1
|
Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 1985; 43:405-13. [PMID: 3907856 DOI: 10.1016/0092-8674(85)90170-9] [Citation(s) in RCA: 2338] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have found a novel activity in Tetrahymena cell free extracts that adds tandem TTGGGG repeats onto synthetic telomere primers. The single-stranded DNA oligonucleotides (TTGGGG)4 and TGTGTGGGTGTGTGGGTGTGTGGG, consisting of the Tetrahymena and yeast telomeric sequences respectively, each functioned as primers for elongation, while (CCCCAA)4 and two nontelomeric sequence DNA oligomers did not. Efficient synthesis of the TTGGGG repeats depended only on addition of micromolar concentrations of oligomer primer, dGTP, and dTTP to the extract. The activity was sensitive to heat and proteinase K treatment. The repeat addition was independent of both endogenous Tetrahymena DNA and the endogenous alpha-type DNA polymerase; and a greater elongation activity was present during macronuclear development, when a large number of telomeres are formed and replicated, than during vegetative cell growth. We propose that the novel telomere terminal transferase is involved in the addition of telomeric repeats necessary for the replication of chromosome ends in eukaryotes.
Collapse
|
|
40 |
2338 |
2
|
Wang Q, Carroll JS, Brown M. Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell 2005; 19:631-42. [PMID: 16137620 DOI: 10.1016/j.molcel.2005.07.018] [Citation(s) in RCA: 345] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 06/06/2005] [Accepted: 07/15/2005] [Indexed: 11/17/2022]
Abstract
Androgen receptor (AR) plays a critical role in the development and progression of prostate cancer, where it is a key therapeutic target. Here we report that, in contrast to estrogen receptor transcription complexes which form within minutes and recycle hourly, the levels of regulatory regions bound by AR complexes rise over a 16 hr period and then slowly decline. AR regulation of the prostate specific antigen (PSA) gene involves both a promoter-proximal sequence as well as an enhancer approximately 4 kb upstream. Recruitment of AR and its essential coactivators at both sites creates a chromosomal loop that allows RNA polymerase II (pol II) to track from the enhancer to the promoter. Phosphorylation of the pol II C-terminal domain is required for pol II tracking but not chromosomal looping. Development of improved hormonal therapies for prostate cancer must take in account the specific spatial and temporal modes of AR-mediated gene regulation.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
345 |
3
|
Holmes AM, Haber JE. Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell 1999; 96:415-24. [PMID: 10025407 DOI: 10.1016/s0092-8674(00)80554-1] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mitotic double-strand break (DSB)-induced gene conversion at MAT in Saccharomyces cerevisiae was analyzed molecularly in mutant strains thermosensitive for essential replication factors. The processivity cofactors PCNA and RFC are essential even to synthesize as little as 30 nucleotides following strand invasion. Both PCNA-associated DNA polymerases delta and epsilon are important for gene conversion, though a temperature-sensitive Pol epsilon mutant is more severe than one in Pol delta. Surprisingly, mutants of lagging strand replication, DNA polymerase alpha (pol1-17), DNA primase (pri2-1), and Rad27p (rad27 delta) also greatly inhibit completion of DSB repair, even in G1-arrested cells. We propose a novel model for DSB-induced gene conversion in which a strand invasion creates a modified replication fork, involving leading and lagging strand synthesis from the donor template. Replication is terminated by capture of the second end of the DSB.
Collapse
|
|
26 |
206 |
4
|
Murakami Y, Wobbe CR, Weissbach L, Dean FB, Hurwitz J. Role of DNA polymerase alpha and DNA primase in simian virus 40 DNA replication in vitro. Proc Natl Acad Sci U S A 1986; 83:2869-73. [PMID: 3010320 PMCID: PMC323408 DOI: 10.1073/pnas.83.9.2869] [Citation(s) in RCA: 195] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The role of DNA polymerase alpha (pol alpha) and DNA primase has been investigated in the simian virus 40 (SV40) DNA replication system in vitro. Removal of pol alpha and primase activities from crude extracts of HeLa cells or monkey cells by use of an anti-pol alpha immunoaffinity column resulted in the loss of replication activity. The addition of purified pol alpha-primase complex isolated from HeLa cells or monkey cells restored the replication activity of depleted extracts. In contrast, the pol alpha-primase complex isolated from either mouse cells or calf thumus did not. Extracts prepared from mouse cells (a source that does not support replication of SV40) did not replicate SV40 DNA. However, the addition of purified pol alpha-primase complex isolated from HeLa cells activated mouse cell extracts. pol alpha and primase from HeLa cells were extensively purified and separated by a one-step immunoaffinity adsorption and elution procedure. Both activities were required to restore DNA synthesis; the addition of pol alpha or primase alone supported replication poorly. Crude extracts of HeLa cells that were active in SV40 replication catalyzed the synthesis of full-length linear double-stranded (RFIII) DNA in reaction mixtures containing poly(dT)-tailed pBR322 RFIII. Maximal activity was dependent on the addition of oligo(dA), ATP, and creatine phosphate and was totally inhibited by aphidicolin. Since pol alpha alone could not replicate this substrate and since there was no degradation of input DNA, we propose that other enzymatic activities associate with pol alpha, displace the non-template strand, and allow the enzyme to replicate through duplex regions.
Collapse
|
research-article |
39 |
195 |
5
|
|
Research Support, N.I.H., Extramural |
6 |
193 |
6
|
Tsurimoto T, Stillman B. Multiple replication factors augment DNA synthesis by the two eukaryotic DNA polymerases, alpha and delta. EMBO J 1989; 8:3883-9. [PMID: 2573521 PMCID: PMC402077 DOI: 10.1002/j.1460-2075.1989.tb08567.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
DNA synthesis by two eukaryotic DNA polymerases, alpha and delta, was studied using a single-strand M13 DNA template primed at a unique site. In the presence of low amounts of either DNA polymerase alpha or delta, DNA synthesis was limited and short DNA strands of approximately 100 bases were produced. Addition of replication factors RF-A, PCNA and RF-C, which were previously shown to be required for SV40 DNA replication in vitro, differentially stimulated the activity of both DNA polymerases. RF-A and RF-C independently stimulated DNA polymerase alpha activity 4- to 6-fold, yielding relatively short DNA strands (less than 1 kb) and PCNA had no effect. In contrast, polymerase delta activity was stimulated co-operatively by PCNA, RF-A and RF-C approximately 25- to 30-fold, yielding relatively long DNA strands (up to 4 kb). Neither RF-C nor RF-A appear to correspond to known polymerase stimulatory factors. RF-A was previously shown to be required for initiation of DNA replication at the SV40 origin. Results presented here suggest that it also functions during elongation. The differential effects of these three replication factors on DNA polymerases alpha and delta is consistent with the model that the polymerases function at the replication fork on the lagging and leading strand templates respectively. We further suggest that co-ordinated synthesis of these strands requires dynamic protein-protein interactions between these replication factors and the two DNA polymerases.
Collapse
|
|
36 |
156 |
7
|
Pavlov YI, Frahm C, Nick McElhinny SA, Niimi A, Suzuki M, Kunkel TA. Evidence that errors made by DNA polymerase alpha are corrected by DNA polymerase delta. Curr Biol 2006; 16:202-7. [PMID: 16431373 DOI: 10.1016/j.cub.2005.12.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2005] [Revised: 11/23/2005] [Accepted: 12/02/2005] [Indexed: 11/24/2022]
Abstract
Eukaryotic replication begins at origins and on the lagging strand with RNA-primed DNA synthesis of a few nucleotides by polymerase alpha, which lacks proofreading activity. A polymerase switch then allows chain elongation by proofreading-proficient pol delta and pol epsilon. Pol delta and pol epsilon are essential, but their roles in replication are not yet completely defined . Here, we investigate their roles by using yeast pol alpha with a Leu868Met substitution . L868M pol alpha copies DNA in vitro with normal activity and processivity but with reduced fidelity. In vivo, the pol1-L868M allele confers a mutator phenotype. This mutator phenotype is strongly increased upon inactivation of the 3' exonuclease of pol delta but not that of pol epsilon. Several nonexclusive explanations are considered, including the hypothesis that the 3' exonuclease of pol delta proofreads errors generated by pol alpha during initiation of Okazaki fragments. Given that eukaryotes encode specialized, proofreading-deficient polymerases with even lower fidelity than pol alpha, such intermolecular proofreading could be relevant to several DNA transactions that control genome stability.
Collapse
|
Research Support, N.I.H., Intramural |
19 |
146 |
8
|
Sato H, Mizoi J, Tanaka H, Maruyama K, Qin F, Osakabe Y, Morimoto K, Ohori T, Kusakabe K, Nagata M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis DPB3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits. THE PLANT CELL 2014; 26:4954-73. [PMID: 25490919 PMCID: PMC4311209 DOI: 10.1105/tpc.114.132928] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 10/08/2014] [Accepted: 11/17/2014] [Indexed: 05/18/2023]
Abstract
DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN2A (DREB2A) is a key transcription factor for drought and heat stress tolerance in Arabidopsis thaliana. DREB2A induces the expression of dehydration- and heat stress-inducible genes under the corresponding stress conditions. Target gene selectivity is assumed to require stress-specific posttranslational regulation, but the mechanisms of this process are not yet understood. Here, we identified DNA POLYMERASE II SUBUNIT B3-1 (DPB3-1), which was previously annotated as NUCLEAR FACTOR Y, SUBUNIT C10 (NF-YC10), as a DREB2A interactor, through a yeast two-hybrid screen. The overexpression of DPB3-1 in Arabidopsis enhanced the expression of a subset of heat stress-inducible DREB2A target genes but did not affect dehydration-inducible genes. Similarly, the depletion of DPB3-1 expression resulted in reduced expression of heat stress-inducible genes. Interaction and expression pattern analyses suggested the existence of a trimer comprising NF-YA2, NF-YB3, and DPB3-1 that could synergistically activate a promoter of the heat stress-inducible gene with DREB2A in protoplasts. These results suggest that DPB3-1 could form a transcriptional complex with NF-YA and NF-YB subunits and that the identified trimer enhances heat stress-inducible gene expression during heat stress responses in cooperation with DREB2A. We propose that the identified trimer contributes to the target gene selectivity of DREB2A under heat stress conditions.
Collapse
|
research-article |
11 |
113 |
9
|
Feng W, D'Urso G. Schizosaccharomyces pombe cells lacking the amino-terminal catalytic domains of DNA polymerase epsilon are viable but require the DNA damage checkpoint control. Mol Cell Biol 2001; 21:4495-504. [PMID: 11416129 PMCID: PMC87109 DOI: 10.1128/mcb.21.14.4495-4504.2001] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Schizosaccharomyces pombe, the catalytic subunit of DNA polymerase epsilon (Pol epsilon) is encoded by cdc20(+) and is essential for chromosomal DNA replication. Here we demonstrate that the N-terminal half of Pol epsilon that includes the highly conserved polymerase and exonuclease domains is dispensable for cell viability, similar to observations made with regard to Saccharomyces cerevisiae. However, unlike budding yeast, we find that fission yeast cells lacking the N terminus of Pol epsilon (cdc20(DeltaN-term)) are hypersensitive to DNA-damaging agents and have a cell cycle delay. Moreover, the viability of cdc20(DeltaN-term) cells is dependent on expression of rad3(+), hus1(+), and chk1(+), three genes essential for the DNA damage checkpoint control. These data suggest that in the absence of the N terminus of Pol epsilon, cells accumulate DNA damage that must be repaired prior to mitosis. Our observation that S phase occurs more slowly for cdc20(DeltaN-term) cells suggests that DNA damage might result from defects in DNA synthesis. We hypothesize that the C-terminal half of Pol epsilon is required for assembly of the replicative complex at the onset of S phase. This unique and essential function of the C terminus is preserved in the absence of the N-terminal catalytic domains, suggesting that the C terminus can interact with and recruit other DNA polymerases to the site of initiation.
Collapse
|
research-article |
24 |
105 |
10
|
Becherel OJ, Fuchs RPP, Wagner J. Pivotal role of the beta-clamp in translesion DNA synthesis and mutagenesis in E. coli cells. DNA Repair (Amst) 2002; 1:703-8. [PMID: 12509274 DOI: 10.1016/s1568-7864(02)00106-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The genetic information is continuously subjected to the attack by endogenous and exogenous chemical and physical carcinogens that damage the DNA template, thus compromising its biochemical functions. Despite the multiple and efficient DNA repair systems that have evolved to cope with the large variety of damages, some lesions may persist and, as a consequence, interfere with DNA replication. By essence, the damaged-DNA replication process (hereafter termed translesion synthesis or TLS) is a major source of point mutations and is therefore deeply involved in the onset of human diseases such as cancer. Recent identification of numerous DNA polymerases involved in TLS has shed new light onto the molecular mechanisms of mutagenesis. Here, we show that in vivo, both error-free and mutagenic bypass activities of the three DNA polymerases known to be involved in TLS in Escherichia coli (PolII, PolIV and PolV) strictly depend upon the integrity of small peptidic sequences identified as their beta-clamp binding motif. Thus, in addition to its crucial role as the processivity factor of the PolIII replicase, the beta-clamp plays a pivotal role during the TLS process.
Collapse
|
|
23 |
101 |
11
|
Yin H, Zhang X, Liu J, Wang Y, He J, Yang T, Hong X, Yang Q, Gong Z. Epigenetic regulation, somatic homologous recombination, and abscisic acid signaling are influenced by DNA polymerase epsilon mutation in Arabidopsis. THE PLANT CELL 2009; 21:386-402. [PMID: 19244142 PMCID: PMC2660612 DOI: 10.1105/tpc.108.061549] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 01/31/2009] [Accepted: 02/09/2009] [Indexed: 05/17/2023]
Abstract
Based on abscisic acid (ABA) inhibition of seed germination and seedling growth assays, we isolated an ABA overly sensitive mutant (abo4-1) caused by a mutation in the Arabidopsis thaliana POL2a/TILTED1(TIL1) gene encoding a catalytic subunit of DNA polymerase epsilon. The dominant, ABA-insensitive abi1-1 or abi2-1 mutations suppressed the ABA hypersensitivity of the abo4-1 mutant. The abo4/til1 mutation reactivated the expression of the silenced Athila retrotransposon transcriptional silent information (TSI) and the silenced 35S-NPTII in the ros1 mutant and increased the frequency of somatic homologous recombination (HR) approximately 60-fold. ABA upregulated the expression of TSI and increased HR in both the wild type and abo4-1. MEIOTIC RECOMBINATION11 and GAMMA RESPONSE1, both of which are required for HR and double-strand DNA break repair, are expressed at higher levels in abo4-1 and are enhanced by ABA, while KU70 was suppressed by ABA. abo4-1 mutant plants are sensitive to UV-B and methyl methanesulfonate and show constitutive expression of the G2/M-specific cyclin CycB1;1 in meristems. The abo4-1 plants were early flowering with lower expression of FLOWER LOCUS C and higher expression of FLOWER LOCUS T and changed histone modifications in the two loci. Our results suggest that ABO4/POL2a/TIL1 is involved in maintaining epigenetic states, HR, and ABA signaling in Arabidopsis.
Collapse
|
research-article |
16 |
101 |
12
|
Ward VK, McCormick CJ, Clarke IN, Salim O, Wobus CE, Thackray LB, Virgin HW, Lambden PR. Recovery of infectious murine norovirus using pol II-driven expression of full-length cDNA. Proc Natl Acad Sci U S A 2007; 104:11050-5. [PMID: 17581883 PMCID: PMC1904157 DOI: 10.1073/pnas.0700336104] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Noroviruses are the major cause of nonbacterial gastroenteritis in humans. These viruses have remained refractory to detailed molecular studies because of the lack of a reverse genetics system coupled to a permissive cell line for targeted genetic manipulation. There is no permissive cell line in which to grow infectious human noroviruses nor an authentic animal model that supports their replication. In contrast, murine norovirus (MNV) offers a tractable system for the study of noroviruses with the recent discovery of permissive cells and a mouse model. The lack of a reverse genetic system for MNV has been a significant block to understanding the biology of noroviruses. We report recovery of infectious MNV after baculovirus delivery of viral cDNA to human hepatoma cells under the control of an inducible DNA polymerase (pol) II promoter. Recovered virus replicated in murine macrophage (RAW264.7) cells, and the recovery of MNV from DNA was confirmed through recovery of virus containing a marker mutation. This pol II promoter driven expression of viral cDNA also generated infectious virus after transfection of HEK293T cells, thus providing both transduction and transfection systems for norovirus reverse genetics. We used norovirus reverse genetics to demonstrate by mutagenesis of the protease-polymerase (pro-pol) cleavage site that processing of pro-pol is essential for the recovery of infectious MNV. This represents the first infectious reverse genetics system for a norovirus, and should provide approaches to address fundamental questions in norovirus molecular biology and replication.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
85 |
13
|
Praz V, Périer R, Bonnard C, Bucher P. The Eukaryotic Promoter Database, EPD: new entry types and links to gene expression data. Nucleic Acids Res 2002; 30:322-4. [PMID: 11752326 PMCID: PMC99099 DOI: 10.1093/nar/30.1.322] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Eukaryotic Promoter Database (EPD) is an annotated, non-redundant collection of eukaryotic Pol II promoters, for which the transcription start site has been determined experimentally. Access to promoter sequences is provided by pointers to positions in nucleotide sequence entries. The annotation part of an entry includes a description of the initiation site mapping data, exhaustive cross-references to the EMBL nucleotide sequence database, SWISS-PROT, TRANSFAC and other databases, as well as bibliographic references. EPD is structured in a way that facilitates dynamic extraction of biologically meaningful promoter subsets for comparative sequence analysis. World Wide Web-based interfaces have been developed which enable the user to view EPD entries in different formats, to select and extract promoter sequences according to a variety of criteria, and to navigate to related databases exploiting different cross-references. The EPD web site also features yearly updated base frequency matrices for major eukaryotic promoter elements. EPD can be accessed at http://www.epd.isb-sib.ch.
Collapse
|
research-article |
23 |
80 |
14
|
Escarceller M, Hicks J, Gudmundsson G, Trump G, Touati D, Lovett S, Foster PL, McEntee K, Goodman MF. Involvement of Escherichia coli DNA polymerase II in response to oxidative damage and adaptive mutation. J Bacteriol 1994; 176:6221-8. [PMID: 7928992 PMCID: PMC196962 DOI: 10.1128/jb.176.20.6221-6228.1994] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
DNA polymerase II (Pol II) is regulated as part of the SOS response to DNA damage in Escherichia coli. We examined the participation of Pol II in the response to oxidative damage, adaptive mutation, and recombination. Cells lacking Pol II activity (polB delta 1 mutants) exhibited 5- to 10-fold-greater sensitivity to mode 1 killing by H2O2 compared with isogenic polB+ cells. Survival decreased by about 15-fold when polB mutants containing defective superoxide dismutase genes, sodA and sodB, were compared with polB+ sodA sodB mutants. Resistance to peroxide killing was restored following P1 transduction of polB cells to polB+ or by conjugation of polB cells with an F' plasmid carrying a copy of polB+. The rate at which Lac+ mutations arose in Lac- cells subjected to selection for lactose utilization, a phenomenon known as adaptive mutation, was increased threefold in polB backgrounds and returned to wild-type rates when polB cells were transduced to polB+. Following multiple passages of polB cells or prolonged starvation, a progressive loss of sensitivity to killing by peroxide was observed, suggesting that second-site suppressor mutations may be occurring with relatively high frequencies. The presence of suppressor mutations may account for the apparent lack of a mutant phenotype in earlier studies. A well-established polB strain, a dinA Mu d(Apr lac) fusion (GW1010), exhibited wild-type (Pol II+) sensitivity to killing by peroxide, consistent with the accumulation of second-site suppressor mutations. A high titer anti-Pol II polyclonal antibody was used to screen for the presence of Pol II in other bacteria and in the yeast Saccharomyces cerevisiae. Cross-reacting material was found in all gram-negative strains tested but was not detected in gram-positive strains or in S. cerevisiae. Induction of Pol II by nalidixic acid was observed in E. coli K-12, B, and C, in Shigella flexneri, and in Salmonella typhimurium.
Collapse
|
research-article |
31 |
77 |
15
|
Hübscher U. DNA polymerases in prokaryotes and eukaryotes: mode of action and biological implications. EXPERIENTIA 1983; 39:1-25. [PMID: 6297955 DOI: 10.1007/bf01960616] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
Comparative Study |
42 |
73 |
16
|
Pham P, Rangarajan S, Woodgate R, Goodman MF. Roles of DNA polymerases V and II in SOS-induced error-prone and error-free repair in Escherichia coli. Proc Natl Acad Sci U S A 2001; 98:8350-4. [PMID: 11459974 PMCID: PMC37442 DOI: 10.1073/pnas.111007198] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA polymerase V, composed of a heterotrimer of the DNA damage-inducible UmuC and UmuD(2)(') proteins, working in conjunction with RecA, single-stranded DNA (ssDNA)-binding protein (SSB), beta sliding clamp, and gamma clamp loading complex, are responsible for most SOS lesion-targeted mutations in Escherichia coli, by catalyzing translesion synthesis (TLS). DNA polymerase II, the product of the damage-inducible polB (dinA ) gene plays a pivotal role in replication-restart, a process that bypasses DNA damage in an error-free manner. Replication-restart takes place almost immediately after the DNA is damaged (approximately 2 min post-UV irradiation), whereas TLS occurs after pol V is induced approximately 50 min later. We discuss recent data for pol V-catalyzed TLS and pol II-catalyzed replication-restart. Specific roles during TLS for pol V and each of its accessory factors have been recently determined. Although the precise molecular mechanism of pol II-dependent replication-restart remains to be elucidated, it has recently been shown to operate in conjunction with RecFOR and PriA proteins.
Collapse
|
research-article |
24 |
72 |
17
|
Wagner J, Etienne H, Janel-Bintz R, Fuchs RPP. Genetics of mutagenesis in E. coli: various combinations of translesion polymerases (Pol II, IV and V) deal with lesion/sequence context diversity. DNA Repair (Amst) 2002; 1:159-67. [PMID: 12509262 DOI: 10.1016/s1568-7864(01)00012-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The biochemistry and genetics of translesion synthesis (TLS) and, as a consequence, of mutagenesis has recently received much attention in view of the discovery of novel DNA polymerases, most of which belong to the Y family. These distributive and low fidelity enzymes assist the progression of the high fidelity replication complex in the bypass of DNA lesions that normally hinder its progression. The present paper extends our previous observation that in Escherichia coli all three SOS-inducible DNA polymerases (Pol II, IV and V) are involved in TLS and mutagenesis. The genetic control of frameshift mutation pathways induced by N-2-acetylaminofluorene (AAF) adducts or by oxidative lesions induced by methylene blue and visible light is investigated. The data show various examples of mutation pathways with an absolute requirement for a specific combination of DNA polymerases and, in contrast, other examples where two DNA polymerases exhibit functional redundancy within the same pathway. We suggest that cells respond to the challenge of replicating DNA templates potentially containing a large diversity of DNA lesions by using a pool of accessory DNA polymerases with relaxed specificities that assist the high fidelity replicase.
Collapse
|
|
23 |
66 |
18
|
Fukui T, Yamauchi K, Muroya T, Akiyama M, Maki H, Sugino A, Waga S. Distinct roles of DNA polymerases delta and epsilon at the replication fork in Xenopus egg extracts. Genes Cells 2004; 9:179-91. [PMID: 15005706 DOI: 10.1111/j.1356-9597.2004.00716.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
DNA polymerases delta and epsilon (Poldelta and Polepsilon) are widely thought to be the major DNA polymerases that function in elongation during DNA replication in eukaryotic cells. However, the precise roles of these polymerases are still unclear. Here we comparatively analysed DNA replication in Xenopus egg extracts in which Poldelta or Polepsilon was immunodepleted. Depletion of either polymerase resulted in a significant decrease in DNA synthesis and accumulation of short nascent DNA products, indicating an elongation defect. Moreover, Poldelta depletion caused a more severe defect in elongation, as shown by sustained accumulation of both short nascent DNA products and single-stranded DNA gaps, and also by elevated chromatin binding of replication proteins that function more frequently during lagging strand synthesis. Therefore, our data strongly suggest the possibilities that Poldelta is essential for lagging strand synthesis and that this function of Poldelta cannot be substituted for by Polepsilon.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
65 |
19
|
Banach-Orlowska M, Fijalkowska IJ, Schaaper RM, Jonczyk P. DNA polymerase II as a fidelity factor in chromosomal DNA synthesis in Escherichia coli. Mol Microbiol 2005; 58:61-70. [PMID: 16164549 DOI: 10.1111/j.1365-2958.2005.04805.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli DNA polymerase III holoenzyme (HE) is the main replicase responsible for replication of the bacterial chromosome. E. coli contains four additional polymerases, and it is a relevant question whether these might also contribute to chromosomal replication and its fidelity. Here, we have investigated the role of DNA polymerase II (Pol II) (polB gene product). Mismatch repair-defective strains containing the polBex1 allele--encoding a polymerase-proficient but exonucleolytically defective Pol II--displayed a mutator activity for four different chromosomal lac mutational markers. The mutator effect was dependent on the chromosomal orientation of the lacZ gene. The results indicate that Pol II plays a role in chromosomal replication and that its role is not equal in leading- versus lagging-strand replication. In particular, the role of Pol II appeared larger in the lagging strand. When combined with dnaQ or dnaE mutator alleles, polBex1 showed strong, near multiplicative effects. The results fit a model in which Pol II acts as proofreader for HE-produced misinsertion errors. A second role of Pol II is to protect mismatched 3' termini against the mutagenic action of polymerase IV (dinB product). Overall, Pol II may be considered a main player in the polymerase trafficking at the replication fork.
Collapse
|
|
20 |
57 |
20
|
Wang SW, Toda T, MacCallum R, Harris AL, Norbury C. Cid1, a fission yeast protein required for S-M checkpoint control when DNA polymerase delta or epsilon is inactivated. Mol Cell Biol 2000; 20:3234-44. [PMID: 10757807 PMCID: PMC85617 DOI: 10.1128/mcb.20.9.3234-3244.2000] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The S-M checkpoint is an intracellular signaling pathway that ensures that mitosis is not initiated in cells undergoing DNA replication. We identified cid1, a novel fission yeast gene, through its ability when overexpressed to confer specific resistance to a combination of hydroxyurea, which inhibits DNA replication, and caffeine, which overrides the S-M checkpoint. Cid1 overexpression also partially suppressed the hydroxyurea sensitivity characteristic of DNA polymerase delta mutants and mutants defective in the "checkpoint Rad" pathway. Cid1 is a member of a family of putative nucleotidyltransferases including budding yeast Trf4 and Trf5, and mutation of amino acid residues predicted to be essential for this activity resulted in loss of Cid1 function in vivo. Two additional Cid1-like proteins play similar but nonredundant checkpoint-signaling roles in fission yeast. Cells lacking Cid1 were found to be viable but specifically sensitive to the combination of hydroxyurea and caffeine and to be S-M checkpoint defective in the absence of Cds1. Genetic data suggest that Cid1 acts in association with Crb2/Rhp9 and through the checkpoint-signaling kinase Chk1 to inhibit unscheduled mitosis specifically when DNA polymerase delta or epsilon is inhibited.
Collapse
|
research-article |
25 |
56 |
21
|
Bellelli R, Borel V, Logan C, Svendsen J, Cox DE, Nye E, Metcalfe K, O'Connell SM, Stamp G, Flynn HR, Snijders AP, Lassailly F, Jackson A, Boulton SJ. Polε Instability Drives Replication Stress, Abnormal Development, and Tumorigenesis. Mol Cell 2018; 70:707-721.e7. [PMID: 29754823 PMCID: PMC5972231 DOI: 10.1016/j.molcel.2018.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 01/08/2023]
Abstract
DNA polymerase ε (POLE) is a four-subunit complex and the major leading strand polymerase in eukaryotes. Budding yeast orthologs of POLE3 and POLE4 promote Polε processivity in vitro but are dispensable for viability in vivo. Here, we report that POLE4 deficiency in mice destabilizes the entire Polε complex, leading to embryonic lethality in inbred strains and extensive developmental abnormalities, leukopenia, and tumor predisposition in outbred strains. Comparable phenotypes of growth retardation and immunodeficiency are also observed in human patients harboring destabilizing mutations in POLE1. In both Pole4-/- mouse and POLE1 mutant human cells, Polε hypomorphy is associated with replication stress and p53 activation, which we attribute to inefficient replication origin firing. Strikingly, removing p53 is sufficient to rescue embryonic lethality and all developmental abnormalities in Pole4 null mice. However, Pole4-/-p53+/- mice exhibit accelerated tumorigenesis, revealing an important role for controlled CMG and origin activation in normal development and tumor prevention.
Collapse
|
research-article |
7 |
54 |
22
|
Kaguni LS, Lehman IR. Eukaryotic DNA polymerase-primase: structure, mechanism and function. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 950:87-101. [PMID: 3289619 DOI: 10.1016/0167-4781(88)90001-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
Review |
37 |
52 |
23
|
Heilbronn R, Schlehofer JR, Yalkinoglu AO, Zur Hausen H. Selective DNA-amplification induced by carcinogens (initiators): evidence for a role of proteases and DNA polymerase alpha. Int J Cancer 1985; 36:85-91. [PMID: 3894246 DOI: 10.1002/ijc.2910360114] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Inhibitors of DNA polymerase alpha (aphidicolin, phosphonoacetic acid, phosphonoformic acid) efficiently inhibit initiator-induced amplification of SV40 DNA sequences in the SV40-transformed Chinese hamster cell line CO631. Amplification is also inhibited by various protease inhibitors (antipain, leupeptin, aprotinin, alpha-I-antitrypsin, epsilon-amino-caproic acid, soy-bean protease inhibitor), by the non-initiating but DNA-damaging agent caffeine, and by sodium butyrate, which inhibits DNA synthesis by histone modification. In contrast, an inhibitor of topoisomerase II, nalidixic acid, enhances amplification when applied simultaneously with initiating treatment. This latter compound does not induce amplification when applied without initiator. Cycloheximide induces DNA amplification in the same way as chemical and physical carcinogens. This amplification can still be observed when protein synthesis is completely blocked. The data suggest a complex mechanism of selective DNA amplification. The possible involvement of proteases leading to a functional modification of DNA polymerase alpha is discussed.
Collapse
|
|
40 |
52 |
24
|
Lovett ST. Replication arrest-stimulated recombination: Dependence on the RecA paralog, RadA/Sms and translesion polymerase, DinB. DNA Repair (Amst) 2006; 5:1421-7. [PMID: 16904387 DOI: 10.1016/j.dnarep.2006.06.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 06/28/2006] [Accepted: 06/29/2006] [Indexed: 11/30/2022]
Abstract
Difficulties in replication can lead to breakage of the fork. Recombinational reactions restore the integrity of the fork through strand-invasion of the broken chromosome with its sister. If this occurs in the context of repeated DNA sequences, genetic rearrangements can result. We have proposed that this process accounts for stimulation of chromosomal rearrangements by mutations in Escherichia coli's replicative DNA helicase, DnaB. At its permissive temperature for growth, a dnaB107 mutant is a 1000-fold more likely to experience a deletion of a 787bp tandem repeated segment inserted in the E. coli chromosome than is a wild-type strain. We have previously shown that enhanced deletion in a dnaB107 strain is reduced in recA, recB and recG102 (formerly known as radC102) derivatives. Here I show that this enhanced recombination is dependent on other factors: the RuvA Holliday junction helicase, the RecJ single-strand DNA exonuclease, the RadA/Sms RecA-paralog protein of unknown function and, surprisingly, the DinB translesion polymerase. The requirement for these factors in DnaB-stimulated rearrangements is much greater than that observed for recombinational events such as P1 transduction. This may be because strand invasion into the repeats limits the extent of heteroduplex DNA that can be formed in the initial stage of recombination. I propose that RadA, RecG and RuvAB are critically required to stabilize the strand-invasion intermediate and that DinB polymerase extends the invading 3' strand to aid in re-initiation. The role of DinB in bacteria may be analogous to translesion DNA polymerase eta in eukaryotes, recently shown to aid recombination.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
50 |
25
|
Williams JS, Clausen AR, Lujan SA, Marjavaara L, Clark AB, Burgers PM, Chabes A, Kunkel TA. Evidence that processing of ribonucleotides in DNA by topoisomerase 1 is leading-strand specific. Nat Struct Mol Biol 2015; 22:291-7. [PMID: 25751426 PMCID: PMC4835660 DOI: 10.1038/nsmb.2989] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/11/2015] [Indexed: 01/26/2023]
Abstract
Ribonucleotides incorporated during DNA replication are removed by RNase H2-dependent ribonucleotide excision repair (RER). In RER-defective yeast, topoisomerase 1 (Top1) incises DNA at unrepaired ribonucleotides, initiating their removal, but this is accompanied by RNA-DNA-damage phenotypes. Here we show that these phenotypes are incurred by a high level of ribonucleotides incorporated by a leading strand-replicase variant, DNA polymerase (Pol) ɛ, but not by orthologous variants of the lagging-strand replicases, Pols α or δ. Moreover, loss of both RNases H1 and H2 is lethal in combination with increased ribonucleotide incorporation by Pol ɛ but not by Pols α or δ. Several explanations for this asymmetry are considered, including the idea that Top1 incision at ribonucleotides relieves torsional stress in the nascent leading strand but not in the nascent lagging strand, in which preexisting nicks prevent the accumulation of superhelical tension.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
46 |