Sewell A, Wyrick JJ. Interplay of replication timing, DNA repair, and translesion synthesis in UV mutagenesis in yeast.
Nucleus 2025;
16:2476935. [PMID:
40079129 PMCID:
PMC11913381 DOI:
10.1080/19491034.2025.2476935]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Replication timing during S-phase impacts mutation rates in yeast and human cancers; however, the exact mechanism involved remains unclear. Here, we analyze the impact of replication timing on UV mutagenesis in Saccharomyces cerevisiae. Our analysis indicates that UV mutations are enriched in early-replicating regions of the genome in wild-type cells, but in cells deficient in global genomic-nucleotide excision repair (GG-NER), mutations are enriched in late-replicating regions. Analysis of UV damage maps revealed that cyclobutane pyrimidine dimers are enriched in late-replicating regions, but this enrichment is almost entirely due to repetitive ribosomal DNA. Complex mutations typically associated with TLS activity are also elevated in late-replicating regions in GG-NER deficient cells. We propose that UV mutagenesis is higher in early-replicating regions in repair-competent cells because there is less time to repair the lesion prior to undergoing replication. However, in the absence of GG-NER, increased TLS activity promotes UV mutagenesis in late-replicating regions.
Collapse