These results clearly show that in the yeast, DASPO plays an essential role in the assimilation of D-aspartate and acts as a detoxifying agent for D-aspartate.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
18 |
9
|
Takahashi S, Osugi K, Shimekake Y, Shinbo A, Abe K, Kera Y. Characterization and improvement of substrate-binding affinity of D-aspartate oxidase of the thermophilic fungus Thermomyces dupontii. Appl Microbiol Biotechnol 2019; 103:4053-4064. [PMID: 30937498 DOI: 10.1007/s00253-019-09787-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/05/2019] [Accepted: 03/19/2019] [Indexed: 12/23/2022]
Abstract
D-Aspartate oxidase (DDO) is a valuable enzyme that can be utilized in the determination of acidic D-amino acids and the optical resolution of a racemic mixture of acidic amino acids, which require its higher stability, higher catalytic activity, and higher substrate-binding affinity. In the present study, we identified DDO gene (TdDDO) of a thermophilic fungus, Thermomyces dupontii, and characterized the recombinant enzyme expressed in Escherichia coli. In addition, we generated a variant that has a higher substrate-binding affinity. The recombinant TdDDO expressed in E. coli exhibited oxidase activity toward acidic D-amino acids and a neutral D-amino acid, D-Gln, with the highest activity toward D-Glu. The Km and kcat values for D-Glu were 2.16 mM and 217 s-1, respectively. The enzyme had an optimum pH and temperature 8.0 and 60 °C, respectively, and was stable between pH 5.0 and 10.0, with a T50 of ca. 51 °C, which was much higher than that in DDOs from other origins. Enzyme stability decreased following a decrease in protein concentration, and externally added FAD could not repress the destabilization. The mutation of Phe248, potentially located in the active site of TdDDO, to Tyr residue, conserved in DDOs and D-amino acid oxidases, markedly increased substrate-binding affinity. The results showed the great potential of TdDDO and the variant for practical applications.
Collapse
|
Journal Article |
6 |
6 |
10
|
Rabattoni V, Motta Z, Miceli M, Molla G, Fissore A, Adinolfi S, Pollegioni L, Sacchi S. On the regulation of human D-aspartate oxidase. Protein Sci 2023; 32:e4802. [PMID: 37805834 PMCID: PMC10588558 DOI: 10.1002/pro.4802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/14/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
The human flavoenzyme D-aspartate oxidase (hDASPO) controls the level of D-aspartate in the brain, a molecule acting as an agonist of NMDA receptors and modulator of AMPA and mGlu5 receptors. hDASPO-induced D-aspartate degradation prevents age-dependent deterioration of brain functions and is related to psychiatric disorders such as schizophrenia and autism. Notwithstanding this crucial role, less is known about hDASPO regulation. Here, we report that hDASPO is nitrosylated in vitro, while no evidence of sulfhydration and phosphorylation is apparent: nitrosylation affects the activity of the human flavoenzyme to a limited extent. Furthermore, hDASPO interacts with the primate-specific protein pLG72 (a well-known negative chaperone of D-amino acid oxidase, the enzyme deputed to D-serine degradation in the human brain), yielding a ~114 kDa complex, with a micromolar dissociation constant, promoting the flavoenzyme inactivation. At the cellular level, pLG72 and hDASPO generate a cytosolic complex: the expression of pLG72 negatively affects the hDASPO level by reducing its half-life. We propose that pLG72 binding may represent a protective mechanism aimed at avoiding cytotoxicity due to H2 O2 produced by the hDASPO enzymatic degradation of D-aspartate, especially before the final targeting to peroxisomes.
Collapse
|
research-article |
2 |
1 |