1
|
Patra AK, Abbadie L, Clays-Josserand A, Degrange V, Grayston SJ, Guillaumaud N, Loiseau P, Louault F, Mahmood S, Nazaret S, Philippot L, Poly F, Prosser JI, Le Roux X. Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterial communities in grassland soils. Environ Microbiol 2006; 8:1005-16. [PMID: 16689721 DOI: 10.1111/j.1462-2920.2006.00992.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Management by combined grazing and mowing events is commonly used in grasslands, which influences the activity and composition of soil bacterial communities. Whether observed effects are mediated by management-induced disturbances, or indirectly by changes in the identity of major plant species, is still unknown. To address this issue, we quantified substrate-induced respiration (SIR), and the nitrification, denitrification and free-living N(2)-fixation enzyme activities below grass tufts of three major plant species (Holcus lanatus, Arrhenatherum elatius and Dactylis glomerata) in extensively or intensively managed grasslands. The genetic structures of eubacterial, ammonia oxidizing, nitrate reducing, and free-living N(2)-fixing communities were also characterized by ribosomal intergenic spacer analysis, and denaturing gradient gel electrophoresis (DGGE) or restriction fragment length polymorphism (RFLP) targeting group-specific genes. SIR was not influenced by management and plant species, whereas denitrification enzyme activity was influenced only by plant species, and management-plant species interactions were observed for fixation and nitrification enzyme activities. Changes in nitrification enzyme activity were likely largely explained by the observed changes in ammonium concentration, whereas N availability was not a major factor explaining changes in denitrification and fixation enzyme activities. The structures of eubacterial and free-living N(2)-fixing communities were essentially controlled by management, whereas the diversity of nitrate reducers and ammonia oxidizers depended on both management and plant species. For each functional group, changes in enzyme activity were not correlated or were weakly correlated to overall changes in genetic structure, but around 60% of activity variance was correlated to changes in five RFLP or DGGE bands. Although our conclusions should be tested for other ecosystems and seasons, these results show that predicting microbial changes induced by management in grasslands requires consideration of management-plant species interactions.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
81 |
2
|
Jurkiewicz A, Ryszka P, Anielska T, Waligórski P, Białońska D, Góralska K, Tsimilli-Michael M, Turnau K. Optimization of culture conditions of Arnica montana L.: effects of mycorrhizal fungi and competing plants. MYCORRHIZA 2010; 20:293-306. [PMID: 19838743 DOI: 10.1007/s00572-009-0280-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 09/21/2009] [Indexed: 05/07/2023]
Abstract
Arnica montana is a rare plant that needs special protection because of its intensive harvesting for medicinal purposes. The present work was aimed at finding optimal culture conditions for Arnica plants in order to enable their successful reintroduction into their natural stands. Plants were cultivated under controlled greenhouse conditions on substrata with different nitrogen (N) concentration. As Arnica is always colonized by arbuscular mycorrhizal fungi (AMF) in nature, a fact that has been overlooked in other similar projects, we, here, applied and tested different inocula. We found that they differed in their effectiveness, both in establishing symbiosis, assessed by the colonization parameters, and in improving the performance of Arnica, evaluated by the photosynthetic parameters derived from the fluorescence transients (JIP-test), with the inocula containing G. intraradices or composed of several Glomus strains being the most effective. The comparison was possible only on substrata with medium N, since high N did not permit the formation of mycorrhiza, while at low N, few nonmycorrhizal plants survived until the measurements and mycorrhizal plants, which were well growing, exhibited a high heterogeneity. Analysis of secondary metabolites showed clearly that mycorrhization was associated with increased concentrations of phenolic acids in roots. For some of the inocula used, a tendency for increase of the level of phenolic acids in shoots and of sesquiterpene lactones, both in roots and in shoots, was also observed. We also studied the interactions between A. montana and Dactylis glomerata, known to compete with Arnica under field conditions. When specimens from both species were cultured together, there was no effect on D. glomerata, but Arnica could retain a photosynthetic performance that permitted survivability only in the presence of AMF; without AMF, the photosynthetic performance was lower, and the plants were eventually totally outcompeted.
Collapse
|
|
15 |
31 |
3
|
Simonin M, Le Roux X, Poly F, Lerondelle C, Hungate BA, Nunan N, Niboyet A. Coupling Between and Among Ammonia Oxidizers and Nitrite Oxidizers in Grassland Mesocosms Submitted to Elevated CO2 and Nitrogen Supply. MICROBIAL ECOLOGY 2015; 70:809-18. [PMID: 25877793 DOI: 10.1007/s00248-015-0604-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 03/23/2015] [Indexed: 05/25/2023]
Abstract
Many studies have assessed the responses of soil microbial functional groups to increases in atmospheric CO2 or N deposition alone and more rarely in combination. However, the effects of elevated CO2 and N on the (de)coupling between different microbial functional groups (e.g., different groups of nitrifiers) have been barely studied, despite potential consequences for ecosystem functioning. Here, we investigated the short-term combined effects of elevated CO2 and N supply on the abundances of the four main microbial groups involved in soil nitrification: ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (belonging to the genera Nitrobacter and Nitrospira) in grassland mesocosms. AOB and AOA abundances responded differently to the treatments: N addition increased AOB abundance, but did not alter AOA abundance. Nitrobacter and Nitrospira abundances also showed contrasted responses to the treatments: N addition increased Nitrobacter abundance, but decreased Nitrospira abundance. Our results support the idea of a niche differentiation between AOB and AOA, and between Nitrobacter and Nitrospira. AOB and Nitrobacter were both promoted at high N and C conditions (and low soil water content for Nitrobacter), while AOA and Nitrospira were favored at low N and C conditions (and high soil water content for Nitrospira). In addition, Nitrobacter abundance was positively correlated to AOB abundance and Nitrospira abundance to AOA abundance. Our results suggest that the couplings between ammonia and nitrite oxidizers are influenced by soil N availability. Multiple environmental changes may thus elicit rapid and contrasted responses between and among the soil ammonia and nitrite oxidizers due to their different ecological requirements.
Collapse
|
|
10 |
21 |
4
|
Feng G, Huang L, Li J, Wang J, Xu L, Pan L, Zhao X, Wang X, Huang T, Zhang X. Comprehensive transcriptome analysis reveals distinct regulatory programs during vernalization and floral bud development of orchardgrass (Dactylis glomerata L.). BMC PLANT BIOLOGY 2017; 17:216. [PMID: 29166861 PMCID: PMC5700690 DOI: 10.1186/s12870-017-1170-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/10/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Vernalization and the transition from vegetative to reproductive growth involve multiple pathways, vital for controlling floral organ formation and flowering time. However, little transcription information is available about the mechanisms behind environmental adaption and growth regulation. Here, we used high-throughput sequencing to analyze the comprehensive transcriptome of Dactylis glomerata L. during six different growth periods. RESULTS During vernalization, 4689 differentially expressed genes (DEGs) significantly increased in abundance, while 3841 decreased. Furthermore, 12,967 DEGs were identified during booting stage and flowering stage, including 7750 up-regulated and 5219 down-regulated DEGs. Pathway analysis indicated that transcripts related to circadian rhythm, photoperiod, photosynthesis, flavonoid biosynthesis, starch, and sucrose metabolism changed significantly at different stages. Coexpression and weighted correlation network analysis (WGCNA) analysis linked different stages to transcriptional changes and provided evidence of inner relation modules associated with signal transduction, stress responses, cell division, and hormonal transport. CONCLUSIONS We found enrichment in transcription factors (TFs) related to WRKY, NAC, AP2/EREBP, AUX/IAA, MADS-BOX, ABI3/VP1, bHLH, and the CCAAT family during vernalization and floral bud development. TFs expression patterns revealed intricate temporal variations, suggesting relatively separate regulatory programs of TF modules. Further study will unlock insights into the ability of the circadian rhythm and photoperiod to regulate vernalization and flowering time in perennial grass.
Collapse
|
research-article |
8 |
17 |
5
|
Trinder C, Brooker R, Davidson H, Robinson D. Dynamic trajectories of growth and nitrogen capture by competing plants. THE NEW PHYTOLOGIST 2012; 193:948-958. [PMID: 22236094 DOI: 10.1111/j.1469-8137.2011.04020.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Although dynamic, plant competition is usually estimated as biomass differences at a single, arbitrary time; resource capture is rarely measured. This restricted approach perpetuates uncertainty. To address this problem, we characterized the competitive dynamics of Dactylis glomerata and Plantago lanceolata as continuous trajectories of biomass production and nitrogen (N) capture. Plants were grown together or in isolation. Biomass and N content were measured at 17 harvests up to 76 d after sowing. Data were fitted to logistic models to derive instantaneous growth and N capture rates. Plantago lanceolata was initially more competitive in terms of cumulative growth and N capture, but D. glomerata was eventually superior. Neighbours reduced maximum biomass, but influenced both maximum N capture and its rate constant. Timings of maximal instantaneous growth and N capture rates were similar between species when they were isolated, but separated by 16 d when they were competing, corresponding to a temporal convergence in maximum growth and N capture rates in each species. Plants processed N and produced biomass differently when they competed. Biomass and N capture trajectories demonstrated that competitive outcomes depend crucially on when and how 'competition' is measured. This potentially compromises the interpretation of conventional competition experiments.
Collapse
|
|
13 |
16 |
6
|
Volaire F, Norton MR, Norton GM, Lelièvre F. Seasonal patterns of growth, dehydrins and water-soluble carbohydrates in genotypes of Dactylis glomerata varying in summer dormancy. ANNALS OF BOTANY 2005; 95:981-90. [PMID: 15760915 PMCID: PMC4246749 DOI: 10.1093/aob/mci102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 11/18/2004] [Accepted: 01/08/2005] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Summer dormancy in perennial grasses has been studied inadequately, despite its potential to enhance plant survival and persistence in Mediterranean areas. The aim of the present work was to characterize summer dormancy and dehydration tolerance in two cultivars of Dactylis glomerata (dormant 'Kasbah', non-dormant 'Oasis') and their hybrid using physiological indicators associated with these traits. METHODS Dehydration tolerance was assessed in a glasshouse experiment, while seasonal metabolic changes which produce putative protectants for drought, such as carbohydrates and dehydrins that might be associated with summer dormancy, were analysed in the field. KEY RESULTS The genotypes differed in their ability to survive increasing soil water deficit: lethal soil water potential (Psi(s)) was -3.4 MPa for 'Kasbah' (although non-dormant), -1.3 MPa for 'Oasis', and -1.6 MPa for their hybrid. In contrast, lethal water content of apices was similar for all genotypes (approx. 0.45 g H(2)O g d. wt(-1)), and hence the greater survival of 'Kasbah' can be ascribed to better drought avoidance rather than dehydration tolerance. In autumn-sown plants, 'Kasbah' had greatest dormancy, the hybrid was intermediate and 'Oasis' had none. The more dormant the genotype, the lower the metabolic activity during summer, and the earlier the activity declined in spring. Decreased monosaccharide content was an early indicator of dormancy induction. Accumulation of dehydrins did not correlate with stress tolerance, but dehydrin content was a function of the water status of the tissues, irrespective of the soil moisture. A protein of approx. 55 kDa occurred in leaf bases of the most dormant cultivar even in winter. CONCLUSIONS Drought avoidance and summer dormancy are correlated but can be independently expressed. These traits are heritable, allowing selection in breeding programmes.
Collapse
|
research-article |
20 |
11 |
7
|
Robinson D, Davidson H, Trinder C, Brooker R. Root-shoot growth responses during interspecific competition quantified using allometric modelling. ANNALS OF BOTANY 2010; 106:921-6. [PMID: 20829193 PMCID: PMC2990658 DOI: 10.1093/aob/mcq186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Plant competition studies are restricted by the difficulty of quantifying root systems of competitors. Analyses are usually limited to above-ground traits. Here, a new approach to address this issue is reported. METHODS Root system weights of competing plants can be estimated from: shoot weights of competitors; combined root weights of competitors; and slopes (scaling exponents, α) and intercepts (allometric coefficients, β) of ln-regressions of root weight on shoot weight of isolated plants. If competition induces no change in root : shoot growth, α and β values of competing and isolated plants will be equal. Measured combined root weight of competitors will equal that estimated allometrically from measured shoot weights of each competing plant. Combined root weights can be partitioned directly among competitors. If, as will be more usual, competition changes relative root and shoot growth, the competitors' combined root weight will not equal that estimated allometrically and cannot be partitioned directly. However, if the isolated-plant α and β values are adjusted until the estimated combined root weight of competitors matches the measured combined root weight, the latter can be partitioned among competitors using their new α and β values. The approach is illustrated using two herbaceous species, Dactylis glomerata and Plantago lanceolata. KEY RESULTS Allometric modelling revealed a large and continuous increase in the root : shoot ratio by Dactylis, but not Plantago, during competition. This was associated with a superior whole-plant dry weight increase in Dactylis, which was ultimately 2·5-fold greater than that of Plantago. Whole-plant growth dominance of Dactylis over Plantago, as deduced from allometric modelling, occurred 14-24 d earlier than suggested by shoot data alone. CONCLUSION Given reasonable assumptions, allometric modelling can analyse competitive interactions in any species mixture, and overcomes a long-standing problem in studies of competition.
Collapse
|
research-article |
15 |
10 |
8
|
Xu X, Feng G, Liang Y, Shuai Y, Liu Q, Nie G, Yang Z, Hang L, Zhang X. Comparative transcriptome analyses reveal different mechanism of high- and low-tillering genotypes controlling tiller growth in orchardgrass (Dactylis glomerata L.). BMC PLANT BIOLOGY 2020; 20:369. [PMID: 32758131 PMCID: PMC7409468 DOI: 10.1186/s12870-020-02582-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/27/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Tillering is an important agronomic trait underlying the yields and reproduction of orchardgrass (Dactylis glomerata), an important perennial forage grass. Although some genes affecting tiller initiation have been identified, the tillering regulatory network is still largely unknown, especially in perennial forage grasses. Thus, unraveling the regulatory mechanisms of tillering in orchardgrass could be helpful in developing selective strategies for high-yield perennial grasses. In this study, we generated high-throughput RNA-sequencing data from multiple tissues of tillering stage plants to identify differentially expressed genes (DEGs) between high- and low-tillering orchardgrass genotypes. Gene Ontology and pathway enrichment analyses connecting the DEGs to tillering number diversity were conducted. RESULTS In the present study, approximately 26,282 DEGs were identified between two orchardgrass genotypes, AKZ-NRGR667 (a high-tillering genotype) and D20170203 (a low-tillering genotype), which significantly differed in tiller number. Pathway enrichment analysis indicated that DEGs related to the biosynthesis of three classes of phytohormones, i.e., strigolactones (SLs), abscisic acid (ABA), and gibberellic acid (GA), as well as nitrogen metabolism dominated such differences between the high- and low-tillering genotypes. We also confirmed that under phosphorus deficiency, the expression level of the major SL biosynthesis genes encoding DWARF27 (D27), 9-cis-beta-carotene 9',10'-cleaving dioxygenase (CCD7), carlactone synthase (CCD8), and more axillary branching1 (MAX1) proteins in the high-tillering orchardgrass genotype increased more slowly relative to the low-tillering genotype. CONCLUSIONS Here, we used transcriptomic data to study the tillering mechanism of perennial forage grasses. We demonstrated that differential expression patterns of genes involved in SL, ABA, and GA biosynthesis may differentiate high- and low-tillering orchardgrass genotypes at the tillering stage. Furthermore, the core SL biosynthesis-associated genes in high-tillering orchardgrass were more insensitive than the low-tillering genotype to phosphorus deficiency which can lead to increases in SL biosynthesis, raising the possibility that there may be distinct SL biosynthesis way in tillering regulation in orchardgrass. Our research has revealed some candidate genes involved in the regulation of tillering in perennial grasses that is available for establishment of new breeding resources for high-yield perennial grasses and will serve as a new resource for future studies into molecular mechanism of tillering regulation in orchardgrass.
Collapse
|
research-article |
5 |
8 |
9
|
Feng G, Xu L, Wang J, Nie G, Bushman BS, Xie W, Yan H, Yang Z, Guan H, Huang L, Zhang X. Integration of small RNAs and transcriptome sequencing uncovers a complex regulatory network during vernalization and heading stages of orchardgrass (Dactylis glomerata L.). BMC Genomics 2018; 19:727. [PMID: 30285619 PMCID: PMC6171228 DOI: 10.1186/s12864-018-5104-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Flowering is a critical reproductive process in higher plants. Timing of optimal flowering depends upon the coordination among seasonal environmental cues. For cool season grasses, such as Dactylis glomerata, vernalization induced by low temperature provides competence to initiate flowering after prolonged cold. We combined analyses of the transcriptome and microRNAs (miRNAs) to generate a comprehensive resource for regulatory miRNAs and their target circuits during vernalization and heading stages. RESULTS A total of 3,846 differentially expressed genes (DEGs) and 69 differentially expressed miRNAs were identified across five flowering stages. The expression of miR395, miR530, miR167, miR396, miR528, novel_42, novel_72, novel_107, and novel_123 demonstrated significant variations during vernalization. These miRNA targeted genes were involved in phytohormones, transmembrane transport, and plant morphogenesis in response to vernalization. The expression patterns of DEGs related to plant hormones, stress responses, energy metabolism, and signal transduction changed significantly in the transition from vegetative to reproductive phases. CONCLUSIONS Five hub genes, c136110_g1 (BRI1), c131375_g1 (BZR1), c133350_g1 (VRN1), c139830_g1 (VIN3), and c125792_g2 (FT), might play central roles in vernalization response. Our comprehensive analyses have provided a useful platform for investigating consecutive transcriptional and post-transcriptional regulation of critical phases in D. glomerata and provided insights into the genetic engineering of flowering-control in cereal crops.
Collapse
|
research-article |
7 |
7 |
10
|
Kacprzak M, Grobelak A, Grosser A, Prasad MNV. Efficacy of biosolids in assisted phytostabilization of metalliferous acidic sandy soils with five grass species. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2014; 16:593-608. [PMID: 24912245 PMCID: PMC3827663 DOI: 10.1080/15226514.2013.798625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The role of sewage sludge as an immobilising agent in the phytostabilization of metal-contaminated soil was evaluated using five grass species viz., Dactylis glomerata L., Festuca arundinacea Schreb., F. rubra L., Lolium perenne L., L. westerwoldicum L. The function of metal immobilization was investigated by monitoring pH, Eh and Cd, Pb, and Zn levels in column experiment over a period of 5-months. Grasses grown on sewage sludge-amendments produced high biomass in comparison to controls. A significant reduction in metal uptake by plants was also observed as a result of sewage sludge application, which was attributed to decreased bioavailability through soil stabilisation. We have observed that the sludge amendment decreased metal bioavailability and concentrations in soil at a depth of 25 cm, in contrast to untreated columns, where metal concentrations in the soil solution were very high.
Collapse
|
research-article |
11 |
6 |
11
|
Mårtensson LM, Carlsson G, Prade T, Kørup K, Lærke PE, Jensen ES. Water use efficiency and shoot biomass production under water limitation is negatively correlated to the discrimination against 13C in the C 3 grasses Dactylis glomerata, Festuca arundinacea and Phalaris arundinacea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 113:1-5. [PMID: 28152389 DOI: 10.1016/j.plaphy.2017.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/17/2017] [Accepted: 01/21/2017] [Indexed: 06/06/2023]
Abstract
Climate change impacts rainfall patterns which may lead to drought stress in rain-fed agricultural systems. Crops with higher drought tolerance are required on marginal land with low precipitation or on soils with low water retention used for biomass production. It is essential to obtain plant breeding tools, which can identify genotypes with improved drought tolerance and water use efficiency (WUE). In C3 plant species, the variation in discrimination against 13C (Δ13C) during photosynthesis has been shown to be a potential indicator for WUE, where discrimination against 13C and WUE were negatively correlated. The aim of this study was to determine the variation in the discrimination against 13C between species and cultivars of three perennial C3 grasses (Dactylis glomerata (cocksfoot), Festuca arundinacea (tall fescue) and Phalaris arundinacea (reed canary grass)) and test the relationships between discrimination against 13C, season-long water use WUEB, shoot and root biomass production in plants grown under well-watered and water-limited conditions. The grasses were grown in the greenhouse and exposed to two irrigation regimes, which corresponded to 25% and 60% water holding capacity, respectively. We found negative relationships between discrimination against 13C and WUEB and between discrimination against 13C and shoot biomass production, under both the well-watered and water-limited growth conditions (p < 0.001). Discrimination against 13C decreased in response to water limitation (p < 0.001). We found interspecific differences in the discrimination against 13C, WUEB, and shoot biomass production, where the cocksfoot cultivars showed lowest and the reed canary grass cultivars highest values of discrimination against 13C. Cocksfoot cultivars also showed highest WUEB, shoot biomass production and potential tolerance to water limitation. We conclude that discrimination against 13C appears to be a useful indicator, when selecting C3 grass crops for biomass production under drought conditions.
Collapse
|
|
8 |
6 |
12
|
Prieto I, Litrico I, Violle C, Barre P. Five species, many genotypes, broad phenotypic diversity: When agronomy meets functional ecology. AMERICAN JOURNAL OF BOTANY 2017; 104:62-71. [PMID: 28082283 DOI: 10.3732/ajb.1600354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/05/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY Current ecological theory can provide insight into the causes and impacts of plant domestication. However, just how domestication has impacted intraspecific genetic variability (ITV) is unknown. We used 50 ecotypes and 35 cultivars from five grassland species to explore how selection drives functional trait coordination and genetic differentiation. METHODS We quantified the extent of genetic diversity among different sets of functional traits and determined how much genetic diversity has been generated within populations of natural ecotypes and selected cultivars. KEY RESULTS In general, the cultivars were larger (e.g., greater height, faster growth rates) and had larger and thinner leaves (greater SLA). We found large (average 63%) and trait-dependent (ranging from 14% for LNC to 95.8% for growth rate) genetic variability. The relative extent of genetic variability was greater for whole-plant than for organ-level traits. This pattern was consistent within ecotypes and within cultivars. However, ecotypes presented greater ITV variability. CONCLUSIONS The results indicated that genetic diversity is large in domesticated species with contrasting levels of heritability among functional traits and that selection for high yield has led to indirect selection of some associated leaf traits. These findings open the way to define which target traits should be the focus in selection programs, especially in the context of community-level selection.
Collapse
|
|
8 |
5 |
13
|
de Varennes A, Abreu MM, Qu G, Cunha-Queda C. Enzymatic activity of a mine soil varies according to vegetation cover and level of compost applied. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2010; 12:371-383. [PMID: 20734914 DOI: 10.1080/15226510903051757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We applied three doses of compost from mixed municipal solid waste (0, 15, and 30 g kg(-1) of soil) to a soil developed on pyrite mine wastes. Part of the soil was planted with young Erica australis L. collected at the mine; part was fertilized with N-P-K-Mg and sown with Dactylis glomerata L .Bare soil without mineral fertilization was included in the experiment, as well. Compost application to bare soil increased pH, provided plant nutrients, and enhanced the activity of the six soil enzymes tested. Growth of D. glomerata, and E. australis was stimulated in compost-amended soil compared with unamended controls. The presence of D. glomerata led to the greatest activities of soil acid phosphatase, beta-glucosidase, and cellulase compared with bare soil or with soil with E. australis. The presence of E. australis increased the activities of protease and cellulase in amended soil, compared with control, but it impaired dehydrogenase, fl-glucosidase, and acid phosphatase activities. These negative impacts probably derived from phenolic compounds known to be released from roots of this species. The survival strategy of this species seems to include a small need for P in the shoots, and the release of exudates that impair microbial activity and P cycling.
Collapse
|
|
15 |
3 |
14
|
Zhao X, Bushman BS, Zhang X, Robbins MD, Larson SR, Robins JG, Thomas A. Association of candidate genes with heading date in a diverse Dactylis glomerata population. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 265:146-153. [PMID: 29223336 DOI: 10.1016/j.plantsci.2017.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
Flowering occurs in response to cues from both temperature and photoperiod elicitors in cool-season, long-day forage grasses, and genes involved in sensing the elicitors and inducing downstream flowering responses have been associated with heading date and flowering time in perennial forage grasses as well as cereal grasses. In this study we test for association between orchardgrass (Dactylis glomerata L.) heading date and polymorphisms in the CONSTANS (DgCO1), FLOWERING TIME (DgFT1), a VRN1 like MADS-box (DgMADS), and PHOTOPERIOD (DgPPD1-like) containing genes. A diverse population of 150 genotypes was measured for heading date across three years, genotyped, and candidate genes sequenced. Although pairwise population kinship values were generally low, the genotypes fit into a two-group structure model. Linkage disequilibrium decayed rapidly, reaching r2 levels below 0.2 within the 500bp of each gene. SNPs significantly associated with heading date were detected in equal-dose and tetraploid dosage models. The DgCO1 gene had the most significant polymorphisms and those with the largest effects, while DgMADS had several significant polymorphisms in its first intron with smaller effects. These polymorphisms can be used for further validation, selection, and development of breeding lines of orchardgrass.
Collapse
|
|
8 |
2 |
15
|
Jiménez MD, de Torre R, Mola I, Casado MA, Balaguer L. Local plant responses to global problems: Dactylis glomerata responses to different traffic pollutants on roadsides. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 212:440-449. [PMID: 29455152 DOI: 10.1016/j.jenvman.2017.12.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 06/08/2023]
Abstract
The growing number of road vehicles is a major source of regional and global atmospheric pollution increasing concentrations of CO2 in the air, and levels of metals in air and soil. Nevertheless, the effects of these pollutants on plants growing at roadsides are poorly documented. We carried out an observational study of unmanipulated plants growing by the road, to identify the morpho-physiological responses in a perennial grass Dactylis glomerata. Firstly, we wanted to know the general effect of traffic intensity and ambient CO2 and its interactions on different plant traits. Accordingly, we analyzed the photosynthetic response by field A/Ci Response Curves, SLA, pigment pools, foliar nitrogen, carbohydrates and morphological traits in plants at three distances to the road. Secondly, we wanted to know if Dactylis glomerata plants can accumulate metals present on the roadside (Pb, Zn, Cu, and Sr) in their tissues and rhizosphere, and the effect of these metals on morphological traits. The MANCOVA whole model results shown: 1) a significant effect of road ambient CO2 concentration on morphological traits (not affected by traffic intensity, P interaction CO2 x traffic intensity>0.05), that was mainly driven by a significant negative relationship between the inflorescence number and ambient CO2; 2) a positive and significant relationship between ambient CO2 and the starch content in leaves (unaffected by traffic intensity); 3) a reduction in Jmax (electron transport rate) at high traffic intensity. These lines of evidences suggest a decreased photosynthetic capacity due to high traffic intensity and high levels of ambient CO2. In addition, Pb, Cu, Zn and Sr were detected in Dactylis glomerata tissues, and Cu accumulated in roots. Finally, we observed that Dactylis glomerata individuals growing at the roadside under high levels of CO2 and in the presence of metal pollutants, reduced their production of inflorescences.
Collapse
|
Observational Study |
7 |
1 |
16
|
Weber RW. Orchard grass or cock's foot, Dactylis glomerata. Ann Allergy Asthma Immunol 2005; 94:A6, front cover. [PMID: 15945550 DOI: 10.1016/s1081-1206(10)61124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
Review |
20 |
0 |
17
|
Xu X, Liang Y, Feng G, Li S, Yang Z, Nie G, Huang L, Zhang X. A favorable natural variation in CCD7 from orchardgrass confers enhanced tiller number. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17200. [PMID: 39666830 DOI: 10.1111/tpj.17200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/06/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
Tiller number is a crucial determinant that significantly influences the productivity and reproductive capacity of forage. The regeneration potential, biomass production, and seed yield of perennial forage species are highly reliant on the development of tillering. Strigolactones (SLs) are recently discovered carotenoid-derived phytohormones that play a crucial role in the regulation of tillering in annual crops. However, the modulation of tiller growth in perennial forage by SLs remains insufficiently investigated. In this study, we identified two alleles of the SLs biosynthesis gene, DgCCD7A and DgCCD7D, which encode CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7), from two distinct subspecies of orchardgrass (Dactylis glomerata) exhibiting contrasting tillering phenotype and SLs content. The functionality of the DgCCD7A allele derived from high-tillering phenotypic orchardgrass was found to be diminished compared to that of DgCCD7D from the low-tillering type in rescuing the increased branching phenotype of CCD7-defective mutants in Arabidopsis and rice (Oryza sativa). Notably, the introduction of DgCCD7A in rice resulted in an increase in tiller number without significantly compromising grain yield. Moreover, we demonstrated that the L309P variation in DgCCD7A is a rare natural variant exclusively found in orchardgrass. Our findings revealed that DgCCD7A, a rare favorable natural variation of CCD7 in orchardgrass, holds significant potential for breeding application in improving the plant architecture of perennial forage and crops.
Collapse
|
|
1 |
|
18
|
Xu X, Feng G, Li P, Yu S, Hao F, Nie G, Huang L, Zhang X. Genome-wide association analysis reveals the function of DgSAUR71 in plant height improvement. BMC PLANT BIOLOGY 2025; 25:240. [PMID: 39987023 PMCID: PMC11846171 DOI: 10.1186/s12870-025-06246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Orchardgrass (Dactylis glomerata L.) is one of the four most economically important forage grasses cultivated globally and serves as an excellent perennial forage with high ecological value. Plant height is a key determinant of both biomass and grain yield. While numerous genes regulating plant height have been identified in annual crops, no such genes have been reported for orchardgrass. RESULTS In this study, we analyzed the relationship between plant height and biomass yield in a natural population of 264 orchardgrass genotypes and found that a plant height of 90-110 cm contributed to the maximum biomass yield. Genome-wide association analysis (GWAS) identified 23 candidate loci associated with plant height, corresponding to 62 candidate genes. Among these, DgSAUR71, a member of the small auxin-up RNA (SAUR) gene family, emerged as a novel candidate gene associated with plant height. Functional analysis revealed that DgSAUR71 slightly reduced plant height in rice (Oryza sativa L.) and was involved in regulating plant height in orchardgrass. CONCLUSIONS This study demonstrates that plant height is an important contributor for optimizing biomass yield in orchardgrass, with an optimal range identified. DgSAUR71 was identified as a gene associated with plant height through GWAS and shown to negatively regulate plant height. These findings provide new insights into plant height regulation in orchardgrass and contribute to advancing crop height diversification research.
Collapse
|
research-article |
1 |
|
19
|
Reynaert S, Nijs I, D'Hose T, Verbruggen E, Callaerts J, De Boeck HJ. Turning Up the Heat: More Persistent Precipitation Regimes Weaken the Micro-Climate Buffering Capacity of Forage Grasses During a Hot Summer. GLOBAL CHANGE BIOLOGY 2025; 31:e70078. [PMID: 39918070 DOI: 10.1111/gcb.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 05/08/2025]
Abstract
Developing climate-proof forage grasslands does not only require developing plant communities that are soil drought resistant, but also adept at buffering elevated atmospheric temperatures to minimize heat stress for plant and soil. Previous studies indicate that the emerging trend towards rainfall regimes with longer dry and wet spells negatively affects forage grass performance (i.e., greater physiological plant stress and yield loss) in Western Europe. We conducted a 120-day open-air experiment testing whether a hot summer (+3°C for the first 60 days) exacerbates the negative effects of increased persistence in precipitation regimes (PR) (3 vs. 30 days consecutive wet/dry) on the performance of four distinct forage varieties (Dactylis glomerata, Festuca arundinacea, Lolium perenne (tetraploid) and Lolium perenne (diploid)) across two soils differing in management history (permanent vs. temporary grasslands). Our results indicate that climate warming indeed worsens negative effects of more persistent PR on forage grass productivity and physiological plant stress by inducing more extreme soil drought and elevated micro-climatic temperatures, but permanent grassland soils with elevated organic carbon can buffer yields. Moreover, higher yielding varieties are more proficient at buffering soil surface and canopy temperatures and maintaining plant greenness and stomatal opening under water shortage and elevated temperatures (Dactylis and Festuca) were impacted less than those which could not (both Lolium cultivars). These results indicate that not only differences in resource-extraction traits but also the ability of a species to buffer its surrounding microclimatic conditions shapes its response to future climate change. Given the indirect positive effects such temperature-buffering traits may have on soil functioning (e.g., reduced soil respiration during heat waves limiting carbon loss), we argue that managers should also incorporate such traits when developing climate-proof forage grasslands.
Collapse
|
|
1 |
|
20
|
Wang M, Feng G, Yang Z, Cao L, Nie G, Xu X, Hao F, Huang L, Zhang X. A genome-wide association study reveals that DgFH18 and DgCMO-like are associated with flowering time in orchardgrass (Dactylis glomerata). BMC Genomics 2025; 26:522. [PMID: 40410678 PMCID: PMC12100859 DOI: 10.1186/s12864-025-11708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 05/14/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND Flowering is a tightly regulated process influencing yield and promoting plant genetic diversity and conservation. Orchardgrass (Dactylis glomerata) exhibits excellent yield traits and stress resistance, making it ideal for animal husbandry and ecological restoration. However, the molecular regulatory factors of the flowering time of orchardgrass are still unknown, limiting its molecular breeding. RESULTS To speed up molecular breeding to enhance flowering traits in orchardgrass, we conducted a genome-wide association study (GWAS). A diverse panel of 249 orchardgrass accessions was phenotyped for heading stage and flowering time. GWAS analysis identified 359 candidate genes that overlapped or were adjacent to effective single-nucleotide polymorphisms (SNPs), which were considered potential flowering time-related genes. Furthermore, we validated that formin-like protein 18 (DgFH18) and choline monooxygenase (DgCMO-like) was two important flowering candidate genes by overexpressing them in Arabidopsis to unravel their potential functions. Overexpression of DgFH18 and DgCMO-like positively regulated flowering time by inducing the expression of flowering-related genes. Moreover, sucrose treatment could significantly promote the expression of flavonoid pathway genes and enhance the content of total flavonoids and anthocyanins in the DgCMO-like-overexpressing lines compared to the wild type. CONCLUSION These results provide valuable resources for future orchardgrass breeding programs and broaden the current comprehension of flowering time regulation in perennial grasses.
Collapse
|
research-article |
1 |
|
21
|
Wang M, Feng G, Hao F, Nie G, Huang L, Zhang X. Integrated transcriptome and metabolome reveal hydroxypyruvate reductase DgHPR1 positively regulates flowering time in orchardgrass. Int J Biol Macromol 2025; 305:141164. [PMID: 39965689 DOI: 10.1016/j.ijbiomac.2025.141164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
The transition from the vegetative to the reproductive growth phase is a crucial development process in plants. However, the metabolic changes and the regulatory networks of related genes implicated in the floral transition of perennial plants are poorly understood. Orchardgrass (Dactylis glomerata), a perennial cool-season grass, is an economically important forage grass cultivated worldwide. We analyzed the transcriptome and metabolome data at seven different stages in two cultivars to systematically explore the regulatory network of flavonoid biosynthesis, starch and sucrose metabolism, carbon metabolism, and plant hormone signal transduction to better understand the floral transition of orchardgrass. The hydroxypyruvate reductase geneDgHPR1 of carbon metabolism may positively regulate flowering time by up-regulating key flowering genes, such as AtAP1, AtSOC1, AtFT, AtFUL, and AtLFY. The indole acetic acid gene DgIAA17 exhibited high expression levels from the vegetative growth stage to booting stage. Overexpression of DgIAA17 accelerated flowering time phenotype under both normal and long-day conditions, with significant upregulation of flowering genes such as AtAP1, AtCAL, AtFUL, AtLFY, AtSOC1, and AtSPL3 compared to wild-type plants. These results provide significant insight into the transcriptional control of major metabolites in floral transition and offer guidance for future yield and quality improvement of perennial plants.
Collapse
|
|
1 |
|
22
|
Ji Y, Zhang XQ, Pen Y, Liang XY, Huang LK, Chen LZ, Li Z, Ma YM. [Effects of drought stress on the root growth and photosynthetic characters of Dactylis glomerata seedlings]. YING YONG SHENG TAI XUE BAO = THE JOURNAL OF APPLIED ECOLOGY 2013; 24:2763-2769. [PMID: 24483068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Taking the drought-sensitive Dactylis glomerata line "01998" and drought-tolerant cultivar "Baoxing" as test materials, a pot experiment was conducted to study the effects of drought stress on the seedlings root growth, physiological characteristics, and leaf photosynthesis, aimed to approach the differences in the drought-tolerance mechanism of different D. glomerata lines (cultivars). Under drought stress, the root vitality and root number of "01998" and "Baoxing" presented a trend of increased first and decreased then. When the soil relative moisture content decreased to 30%, the root vitality and root number of "01998" and "Baoxing" increased significantly and reached the maximum. Drought stress decreased the relative water content, leaf chlorophyll content, net photosynthesis, transpiration, and stomatal conductance, but increased the electric conductivity and intercellular CO2 concentration of "01998" and "Baoxing". Under drought stress, the leaf area per plant of both "01998" and "Baoxing" decreased, and the underground and aboveground plant biomass of "01998" decreased while that of "Baoxing" had less change.
Collapse
|
English Abstract |
12 |
|
23
|
Xu X, Li P, Li S, Feng G, Wang M, Yang Z, Nie G, Huang L, Zhang X. Genome-wide association analysis reveals novel candidate loci and a gene regulating tiller number in orchardgrass. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109148. [PMID: 39332330 DOI: 10.1016/j.plaphy.2024.109148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Tillers are specialized lateral shoots arising from axillary buds at basal nodes, and are also an important agronomic trait that determines the aboveground biomass and grain yield of various gramineous crops. So far, few genes have been reported to control tiller formation and most have been in the annual crop rice (Oryza sativa). Orchardgrass (Dactylis glomerata) is an important perennial forage crop with great economic and ecological value, but its genes regulating tillering have remained largely unknown. In the present study, we used a natural population of 264 global orchardgrass germplasms to determine genes associated with quantitative variation in tiller number through genome-wide association study analysis. A total of 19 putative loci and 55 genes associated with tiller number were thus identified. Additionally, 26 putative differentially expressed genes with tiller number, including DgCYC-C1, were identified by RNA-seq and genome-wide association study analysis. DgCYC-C1 which is involved in cell division, was overexpressed, revealing that DgCYC-C1 positively regulates tiller number. These results provide some new candidate genes or loci for the improvement of tiller number in crops, which might advance new sustainable strategies to meet global crop production challenges.
Collapse
|
|
1 |
|