1
|
Pleasance ED, Stephens PJ, O'Meara S, McBride DJ, Meynert A, Jones D, Lin ML, Beare D, Lau KW, Greenman C, Varela I, Nik-Zainal S, Davies HR, Ordoñez GR, Mudie LJ, Latimer C, Edkins S, Stebbings L, Chen L, Jia M, Leroy C, Marshall J, Menzies A, Butler A, Teague JW, Mangion J, Sun YA, McLaughlin SF, Peckham HE, Tsung EF, Costa GL, Lee CC, Minna JD, Gazdar A, Birney E, Rhodes MD, McKernan KJ, Stratton MR, Futreal PA, Campbell PJ. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 2010; 463:184-90. [PMID: 20016488 PMCID: PMC2880489 DOI: 10.1038/nature08629] [Citation(s) in RCA: 826] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 10/30/2009] [Indexed: 01/22/2023]
Abstract
Cancer is driven by mutation. Worldwide, tobacco smoking is the principal lifestyle exposure that causes cancer, exerting carcinogenicity through >60 chemicals that bind and mutate DNA. Using massively parallel sequencing technology, we sequenced a small-cell lung cancer cell line, NCI-H209, to explore the mutational burden associated with tobacco smoking. A total of 22,910 somatic substitutions were identified, including 134 in coding exons. Multiple mutation signatures testify to the cocktail of carcinogens in tobacco smoke and their proclivities for particular bases and surrounding sequence context. Effects of transcription-coupled repair and a second, more general, expression-linked repair pathway were evident. We identified a tandem duplication that duplicates exons 3-8 of CHD7 in frame, and another two lines carrying PVT1-CHD7 fusion genes, indicating that CHD7 may be recurrently rearranged in this disease. These findings illustrate the potential for next-generation sequencing to provide unprecedented insights into mutational processes, cellular repair pathways and gene networks associated with cancer.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
826 |
2
|
Guerrero-Bosagna C, Settles M, Lucker B, Skinner MK. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS One 2010; 5:e13100. [PMID: 20927350 PMCID: PMC2948035 DOI: 10.1371/journal.pone.0013100] [Citation(s) in RCA: 295] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 08/31/2010] [Indexed: 12/16/2022] Open
Abstract
Previous observations have demonstrated that embryonic exposure to the endocrine disruptor vinclozolin during gonadal sex determination promotes transgenerational adult onset disease such as male infertility, kidney disease, prostate disease, immune abnormalities and tumor development. The current study investigates genome-wide promoter DNA methylation alterations in the sperm of F3 generation rats whose F0 generation mother was exposed to vinclozolin. A methylated DNA immunoprecipitation with methyl-cytosine antibody followed by a promoter tilling microarray (MeDIP-Chip) procedure was used to identify 52 different regions with statistically significant altered methylation in the sperm promoter epigenome. Mass spectrometry bisulfite analysis was used to map the CpG DNA methylation and 16 differential DNA methylation regions were confirmed, while the remainder could not be analyzed due to bisulfite technical limitations. Analysis of these validated regions identified a consensus DNA sequence (motif) that associated with 75% of the promoters. Interestingly, only 16.8% of a random set of 125 promoters contained this motif. One candidate promoter (Fam111a) was found to be due to a copy number variation (CNV) and not a methylation change, suggesting initial alterations in the germline epigenome may promote genetic abnormalities such as induced CNV in later generations. This study identifies differential DNA methylation sites in promoter regions three generations after the initial exposure and identifies common genome features present in these regions. In addition to primary epimutations, a potential indirect genetic abnormality was identified, and both are postulated to be involved in the epigenetic transgenerational inheritance observed. This study confirms that an environmental agent has the ability to induce epigenetic transgenerational changes in the sperm epigenome.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
295 |
3
|
Mitchell MM, Woods R, Chi LH, Schmidt RJ, Pessah IN, Kostyniak PJ, LaSalle JM. Levels of select PCB and PBDE congeners in human postmortem brain reveal possible environmental involvement in 15q11-q13 duplication autism spectrum disorder. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:589-98. [PMID: 22930557 PMCID: PMC3739306 DOI: 10.1002/em.21722] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 05/18/2023]
Abstract
Persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs) and polybrominated diphenylethers (PBDEs) that bioaccumulate in lipid-rich tissues are of concern as developmental neurotoxicants. Epigenetic mechanisms such as DNA methylation act at the interface of genetic and environmental factors implicated in autism-spectrum disorders. The relationship between POP levels and DNA methylation patterns in individuals with and without neurodevelopmental disorders has not been previously investigated. In this study, a total of 107 human frozen postmortem brain samples were analyzed for eight PCBs and seven PBDEs by GC-micro electron capture detector and GC/MS using negative chemical ionization. Human brain samples were grouped as neurotypical controls (n = 43), neurodevelopmental disorders with known genetic basis (n = 32, including Down, Rett, Prader-Willi, Angelman, and 15q11-q13 duplication syndromes), and autism of unknown etiology (n = 32). Unexpectedly, PCB 95 was significantly higher in the genetic neurodevelopmental group, but not idiopathic autism, as compared to neurotypical controls. Interestingly, samples with detectable PCB 95 levels were almost exclusively those with maternal 15q11-q13 duplication (Dup15q) or deletion in Prader-Willi syndrome. When sorted by birth year, Dup15q samples represented five out of six of genetic neurodevelopmental samples born after the 1976 PCB ban exhibiting detectable PCB 95 levels. Dup15q was the strongest predictor of PCB 95 exposure over age, gender, or year of birth. Dup15q brain showed lower levels of repetitive DNA methylation measured by LINE-1 pyrosequencing, but methylation levels were confounded by year of birth. These results demonstrate a novel paradigm by which specific POPs may predispose to genetic copy number variation of 15q11-q13.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
123 |
4
|
Mok S, Imwong M, Mackinnon MJ, Sim J, Ramadoss R, Yi P, Mayxay M, Chotivanich K, Liong KY, Russell B, Socheat D, Newton PN, Day NPJ, White NJ, Preiser PR, Nosten F, Dondorp AM, Bozdech Z. Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription. BMC Genomics 2011; 12:391. [PMID: 21810278 PMCID: PMC3163569 DOI: 10.1186/1471-2164-12-391] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 08/03/2011] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Artemisinin resistance in Plasmodium falciparum malaria has emerged in Western Cambodia. This is a major threat to global plans to control and eliminate malaria as the artemisinins are a key component of antimalarial treatment throughout the world. To identify key features associated with the delayed parasite clearance phenotype, we employed DNA microarrays to profile the physiological gene expression pattern of the resistant isolates. RESULTS In the ring and trophozoite stages, we observed reduced expression of many basic metabolic and cellular pathways which suggests a slower growth and maturation of these parasites during the first half of the asexual intraerythrocytic developmental cycle (IDC). In the schizont stage, there is an increased expression of essentially all functionalities associated with protein metabolism which indicates the prolonged and thus increased capacity of protein synthesis during the second half of the resistant parasite IDC. This modulation of the P. falciparum intraerythrocytic transcriptome may result from differential expression of regulatory proteins such as transcription factors or chromatin remodeling associated proteins. In addition, there is a unique and uniform copy number variation pattern in the Cambodian parasites which may represent an underlying genetic background that contributes to the resistance phenotype. CONCLUSIONS The decreased metabolic activities in the ring stages are consistent with previous suggestions of higher resilience of the early developmental stages to artemisinin. Moreover, the increased capacity of protein synthesis and protein turnover in the schizont stage may contribute to artemisinin resistance by counteracting the protein damage caused by the oxidative stress and/or protein alkylation effect of this drug. This study reports the first global transcriptional survey of artemisinin resistant parasites and provides insight to the complexities of the molecular basis of pathogens with drug resistance phenotypes in vivo.
Collapse
|
research-article |
14 |
109 |
5
|
Chen XH, Zhao YP, Xue M, Ji CB, Gao CL, Zhu JG, Qin DN, Kou CZ, Qin XH, Tong ML, Guo XR. TNF-alpha induces mitochondrial dysfunction in 3T3-L1 adipocytes. Mol Cell Endocrinol 2010; 328:63-9. [PMID: 20667497 DOI: 10.1016/j.mce.2010.07.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 07/05/2010] [Accepted: 07/08/2010] [Indexed: 01/07/2023]
Abstract
TNF-alpha was the first proinflammatory cytokine identified linking obesity, insulin resistance and chronic inflammation. However, the mechanism of TNF-alpha in the etiology of insulin resistance is still far from clear. Because the mitochondria play an important role in energy metabolism, we investigated whether mitochondrial dysfunction is involved in pathogenesis of TNF-alpha-mediated insulin resistance. First, a fully differentiated insulin-resistant 3T3-L1 adipocyte model was established by incubating with 4 ng/ml TNF-alpha for 4 d, and then the mitochondrial morphology and functions were observed. TNF-alpha treatment induced pronounced morphological changes in the mitochondria, which became smaller and condensed, and some appeared hollow and absent of cristae. Mitochondrial dynamics changes were observed as increased mitofusion protein mfn1 and mitofission protein Drp1 levels compared with controls. No obvious effects on mitochondrial biogenesis were found. PGC-1alpha levels decreased, but no significant changes were found in mtTFA mRNA expression, NRF1mRNA expression and mitochondrial DNA (mtDNA). TNFalpha treatment also led to decreased mitochondrial membrane potential and reduced production of intracellular ATP, as well as accumulation of significant amounts of reactive oxygen species (ROS). Further research is required to determine if mitochondrial dysfunction is involved in the inflammatory mechanism of insulin resistance and may be a potential target for the treatment of insulin resistance.
Collapse
|
|
15 |
91 |
6
|
Findlay JM, Castro-Giner F, Makino S, Rayner E, Kartsonaki C, Cross W, Kovac M, Ulahannan D, Palles C, Gillies RS, MacGregor TP, Church D, Maynard ND, Buffa F, Cazier JB, Graham TA, Wang LM, Sharma RA, Middleton M, Tomlinson I. Differential clonal evolution in oesophageal cancers in response to neo-adjuvant chemotherapy. Nat Commun 2016; 7:11111. [PMID: 27045317 PMCID: PMC4822033 DOI: 10.1038/ncomms11111] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/21/2016] [Indexed: 12/12/2022] Open
Abstract
How chemotherapy affects carcinoma genomes is largely unknown. Here we report whole-exome and deep sequencing of 30 paired oesophageal adenocarcinomas sampled before and after neo-adjuvant chemotherapy. Most, but not all, good responders pass through genetic bottlenecks, a feature associated with higher mutation burden pre-treatment. Some poor responders pass through bottlenecks, but re-grow by the time of surgical resection, suggesting a missed therapeutic opportunity. Cancers often show major changes in driver mutation presence or frequency after treatment, owing to outgrowth persistence or loss of sub-clones, copy number changes, polyclonality and/or spatial genetic heterogeneity. Post-therapy mutation spectrum shifts are also common, particularly C>A and TT>CT changes in good responders or bottleneckers. Post-treatment samples may also acquire mutations in known cancer driver genes (for example, SF3B1, TAF1 and CCND2) that are absent from the paired pre-treatment sample. Neo-adjuvant chemotherapy can rapidly and profoundly affect the oesophageal adenocarcinoma genome. Monitoring molecular changes during treatment may be clinically useful.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adult
- Aged
- Antineoplastic Agents/therapeutic use
- Clonal Evolution/drug effects
- Cyclin D2/genetics
- Cyclin D2/metabolism
- DNA Copy Number Variations/drug effects
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Esophageal Neoplasms/drug therapy
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/metabolism
- Esophageal Neoplasms/pathology
- Exome
- Female
- Gene Expression Regulation, Neoplastic
- Genetic Heterogeneity
- Histone Acetyltransferases/genetics
- Histone Acetyltransferases/metabolism
- Humans
- Male
- Middle Aged
- Mutation/drug effects
- Neoadjuvant Therapy
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- RNA Splicing Factors
- Ribonucleoprotein, U2 Small Nuclear/genetics
- Ribonucleoprotein, U2 Small Nuclear/metabolism
- Sequence Analysis, DNA
- TATA-Binding Protein Associated Factors/genetics
- TATA-Binding Protein Associated Factors/metabolism
- Transcription Factor TFIID/genetics
- Transcription Factor TFIID/metabolism
Collapse
|
research-article |
9 |
72 |
7
|
Brunst KJ, Sanchez-Guerra M, Chiu YHM, Wilson A, Coull BA, Kloog I, Schwartz J, Brennan KJ, Bosquet Enlow M, Wright RO, Baccarelli AA, Wright RJ. Prenatal particulate matter exposure and mitochondrial dysfunction at the maternal-fetal interface: Effect modification by maternal lifetime trauma and child sex. ENVIRONMENT INTERNATIONAL 2018; 112:49-58. [PMID: 29248865 PMCID: PMC6094933 DOI: 10.1016/j.envint.2017.12.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Prenatal ambient fine particulate matter (PM2.5) and maternal chronic psychosocial stress have independently been linked to changes in mithochondrial DNA copy number (mtDNAcn), a marker of mitochondrial response and dysfunction. Further, overlapping research shows sex-specific effects of PM2.5 and stress on developmental outcomes. Interactions among PM2.5, maternal stress, and child sex have not been examined in this context. METHODS We examined associations among exposure to prenatal PM2.5, maternal lifetime traumatic stressors, and mtDNAcn at birth in a sociodemographically diverse pregnancy cohort (N=167). Mothers' daily exposure to PM2.5 over gestation was estimated using a satellite-based spatio-temporally resolved prediction model. Lifetime exposure to traumatic stressors was ascertained using the Life Stressor Checklist-Revised; exposure was categorized as high vs. low based on a median split. Quantitative real-time polymerase chain reaction (qPCR) was used to determine mtDNAcn in placenta and cord blood leukocytes. Bayesian Distributed Lag Interaction regression models (BDLIMs) were used to statistically model and visualize the PM2.5 timing-dependent pattern of associations with mtDNAcn and explore effect modification by maternal lifetime trauma and child sex. RESULTS Increased PM2.5 exposure across pregnancy was associated with decreased mtDNAcn in cord blood (cumulative effect estimate=-0.78; 95%CI -1.41, -0.16). Higher maternal lifetime trauma was associated with reduced mtDNAcn in placenta (β=-0.33; 95%CI -0.63, -0.02). Among women reporting low trauma, increased PM2.5 exposure late in pregnancy (30-38weeks gestation) was significantly associated with decreased mtDNAcn in placenta; no significant association was found in the high trauma group. BDLIMs identified a significant 3-way interaction between PM2.5, maternal trauma, and child sex. Specifically, PM2.5 exposure between 25 and 40weeks gestation was significantly associated with increased placental mtDNAcn among boys of mothers reporting high trauma. In contrast, PM2.5 exposure in this same window was significantly associated with decreased placental mtDNAcn among girls of mothers reporting low trauma. Similar 3-way interactive effects were observed in cord blood. CONCLUSIONS These results indicate that joint exposure to PM2.5 in late pregnancy and maternal lifetime trauma influence mtDNAcn at the maternal-fetal interface in a sex-specific manner. Additional studies will assist in understanding if the sex-specific patterns reflect distinct pathophysiological processes in addition to mitochondrial dysfunction.
Collapse
|
research-article |
7 |
67 |
8
|
Cioffi F, Senese R, Lasala P, Ziello A, Mazzoli A, Crescenzo R, Liverini G, Lanni A, Goglia F, Iossa S. Fructose-Rich Diet Affects Mitochondrial DNA Damage and Repair in Rats. Nutrients 2017; 9:nu9040323. [PMID: 28338610 PMCID: PMC5409662 DOI: 10.3390/nu9040323] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/17/2017] [Accepted: 03/23/2017] [Indexed: 12/19/2022] Open
Abstract
Evidence indicates that many forms of fructose-induced metabolic disturbance are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage; however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are events involved in metabolic disease resulting from a fructose-rich diet. In the present study, we evaluated the degree of oxidative damage to liver mtDNA and its repair, in addition to the state of oxidative stress and antioxidant defense in the liver of rats fed a high-fructose diet. We used male rats feeding on a high-fructose or control diet for eight weeks. Our results showed an increase in mtDNA damage in the liver of rats fed a high-fructose diet and this damage, as evaluated by the expression of DNA polymerase γ, was not repaired; in addition, the mtDNA copy number was found to be significantly reduced. A reduction in the mtDNA copy number is indicative of impaired mitochondrial biogenesis, as is the finding of a reduction in the expression of genes involved in mitochondrial biogenesis. In conclusion, a fructose-rich diet leads to mitochondrial and mtDNA damage, which consequently may have a role in liver dysfunction and metabolic diseases.
Collapse
|
Journal Article |
8 |
66 |
9
|
Chattopadhyay I, Singh A, Phukan R, Purkayastha J, Kataki A, Mahanta J, Saxena S, Kapur S. Genome-wide analysis of chromosomal alterations in patients with esophageal squamous cell carcinoma exposed to tobacco and betel quid from high-risk area in India. Mutat Res 2010; 696:130-8. [PMID: 20083228 DOI: 10.1016/j.mrgentox.2010.01.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 01/04/2010] [Accepted: 01/10/2010] [Indexed: 01/19/2023]
Abstract
Genomic alterations such as chromosomal amplifications, deletions and loss of heterozygosity play an important role in the pathogenesis and progression of cancer. Environmental risk factors contribute to the development and progression of tumors by facilitating the loss of tumor suppressor genes and amplification of oncogenes. In this current study, Affymetrix 10K single nucleotide polymorphism (SNP) arrays were used to evaluate genomic alterations in 20 pairs of matched germ-line and tumor DNA obtained from patients with esophageal squamous cell carcinoma (ESCC) from high-risk area of India where tobacco, betel quid and alcohol use are widespread. Twenty-two amplified regions and 16 deleted regions identified across chromosomal arms were biologically relevant. The candidate genes located at amplified regions of chromosomes or low-level gain regions such as PLA2G5 (1p36-p34), COL11A1 (1p21), KCNK2 (1q41), S100A3 (1q21), ENAH (1q42.12), RGS1 (1q31), KCNH1 (1q32-q41), INSIG2 (2q14.1), FGF12 (3q28), TRIO (5p15.2), RNASEN (5p15.2), FGF10 (5p13-p12), EDN1(6p24.1-p22.3), SULF1 (8q13.2-13.3), TLR4 (9q32-q33), TNC (9q33), NTRK2 (9q22.1), CD44 (11p13), NCAM1 (11q23.1), TRIM29 (11q22-q23), PAK1 (11q13-q14) and RAB27A (15q15-q21.1), are found to be associated with cellular migration and proliferation, tumor cell metastasis and invasion, anchorage independent growth and inhibition of apoptosis. The candidate genes located at deleted regions of chromosomes, such as FBLN2 (3p25.1), WNT7A (3p25), DLC1 (8p22), LZTS1 (8p22), CDKN2A (9p21), COL4A1 (13q34), CDK8 (13q12) and DCC (18q21.3), are found to be associated with the suppression of tumor. The suggested candidate genes were mostly involved in potential signaling pathways such as focal adhesion (COL4A1), tight junction (CLDN10), MAPK signaling pathway (FGF12) and neuroactive ligand receptor interaction pathway (CCKAR). Expression of FGF12 and COL4A1 was validated by tissue microarray. These unique copy number alteration profiles should be taken into consideration when developing biomarkers for the early detection of ESCC in high-risk areas of India in association with tobacco and betel quid use.
Collapse
|
|
15 |
60 |
10
|
Wu KLH, Wu CW, Chao YM, Hung CY, Chan JYH. Impaired Nrf2 regulation of mitochondrial biogenesis in rostral ventrolateral medulla on hypertension induced by systemic inflammation. Free Radic Biol Med 2016; 97:58-74. [PMID: 27223823 DOI: 10.1016/j.freeradbiomed.2016.05.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/04/2016] [Accepted: 05/14/2016] [Indexed: 12/30/2022]
Abstract
Oxidative stress in rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons reside, is involved in the development of hypertension under systemic inflammation. Mitochondrial dysfunction contributes to tissue oxidative stress. In this study, we sought to investigate whether hypertension developed under systemic inflammation is attributable to impaired mitochondrial biogenesis in RVLM. In normotensive Sprague-Dawley rats, intraperitoneal infusion of a low dose Escherichia coli lipopolysaccharide (LPS) for 7 days promoted a pressor response, alongside a decrease in mitochondrial DNA (mtDNA) copy number, reductions in protein expression of nuclear DNA-encoded transcription factors for mitochondrial biogenesis, including mitochondrial transcription factor A (TFAM) and nuclear factor erythroid-derived 2-like 2 (Nrf2), and suppression of nuclear translocation of the phosphorylated Nrf2 (p-Nrf2) in RVLM neurons; all of which were abrogated by treatment with intracisternal infusion of an interleukin-1β (IL-1β) blocker, IL-1Ra, or a mobile mitochondrial electron carrier, coenzyme Q10 (CoQ10). Microinjection into RVLM of IL-1β suppressed the expressions of p-Nrf2 and TFAM, and evoked a pressor response; conversely, the Nrf2 inducer, tert-butylhydroquinone, lessened the LPS-induced suppression of TFAM expression and pressor response. At cellular level, exposure of neuronal N2a cells to IL-1β decreased mtDNA copy number, increased protein interaction of Nrf2 to its negative regulator, kelch-like ECH-associated protein 1 (Keap1), and reduced DNA binding activity of p-Nrf2 to Tfam gene. Together these results indicate that defect mitochondrial biogenesis in RVLM neurons entailing redox-sensitive and IL-1β-dependent suppression of TFAM because of the increase in the formation of Keap1/Nrf2 complex, reductions in nuclear translocation of the activated Nrf2 and its binding to the Tfam gene promoter may underlie hypertension developed under the LPS-induced systemic inflammation.
Collapse
|
|
9 |
54 |
11
|
Aldrich JC, Maggert KA. Transgenerational inheritance of diet-induced genome rearrangements in Drosophila. PLoS Genet 2015; 11:e1005148. [PMID: 25885886 PMCID: PMC4401788 DOI: 10.1371/journal.pgen.1005148] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 03/17/2015] [Indexed: 12/17/2022] Open
Abstract
Ribosomal RNA gene (rDNA) copy number variation modulates heterochromatin formation and influences the expression of a large fraction of the Drosophila genome. This discovery, along with the link between rDNA, aging, and disease, high-lights the importance of understanding how natural rDNA copy number variation arises. Pursuing the relationship between rDNA expression and stability, we have discovered that increased dietary yeast concentration, emulating periods of dietary excess during life, results in somatic rDNA instability and copy number reduction. Modulation of Insulin/TOR signaling produces similar results, indicating a role for known nutrient sensing signaling pathways in this process. Furthermore, adults fed elevated dietary yeast concentrations produce offspring with fewer rDNA copies demonstrating that these effects also occur in the germline, and are transgenerationally heritable. This finding explains one source of natural rDNA copy number variation revealing a clear long-term consequence of diet.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
51 |
12
|
Weetman D, Djogbenou LS, Lucas E. Copy number variation (CNV) and insecticide resistance in mosquitoes: evolving knowledge or an evolving problem? CURRENT OPINION IN INSECT SCIENCE 2018; 27:82-88. [PMID: 30025639 PMCID: PMC6056009 DOI: 10.1016/j.cois.2018.04.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/21/2018] [Accepted: 04/09/2018] [Indexed: 05/10/2023]
Abstract
Copy number variation (CNV) in insect genomes is a rich source of potentially adaptive polymorphism which may help overcome the constraints of purifying selection on conserved genes and/or permit elevated transcription. Classic studies of amplified esterases and acetylcholinesterase duplication in Culex pipiens quantified evolutionary dynamics of CNV driven by insecticidal selection. A more complex and potentially medically impactful form of CNV is found in Anopheles gambiae, with both heterogeneous duplications and homogeneous amplifications strongly linked with insecticide resistance. Metabolic gene amplification, revealed by shotgun sequencing, appears common in Aedes aegypti, but poorly understood in other mosquito species. Many methodologies have been used to detect CNV in mosquitoes, but relatively few can detect both duplications and amplifications, and contrasting methods should be combined. Genome scans for CNV have been rare to date in mosquitoes, but offer immense potential to determine the overall role of CNV as a component of resistance mechanisms.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
50 |
13
|
Mehrbod P, Abdalla MA, Fotouhi F, Heidarzadeh M, Aro AO, Eloff JN, McGaw LJ, Fasina FO. Immunomodulatory properties of quercetin-3-O-α-L-rhamnopyranoside from Rapanea melanophloeos against influenza a virus. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:184. [PMID: 29903008 PMCID: PMC6003079 DOI: 10.1186/s12906-018-2246-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/30/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Influenza infection is a major public health threat. The role of influenza A virus-induced inflammatory response in severe cases of this disease is widely recognized. Drug resistance and side effects of chemical treatments have been observed, resulting in increased interest in alternative use of herbal medications for prophylaxis against this infection. The South African medicinal plant, Rapanea melanophloeos (RM) (L.) Mez of the family Myrsinaceae was selected owing to its traditional use for the treatment of several diseases such as respiratory ailments and also previous preliminary studies of anti-influenza activity of its methanolic extract. The aim of this study was to investigate the immunomodulatory properties of a glycoside flavone isolated from RM against influenza A virus. METHODS The non-cytotoxic concentration of the quercetin-3-O-α-L-rhamnopyranoside (Q3R) was determined by MTT assay and tested for activity against influenza A virus (IAV) in simultaneous, pre-penetration and post-penetration combination treatments over 1 h incubation on MDCK cells. The virus titer and viral load targeting NP and M2 viral genes were determined using HA and qPCR, respectively. TNF-α and IL-27 as pro- and anti-inflammatory cytokines were measured at RNA and protein levels by qPCR and ELISA, respectively. RESULTS Quercetin-3-O-α-L-rhamnopyranoside at 150 μg/ml decreased the viral titer by 6 logs (p < 0.01) in the simultaneous procedure. The NP and M2 genes copy numbers as viral target genes, calculated based on the Ct values and standard formula, significantly decreased in simultaneous treatment (p < 0.01). The expression of cytokines was also considerably affected by the compound treatment. CONCLUSIONS This is the first report of quercetin-3-O-α-L-rhamnopyranoside from RM and its immunomodulatory properties against influenza A virus. Further research will focus on detecting the specific mechanism of virus-host interactions.
Collapse
|
research-article |
7 |
42 |
14
|
Ling X, Zhang G, Sun L, Wang Z, Zou P, Gao J, Peng K, Chen Q, Yang H, Zhou N, Cui Z, Zhou Z, Liu J, Cao J, Ao L. Polycyclic aromatic hydrocarbons exposure decreased sperm mitochondrial DNA copy number: A cross-sectional study (MARHCS) in Chongqing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:680-687. [PMID: 27751638 DOI: 10.1016/j.envpol.2016.10.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/08/2016] [Accepted: 10/09/2016] [Indexed: 06/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants that have adverse effects on the male reproductive function. Many studies have confirmed that PAHs preferentially accumulate in mitochondria DNA relative to nuclear DNA and disrupt mitochondrial functions. However, it is rare whether exposure to PAHs is associated with mitochondrial damage and dysfunction in sperm. To evaluate the effects of PAHs on sperm mitochondria, we measured mitochondrial membrane potential (MMP), mitochondrial DNA copy number (mtDNAcn) and mtDNA integrity in 666 individuals from the Male Reproductive Health in Chongqing College Students (MARHCS) study. PAHs exposure was estimated by measuring eight urinary PAH metabolites (1-OHNap, 2-OHNap, 1-OHPhe, 2-OHPhe, 3-OHPhe, 4-OHPhe, 2-OHFlu and 1-OHPyr). The subjects were divided into low, median and high exposure groups using the tertile levels of urinary PAH metabolites. In univariate analyses, the results showed that increased levels of 2-OHPhe, 3-OHPhe, ∑Phe metabolites and 2-OHFlu were found to be associated with decreased sperm mtDNAcn. After adjusting for potential confounders, significantly negative associations of these metabolites remained (p = 0.039, 0.012, 0.01, 0.035, respectively). Each 1 μg/g creatinine increase in 2-OHPhe, 3-OHPhe, ∑Phe metabolites and 2-OHFlu was associated with a decrease in sperm mtDNAcn of 9.427%, 11.488%, 9.635% and 11.692%, respectively. There were no significant associations between urinary PAH metabolites and sperm MMP or mtDNA integrity. The results indicated that the low exposure levels of PAHs can cause abnormities in sperm mitochondria.
Collapse
|
|
8 |
39 |
15
|
Hara T, Kin A, Aoki S, Nakamura S, Shirasuna K, Kuwayama T, Iwata H. Resveratrol enhances the clearance of mitochondrial damage by vitrification and improves the development of vitrified-warmed bovine embryos. PLoS One 2018; 13:e0204571. [PMID: 30335749 PMCID: PMC6193637 DOI: 10.1371/journal.pone.0204571] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 09/11/2018] [Indexed: 12/02/2022] Open
Abstract
The present study investigated the vitrification-induced deterioration of mitochondrial functions that may reduce the developmental ability of post-warming bovine embryos. In addition, the effect of supplementation of the culture medium with resveratrol on the mitochondrial functions and post-warming embryonic development was examined. Two days after in vitro fertilization, embryos with 8–12 cells (referred to hereafter as 8-cell embryos) were vitrified and warmed, followed by in vitro incubation for 5 days in a culture medium containing either the vehicle or 0.5 μM resveratrol. Vitrification reduced embryonic development until the blastocyst stage, reduced the ATP content of embryos, and impaired the mitochondrial genome integrity, as determined by real-time polymerase chain reaction. Although the total cell number and mitochondrial DNA copy number (Mt-number) of blastocysts were low in the vitrified embryos, the Mt-number per blastomere was similar among the blastocysts derived from fresh (non-vitrified) and vitrified-warmed embryos. Supplementation of the culture medium with resveratrol enhanced the post-warming embryonic development and reduced the Mt-number and reactive oxygen species level in blastocysts and blastomeres without affecting the ATP content. An increase in the content of cell-free mitochondrial DNA in the spent culture medium was observed following cultivation of embryos with resveratrol. These results suggested that vitrification induces mitochondrial damages and that resveratrol may enhance the development of post-warming embryos and activates the degeneration of damaged mitochondria, as indicated by the increase in the cell-free mitochondrial DNA content in the spent culture medium and the decrease in the Mt-number of blastocysts and blastomeres.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
38 |
16
|
Xu Y, Li H, Hedmer M, Hossain MB, Tinnerberg H, Broberg K, Albin M. Occupational exposure to particles and mitochondrial DNA - relevance for blood pressure. Environ Health 2017; 16:22. [PMID: 28274239 PMCID: PMC5343309 DOI: 10.1186/s12940-017-0234-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/03/2017] [Indexed: 05/13/2023]
Abstract
BACKGROUND Particle exposure is a risk factor for cardiovascular diseases. Mitochondrial DNA (mtDNA) is a primary target for oxidative stress generated by particle exposure. We aimed to elucidate the effects of occupational exposure to particle-containing welding fumes on different biomarkers of mtDNA function, and in turn, explore if they modify the association between particle exposure and cardiovascular response, measured as blood pressure. METHODS We investigated 101 welders and 127 controls (all non-smoking males) from southern Sweden. Personal sampling of the welders' exposure to respirable dust was performed during work hours (average sampling time: 6.8 h; range: 2.4-8.6 h) and blood pressure was measured once for each subject. We measured relative mtDNA copy number by quantitative PCR and methylation of the mitochondrial regulatory region D-loop and the tRNA encoding gene MT-TF by bisulfite-pyrosequencing. We calculated the relative number of unmethylated D-loop and MT-TF as markers of mtDNA function to explore the modification of mtDNA on the association between particle exposure and blood pressure. General linear models were used for statistical analyses. RESULTS Welders had higher mtDNA copy number (β = 0.11, p = 0.003) and lower DNA methylation of D-loop (β = -1.4, p = 0.002) and MT-TF (β = -1.5, p = 0.004) than controls. Higher mtDNA copy number was weakly associated with higher personal respirable dust exposure among welders with exposure level above 0.7 mg/m3 (β = 0.037, p = 0.054). MtDNA function modified the effect of welding fumes on blood pressure: welders with low mtDNA function had higher blood pressure than controls, while no such difference was found in the group with high mtDNA function. CONCLUSION Increased mtDNA copy number and decreased D-loop and MT-TF methylation were associated with particle-containing welding fumes exposure, indicating exposure-related oxidative stress. The modification of mtDNA function on exposure-associated increase in blood pressure may represent a mitochondria-environment interaction.
Collapse
|
research-article |
8 |
34 |
17
|
Hua YY, Zhang Y, Gong WW, Ding Y, Shen JR, Li H, Chen Y, Meng GL. Dihydromyricetin Improves Endothelial Dysfunction in Diabetic Mice via Oxidative Stress Inhibition in a SIRT3-Dependent Manner. Int J Mol Sci 2020; 21:ijms21186699. [PMID: 32933152 PMCID: PMC7555401 DOI: 10.3390/ijms21186699] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Dihydromyricetin (DHY), a flavonoid component isolated from Ampelopsis grossedentata, exerts versatile pharmacological activities. However, the possible effects of DHY on diabetic vascular endothelial dysfunction have not yet been fully elucidated. In the present study, male C57BL/6 mice, wild type (WT) 129S1/SvImJ mice and sirtuin 3 (SIRT3) knockout (SIRT3-/-) mice were injected with streptozotocin (STZ, 60 mg/kg/day) for 5 consecutive days. Two weeks later, DHY were given at the doses of 250 mg/kg by gavage once daily for 12 weeks. Fasting blood glucose (FBG) and glycosylated hemoglobin (HbA1c) level, endothelium-dependent relaxation of thoracic aorta, reactive oxygen species (ROS) production, SIRT3, and superoxide dismutase 2 (SOD2) protein expressions, as well as mitochondrial Deoxyribonucleic Acid (mtDNA) copy number, in thoracic aorta were detected. Our study found that DHY treatment decreased FBG and HbA1c level, improved endothelium-dependent relaxation of thoracic aorta, inhibited oxidative stress and ROS production, and enhanced SIRT3 and SOD2 protein expression, as well as mtDNA copy number, in thoracic aorta of diabetic mice. However, above protective effects of DHY were unavailable in SIRT3-/- mice. The study suggested DHY improved endothelial dysfunction in diabetic mice via oxidative stress inhibition in a SIRT3-dependent manner.
Collapse
|
Journal Article |
5 |
30 |
18
|
Sitarz KS, Elliott HR, Karaman BS, Relton C, Chinnery PF, Horvath R. Valproic acid triggers increased mitochondrial biogenesis in POLG-deficient fibroblasts. Mol Genet Metab 2014; 112:57-63. [PMID: 24725338 PMCID: PMC4013927 DOI: 10.1016/j.ymgme.2014.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 12/25/2022]
Abstract
Valproic acid (VPA) is a widely used antiepileptic drug and also prescribed to treat migraine, chronic headache and bipolar disorder. Although it is usually well tolerated, a severe hepatotoxic reaction has been repeatedly reported after VPA administration. A profound toxic reaction on administration of VPA has been observed in several patients carrying POLG mutations, and heterozygous genetic variation in POLG has been strongly associated with VPA-induced liver toxicity. Here we studied the effect of VPA in fibroblasts of five patients carrying pathogenic mutations in the POLG gene. VPA administration caused a significant increase in the expression of POLG and several regulators of mitochondrial biogenesis. It was further supported by elevated mtDNA copy numbers. The effect of VPA on mitochondrial biogenesis was observed in both control and patient cell lines, but the capacity of mutant POLG to increase the expression of mitochondrial genes and to increase mtDNA copy numbers was less effective. No evidence of substantive differences in DNA methylation across the genome was observed between POLG mutated patients and controls. Given the marked perturbation of gene expression observed in the cell lines studied, we conclude that altered DNA methylation is unlikely to make a major contribution to POLG-mediated VPA toxicity. Our data provide experimental evidence that VPA triggers increased mitochondrial biogenesis by altering the expression of several mitochondrial genes; however, the capacity of POLG-deficient liver cells to address the increased metabolic rate caused by VPA administration is significantly impaired.
Collapse
|
research-article |
11 |
29 |
19
|
Lipshultz SE, Anderson LM, Miller TL, Gerschenson M, Stevenson KE, Neuberg DS, Franco VI, LiButti DE, Silverman LB, Vrooman LM, Sallan SE, the Dana-Farber Cancer Institute Acute Lymphoblastic Leukemia Consortium. Impaired mitochondrial function is abrogated by dexrazoxane in doxorubicin-treated childhood acute lymphoblastic leukemia survivors. Cancer 2016; 122:946-53. [PMID: 26762648 PMCID: PMC4777628 DOI: 10.1002/cncr.29872] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/29/2015] [Accepted: 12/04/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Impaired cardiac function in doxorubicin-treated childhood cancer survivors is partly mediated by the disruption of mitochondrial energy production. Doxorubicin intercalates into mitochondrial DNA (mtDNA) and disrupts genes encoding for polypeptides that make adenosine triphosphate. METHODS This cross-sectional study examined mtDNA copy numbers per cell and oxidative phosphorylation (OXPHOS) in peripheral blood mononuclear cells (PBMCs) in 64 childhood survivors of high-risk acute lymphoblastic leukemia (ALL) who had been treated on Dana-Farber Cancer Institute childhood ALL protocols and had received doxorubicin alone (42%) or doxorubicin with the cardioprotectant dexrazoxane (58%). The number of mtDNA copies per cell and the OXPHOS enzyme activity of nicotinamide adenine dinucleotide dehydrogenase (complex I [CI]) and cytochrome c oxidase (complex IV [CIV]) were measured with quantitative real-time polymerase chain reaction immunoassays and thin-layer chromatography, respectively. RESULTS At a median follow-up of 7.8 years after treatment, the median number of mtDNA copies per cell for patients treated with doxorubicin alone (1106.3) was significantly higher than the median number for those who had also received dexrazoxane (310.5; P = .001). No significant differences were detected between the groups for CI or CIV activity. CONCLUSIONS Doxorubicin-treated survivors had an increased number of PBMC mtDNA copies per cell, and concomitant use of dexrazoxane was associated with a lower number of mtDNA copies per cell. Because of a possible compensatory increase in mtDNA copies per cell to maintain mitochondrial function in the setting of mitochondrial dysfunction, overall OXPHOS activity was not different between the groups. The long-term sustainability of this compensatory response in these survivors at risk for cardiac dysfunction over their lifespan is concerning.
Collapse
MESH Headings
- Adolescent
- Antibiotics, Antineoplastic/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cardiotonic Agents/therapeutic use
- Child
- Child, Preschool
- Chromatography, Thin Layer
- Cross-Sectional Studies
- DNA Copy Number Variations/drug effects
- DNA, Mitochondrial/drug effects
- Dexrazoxane/therapeutic use
- Doxorubicin/administration & dosage
- Doxorubicin/adverse effects
- Electron Transport Complex I/drug effects
- Electron Transport Complex I/metabolism
- Electron Transport Complex IV/drug effects
- Electron Transport Complex IV/metabolism
- Female
- Follow-Up Studies
- Humans
- Infant
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/enzymology
- Leukocytes, Mononuclear/metabolism
- Male
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/genetics
- Mitochondria, Heart/metabolism
- Oxidation-Reduction
- Phosphorylation
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Real-Time Polymerase Chain Reaction
- Sex Factors
- Survivors
Collapse
|
Research Support, N.I.H., Extramural |
9 |
28 |
20
|
Xu Y, Lindh CH, Jönsson BAG, Broberg K, Albin M. Occupational exposure to asphalt mixture during road paving is related to increased mitochondria DNA copy number: a cross-sectional study. Environ Health 2018; 17:29. [PMID: 29587765 PMCID: PMC5870390 DOI: 10.1186/s12940-018-0375-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/20/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Asphalt workers are exposed to polyaromatic hydrocarbons (PAHs) from hot mix asphalt via both inhalation and dermal absorption. The use of crumb rubber modified (CRM) asphalt may result in higher exposure to PAHs and more adverse effects. Our aim is to assess occupational exposure to PAHs from conventional and CRM asphalt paving by measuring PAH metabolites in urine, and to investigate the effects on mitochondrial DNA copy number (mtDNAcn) and telomere length. METHODS We recruited 116 workers paving conventional asphalt, 51 workers paving CRM asphalt and 100 controls in Sweden, all males. A repeated-measures analysis included 31 workers paving both types of asphalt. Urine and blood samples were collected pre-working on Monday morning and post-working on Thursday afternoon after 4 days working. PAH metabolites: 1-hydroxypyrene (1-OH-PYR) and 2-hydroxyphenanthrene (2-OH-PH) were measured in urine by LC-MS/MS. Relative mtDNAcn and telomere length were measured by quantitative PCR. RESULTS Conventional and CRM asphalt workers showed higher 1-OH-PYR and 2-OH-PH than controls (p < 0.001 for all). Relative mtDNAcn were 0.21 units (p < 0.001) higher in conventional asphalt workers and 0.13 units (p = 0.010) higher in CRM asphalt workers compared to controls. Relative telomere length did not differ across occupational groups, but it was positively associated with increment of 2-OH-PH (β = 0.075, p = 0.037) in asphalt workers. The repeated-measures analysis showed no difference in either increment of 1-OH-PYP, or changes in effect biomarkers (mtDNAcn or telomere length) between paving with conventional and CRM asphalt. Increment of 2-OH-PH was smaller after paving with CRM asphalt. CONCLUSIONS Road asphalt paving in open areas resulted in PAHs exposure, as shown by elevation of PAH metabolites in urine. Asphalt workers may experience oxidative stress, evidenced by alternation in mtDNAcn; however the effects could not be fully explained by exposure to PAHs from the asphalt mixture.
Collapse
|
research-article |
7 |
28 |
21
|
Gómez-Martín A, Hernández AF, Martínez-González LJ, González-Alzaga B, Rodríguez-Barranco M, López-Flores I, Aguilar-Garduno C, Lacasana M. Polymorphisms of pesticide-metabolizing genes in children living in intensive farming communities. CHEMOSPHERE 2015; 139:534-540. [PMID: 26318115 DOI: 10.1016/j.chemosphere.2015.07.079] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 06/04/2023]
Abstract
Polymorphisms in genes encoding xenobiotic-metabolizing enzymes (XME) are important parameters accounting for the wide inter-individual variability to environmental exposures. Paraoxonase-1 (PON1), butyrylcholinesterase (BChE) and Cytochrome-P450 constitute major classes of XME involved in the detoxification of pesticide chemicals, in particular organophosphates. This study explored the allelic frequency, linkage disequilibrium and haplotype analysis of ten common polymorphic variants of seven key genes involved in organophosphate metabolism (BCHE-K, BCHE-A, PON1 Q192R, PON1 L55M, PON1 -108C/T, CYP2C19 G681A, CYP2D6 G1846A, CYP3AP1 -44G/A, GSTM1∗0 and GSTT1∗0) in a children population living near an intensive agriculture area in Spain. It was hypothesized that individuals with unfavorable combinations of gene variants will be more susceptible to adverse effects from organophosphate exposure. Genomic DNA from 496 healthy children was isolated and amplified by PCR. Hydrolysis probes were used for the detection of eight specific SNPs and two copy number variants (CNVs) by using TaqMan® Assay-based real-time PCR. Frequencies of SNPs and CNVs in the target genes were in Hardy-Weinberg equilibrium and broadly consistent with European populations. Linkage disequilibrium was found between the three PON1 genetic polymorphisms studied and between BCHE-K and BCHE-A. The adverse genotype combination (unusual BCHE variants, PON1 55MM/-108TT and null genotype for both GSTM1 and GSTT1) potentially conferring a greater genetic risk from exposure to organophosphates was observed in 0.2% of our study population. This information allows broadening our knowledge about differential susceptibility toward environmental toxicants and may be helpful for further research to understand the inter-individual toxicokinetic variability in response to organophosphate pesticides exposure.
Collapse
|
|
10 |
28 |
22
|
Croft J, Ellis S, Sherborne AL, Sharp K, Price A, Jenner MW, Drayson MT, Owen RG, Chown S, Lindsay J, Karunanithi K, Hunter H, Gregory WM, Davies FE, Morgan GJ, Cook G, Atanesyan L, Savola S, Cairns DA, Jackson G, Houlston RS, Kaiser MF. Copy number evolution and its relationship with patient outcome-an analysis of 178 matched presentation-relapse tumor pairs from the Myeloma XI trial. Leukemia 2021; 35:2043-2053. [PMID: 33262523 PMCID: PMC8257500 DOI: 10.1038/s41375-020-01096-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/02/2020] [Accepted: 11/14/2020] [Indexed: 12/25/2022]
Abstract
Structural chromosomal changes including copy number aberrations (CNAs) are a major feature of multiple myeloma (MM), however their evolution in context of modern biological therapy is not well characterized. To investigate acquisition of CNAs and their prognostic relevance in context of first-line therapy, we profiled tumor diagnosis-relapse pairs from 178 NCRI Myeloma XI (ISRCTN49407852) trial patients using digital multiplex ligation-dependent probe amplification. CNA profiles acquired at relapse differed substantially between MM subtypes: hyperdiploid (HRD) tumors evolved predominantly in branching pattern vs. linear pattern in t(4;14) vs. stable pattern in t(11;14). CNA acquisition also differed between subtypes based on CCND expression, with a marked enrichment of acquired del(17p) in CCND2 over CCND1 tumors. Acquired CNAs were not influenced by high-dose melphalan or lenalidomide maintenance randomization. A branching evolution pattern was significantly associated with inferior overall survival (OS; hazard ratio (HR) 2.61, P = 0.0048). As an individual lesion, acquisition of gain(1q) at relapse was associated with shorter OS, independent of other risk markers or time of relapse (HR = 2.00; P = 0.021). There is an increasing need for rational therapy sequencing in MM. Our data supports the value of repeat molecular profiling to characterize disease evolution and inform management of MM relapse.
Collapse
|
research-article |
4 |
27 |
23
|
Kakehi S, Tamura Y, Takeno K, Sakurai Y, Kawaguchi M, Watanabe T, Funayama T, Sato F, Ikeda SI, Kanazawa A, Fujitani Y, Kawamori R, Watada H. Increased intramyocellular lipid/impaired insulin sensitivity is associated with altered lipid metabolic genes in muscle of high responders to a high-fat diet. Am J Physiol Endocrinol Metab 2016; 310:E32-40. [PMID: 26487001 DOI: 10.1152/ajpendo.00220.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/16/2015] [Indexed: 01/07/2023]
Abstract
The accumulation of intramyocellular lipid (IMCL) is recognized as an important determinant of insulin resistance, and is increased by a high-fat diet (HFD). However, the effects of HFD on IMCL and insulin sensitivity are highly variable. The aim of this study was to identify the genes in muscle that are related to this inter-individual variation. Fifty healthy men were recruited for this study. Before and after HFD for 3 days, IMCL levels in the tibialis anterior were measured by (1)H magnetic resonance spectroscopy, and peripheral insulin sensitivity was evaluated by glucose infusion rate (GIR) during the euglycemic-hyperinsulinemic clamp. Subjects who showed a large increase in IMCL and a large decrease in GIR by HFD were classified as high responders (HRs), and subjects who showed a small increase in IMCL and a small decrease in GIR were classified as low responders (LRs). In five subjects from each group, the gene expression profile of the vastus lateralis muscle was analyzed by DNA microarray analysis. Before HFD, gene expression profiles related to lipid metabolism were comparable between the two groups. Gene Set Enrichment Analysis demonstrated that five gene sets related to lipid metabolism were upregulated by HFD in the HR group but not in the LR group. Changes in gene expression patterns were confirmed by qRT-PCR using more samples (LR, n = 9; HR, n = 11). These results suggest that IMCL accumulation/impaired insulin sensitivity after HFD is closely associated with changes in the expression of genes related to lipid metabolism in muscle.
Collapse
|
Clinical Trial |
9 |
25 |
24
|
Liu B, Song L, Zhang L, Wu M, Wang L, Cao Z, Zhang B, Xu S, Wang Y. Prenatal aluminum exposure is associated with increased newborn mitochondrial DNA copy number. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:330-335. [PMID: 31158661 DOI: 10.1016/j.envpol.2019.05.116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/15/2019] [Accepted: 05/22/2019] [Indexed: 05/15/2023]
Abstract
Aluminum is a widely distributed metal that has been reported to have embryotoxicity and fetotoxicity in animal studies. However, there has been no study of the association between prenatal aluminum exposure and newborn mitochondrial DNA copy number (mtDNAcn). We aimed to investigate the effect of prenatal aluminum exposure on newborn mtDNAcn. A total of 762 mother-newborn pairs were recruited between November 2013 and March 2015 in Wuhan city, China. We measured maternal urinary aluminum concentrations at three trimesters of pregnancy. Relative mtDNAcn was measured in DNA extracted from umbilical cord blood samples. We used generalized estimating equations to assess the relationship between prenatal aluminum exposure and newborn mtDNAcn. The geometric means of creatinine corrected aluminum concentrations were 31.0 μg/g Cr (95% CI: 27.6, 34.7), 40.9 μg/g Cr (95% CI: 35.7, 46.8) and 58.4 μg/g Cr (95% CI: 51.2, 67.4) for the first, second and third trimesters, respectively. After adjustment for potential confounding factors, a doubling of maternal urinary aluminum concentrations during the second and third trimesters was related to 3.16% (95% CI: 0.88, 5.49) and 4.20% (95% CI: 1.64, 6.81) increases in newborn mtDNAcn, respectively, while the association between maternal urinary aluminum concentration during the first trimester and newborn mtDNAcn was not significant (percent difference: 0.70%, 95% CI: -2.25, 3.73). Prenatal aluminum exposure during the second and third trimesters was positively associated with newborn mtDNAcn. Further studies are essential to elucidate on the potential health consequences of newborn mtDNAcn.
Collapse
|
|
6 |
24 |
25
|
Harrop TWR, Sztal T, Lumb C, Good RT, Daborn PJ, Batterham P, Chung H. Evolutionary changes in gene expression, coding sequence and copy-number at the Cyp6g1 locus contribute to resistance to multiple insecticides in Drosophila. PLoS One 2014; 9:e84879. [PMID: 24416303 PMCID: PMC3885650 DOI: 10.1371/journal.pone.0084879] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/28/2013] [Indexed: 01/25/2023] Open
Abstract
Widespread use of insecticides has led to insecticide resistance in many populations of insects. In some populations, resistance has evolved to multiple pesticides. In Drosophila melanogaster, resistance to multiple classes of insecticide is due to the overexpression of a single cytochrome P450 gene, Cyp6g1. Overexpression of Cyp6g1 appears to have evolved in parallel in Drosophila simulans, a sibling species of D. melanogaster, where it is also associated with insecticide resistance. However, it is not known whether the ability of the CYP6G1 enzyme to provide resistance to multiple insecticides evolved recently in D. melanogaster or if this function is present in all Drosophila species. Here we show that duplication of the Cyp6g1 gene occurred at least four times during the evolution of different Drosophila species, and the ability of CYP6G1 to confer resistance to multiple insecticides exists in D. melanogaster and D. simulans but not in Drosophila willistoni or Drosophila virilis. In D. virilis, which has multiple copies of Cyp6g1, one copy confers resistance to DDT and another to nitenpyram, suggesting that the divergence of protein sequence between copies subsequent to the duplication affected the activity of the enzyme. All orthologs tested conferred resistance to one or more insecticides, suggesting that CYP6G1 had the capacity to provide resistance to anthropogenic chemicals before they existed. Finally, we show that expression of Cyp6g1 in the Malpighian tubules, which contributes to DDT resistance in D. melanogaster, is specific to the D. melanogaster–D. simulans lineage. Our results suggest that a combination of gene duplication, regulatory changes and protein coding changes has taken place at the Cyp6g1 locus during evolution and this locus may play a role in providing resistance to different environmental toxins in different Drosophila species.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
21 |