1
|
Law MY, Charles SA, Halliwell B. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of Paraquat. Biochem J 1983; 210:899-903. [PMID: 6307273 PMCID: PMC1154305 DOI: 10.1042/bj2100899] [Citation(s) in RCA: 431] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The stroma of spinach chloroplasts contains ascorbic acid and glutathione at millimolar concentrations. [Reduced glutathione]/[oxidized glutathione] and [ascorbate]/[dehydroascorbate] ratios are high under both light and dark conditions and no evidence for a role of oxidized glutathione or dehydroascorbate in the dark-deactivation of fructose bisphosphatase could be obtained. Addition of H2O2 to chloroplasts in the dark decreases the above ratios, an effect that is reversed on illumination. Addition of Paraquat to illuminated chloroplasts caused a rapid oxidation of reduced glutathione and ascorbate, and apparent loss of dehydroascorbate. Paraquat rapidly inactivated fructose bisphosphatase activity, as assayed under physiological conditions.
Collapse
|
research-article |
42 |
431 |
2
|
Vera JC, Rivas CI, Fischbarg J, Golde DW. Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Nature 1993; 364:79-82. [PMID: 8316303 DOI: 10.1038/364079a0] [Citation(s) in RCA: 375] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Although vitamin C is critical to human physiology, it is not clear how it is taken up into cells. The kinetics of cell and tissue accumulation of ascorbic acid in vitro indicate that the process is mediated by specific transporters at the cell membrane. Some experimental observations have linked the transport of ascorbic acid with hexose transport systems in mammalian cells, although no clear information is available regarding the specific role(s) of these transporters, if any, in this process. Here we use the Xenopus laevis oocyte expression system to show that the mammalian facilitative hexose transporters are efficient transporters of the oxidized form of vitamin C (dehydroascorbic acid). Two transport pathways, one with low affinity and one with high affinity for dehydroascorbic acid, were found in oocytes expressing the mammalian transporters, and these oocytes accumulated vitamin C against a concentration gradient when supplied with dehydroascorbic acid. We obtained similar results in experiments using normal human neutrophils. These observations indicate that mammalian facilitative hexose transporters are a physiologically significant pathway for the uptake and accumulation of vitamin C by cells, and suggest a mechanism for the accumulation of ascorbic acid against a concentration gradient.
Collapse
|
|
32 |
375 |
3
|
Fry SC. Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem J 1998; 332 ( Pt 2):507-15. [PMID: 9601081 PMCID: PMC1219507 DOI: 10.1042/bj3320507] [Citation(s) in RCA: 360] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Scission of plant cell wall polysaccharides in vivo has generally been assumed to be enzymic. However, in the presence of l-ascorbate, such polysaccharides are shown to undergo non-enzymic scission under physiologically relevant conditions. Scission of xyloglucan by 1 mM ascorbate had a pH optimum of 4.5, and the maximum scission rate was reached after a 10-25-min delay. Catalase prevented the scission, whereas added H2O2 (0.1-10 mM) increased the scission rate and shortened the delay. Ascorbate caused detectable xyloglucan scission above approx. 5 microM. Dehydroascorbate was much less effective. Added Cu2+ (>0.3 microM) also increased the rate of ascorbate-induced scission; EDTA was inhibitory. The rate of scission in the absence of added metals appeared to be attributable to the traces of Cu (2.8 mg.kg-1) present in the xyloglucan. Ascorbate-induced scission of xyloglucan was inhibited by radical scavengers; their effectiveness was proportional to their rate constants for reaction with hydroxyl radicals (.OH). It is proposed that ascorbate non-enzymically reduces O2 to H2O2, and Cu2+ to Cu+, and that H2O2 and Cu+ react to form .OH, which causes oxidative scission of polysaccharide chains. Evidence is reviewed to suggest that, in the wall of a living plant cell, Cu+ and H2O2 are formed by reactions involving ascorbate and its products, dehydroascorbate and oxalate. Systems may thus be in place to produce apoplastic .OH radicals in vivo. Although .OH radicals are often regarded as detrimental, they are so short-lived that they could act as site-specific oxidants targeted to play a useful role in loosening the cell wall, e.g. during cell expansion, fruit ripening and organ abscission.
Collapse
|
research-article |
27 |
360 |
4
|
Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Levine M. Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J Biol Chem 1997; 272:18982-9. [PMID: 9228080 DOI: 10.1074/jbc.272.30.18982] [Citation(s) in RCA: 341] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dehydroascorbic acid (DHA) is rapidly taken up by cells and reduced to ascorbic acid (AA). Using the Xenopus laevis oocyte expression system we examined transport of DHA and AA via glucose transporter isoforms GLUT1-5 and SGLT1. The apparent Km of DHA transport via GLUT1 and GLUT3 was 1.1 +/- 0.2 and 1.7 +/- 0.3 mM, respectively. High performance liquid chromatography analysis confirmed 100% reduction of DHA to AA within oocytes. GLUT4 transport of DHA was only 2-4-fold above control and transport kinetics could not be calculated. GLUT2, GLUT5, and SGLT1 did not transport DHA and none of the isoforms transported AA. Radiolabeled sugar transport confirmed transporter function and identity of all cDNA clones was confirmed by restriction fragment mapping. GLUT1 and GLUT3 cDNA were further verified by polymerase chain reaction. DHA transport activity in both GLUT1 and GLUT3 was inhibited by 2-deoxyglucose, D-glucose, and 3-O-methylglucose among other hexoses while fructose and L-glucose showed no inhibition. Inhibition by the endofacial inhibitor, cytochalasin B, was non-competitive and inhibition by the exofacial inhibitor, 4,6-O-ethylidene-alpha-glucose, was competitive. Expressed mutant constructs of GLUT1 and GLUT3 did not transport DHA. DHA and 2-deoxyglucose uptake by Chinese hamster ovary cells overexpressing either GLUT1 or GLUT3 was increased 2-8-fold over control cells. These studies suggest GLUT1 and GLUT3 isoforms are the specific glucose transporter isoforms which mediate DHA transport and subsequent accumulation of AA.
Collapse
|
|
28 |
341 |
5
|
|
Review |
50 |
316 |
6
|
|
Review |
33 |
281 |
7
|
|
|
30 |
262 |
8
|
May JM, Mendiratta S, Hill KE, Burk RF. Reduction of dehydroascorbate to ascorbate by the selenoenzyme thioredoxin reductase. J Biol Chem 1997; 272:22607-10. [PMID: 9278416 DOI: 10.1074/jbc.272.36.22607] [Citation(s) in RCA: 255] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recycling of ascorbate from its oxidized forms is essential to maintain stores of the vitamin in human cells. Whereas reduction of dehydroascorbate to ascorbate is thought to be largely GSH-dependent, we reconsidered the possibility that the selenium-dependent thioredoxin system might contribute to ascorbate regeneration. We found that purified rat liver thioredoxin reductase functions as an NADPH-dependent dehydroascorbate reductase, with an apparent Km of 2. 5 mM for dehydroascorbate, and a kcat of 90 min-1. Addition of 2.8 microM purified rat liver thioredoxin lowered the apparent Km to 0.7 mM, without affecting the turnover (kcat of 71 min-1). Since thioredoxin reductase requires selenium, we tested the physiologic importance of this enzyme for dehydroascorbate reduction in livers from control and selenium-deficient rats. Selenium deficiency lowered liver thioredoxin reductase activity by 88%, glutathione peroxidase activity by 99%, and ascorbate content by 33%, but did not affect GSH content. NADPH-dependent dehydroascorbate reductase activity due to thioredoxin reductase, on the basis of inhibition by aurothioglucose, was decreased 88% in dialyzed liver cytosolic fractions from selenium-deficient rats. GSH-dependent dehydroascorbate reductase activity in liver cytosol was variable, but typically 2-3-fold that of NADPH-dependent activity. These results show that the thioredoxin system can reduce dehydroascorbate, and that this function is required for maintenance of liver ascorbate content.
Collapse
|
|
28 |
255 |
9
|
Panchuk II, Volkov RA, Schöffl F. Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. PLANT PHYSIOLOGY 2002; 129:838-53. [PMID: 12068123 PMCID: PMC161705 DOI: 10.1104/pp.001362] [Citation(s) in RCA: 252] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
To find evidence for a connection between heat stress response, oxidative stress, and common stress tolerance, we studied the effects of elevated growth temperatures and heat stress on the activity and expression of ascorbate peroxidase (APX). We compared wild-type Arabidopsis with transgenic plants overexpressing heat shock transcription factor 3 (HSF3), which synthesize heat shock proteins and are improved in basal thermotolerance. Following heat stress, APX activity was positively affected in transgenic plants and correlated with a new thermostable isoform, APX(S). This enzyme was present in addition to thermolabile cytosolic APX1, the prevalent isoform in unstressed cells. In HSF3-transgenic plants, APX(S) activity was detectable at normal temperature and persisted after severe heat stress at 44 degrees C. In nontransgenic plants, APX(S) was undetectable at normal temperature, but could be induced by moderate heat stress. The mRNA expression profiles of known and three new Apx genes were determined using real-time PCR. Apx1 and Apx2 genes encoding cytosolic APX were heat stress and HSF dependently expressed, but only the representations of Apx2 mRNA met the criteria that suggest identity between APX(S) and APX2: not expressed at normal temperature in wild type, strong induction by heat stress, and HSF3-dependent expression in transgenic plants. Our data suggest that Apx2 is a novel heat shock gene and that the enzymatic activity of APX2/APX(S) is required to compensate heat stress-dependent decline of APX1 activity in the cytosol. The functional roles of modulations of APX expression and the interdependence of heat stress and oxidative stress response and signaling mechanisms are discussed.
Collapse
|
Comparative Study |
23 |
252 |
10
|
Chatterjee IB, Majumder AK, Nandi BK, Subramanian N. Synthesis and some major functions of vitamin C in animals. Ann N Y Acad Sci 1975; 258:24-47. [PMID: 1106297 DOI: 10.1111/j.1749-6632.1975.tb29266.x] [Citation(s) in RCA: 251] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
Review |
50 |
251 |
11
|
Abstract
Ascorbic acid and dehydroascorbic acid (DHAA, oxidized vitamin C) are dietary sources of vitamin C in humans. Both nutrients are absorbed from the lumen of the intestine and renal tubules by, respectively, enterocytes and renal epithelial cells. Subsequently vitamin C circulates in the blood and enters all of the other cells of the body. Concerning flux across the plasma membrane, simple diffusion of ascorbic acid plays only a small or negligible role. More important are specific mechanisms of transport and metabolism that concentrate vitamin C intracellularly to enhance its function as an enzyme cofactor and antioxidant. The known transport mechanisms are facilitated diffusion of DHAA through glucose-sensitive and -insensitive transporters, facilitated diffusion of ascorbate through channels, exocytosis of ascorbate in secretory vesicles, and secondary active transport of ascorbate through the sodium-dependent vitamin C transporters SVCT1 and SVCT2 proteins that are encoded by the genes Slc23a1 and Slc23a2, respectively. Evidence is reviewed indicating that these transport pathways are regulated under physiological conditions and altered by aging and disease.
Collapse
|
Review |
20 |
239 |
12
|
Ort DR, Baker NR. A photoprotective role for O(2) as an alternative electron sink in photosynthesis? CURRENT OPINION IN PLANT BIOLOGY 2002; 5:193-8. [PMID: 11960735 DOI: 10.1016/s1369-5266(02)00259-5] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Photoprotection of the photosynthetic apparatus has two essential elements: first, the thermal dissipation of excess excitation energy in the photosystem II antennae (i.e. non-photochemical quenching), and second, the ability of photosystem II to transfer electrons to acceptors within the chloroplast (i.e. photochemical quenching). Recent studies indicate that the proportion of absorbed photons that are thermally dissipated through the non-photochemical pathway often reaches a maximum well before saturating irradiances are reached. Hence, photochemical quenching is crucial for photoprotection at saturating light intensities. When plants are exposed to environmental stresses and the availability of CO(2) within the leaf is restricted, the reduction of oxygen by both the photorespiratory and the Mehler ascorbate peroxidase pathways appears to play a critical photoprotective role, substituting for CO(2) in sustaining electron flow. Induction of high activity of the Mehler ascorbate peroxidase pathway may be associated with acclimation to environmental stress.
Collapse
|
Review |
23 |
217 |
13
|
Chen Z, Gallie DR. The ascorbic acid redox state controls guard cell signaling and stomatal movement. THE PLANT CELL 2004; 16:1143-62. [PMID: 15084716 PMCID: PMC423206 DOI: 10.1105/tpc.021584] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Accepted: 02/29/2004] [Indexed: 05/18/2023]
Abstract
H(2)O(2) serves an important stress signaling function and promotes stomatal closure, whereas ascorbic acid (Asc) is the major antioxidant that scavenges H(2)O(2). Dehydroascorbate reductase (DHAR) catalyzes the reduction of dehydroascorbate (oxidized ascorbate) to Asc and thus contributes to the regulation of the Asc redox state. In this study, we observed that the level of H(2)O(2) and the Asc redox state in guard cells and whole leaves are diurnally regulated such that the former increases during the afternoon, whereas the latter decreases. Plants with an increased guard cell Asc redox state were generated by increasing DHAR expression, and these exhibited a reduction in the level of guard cell H(2)O(2). In addition, a higher percentage of open stomata, an increase in total open stomatal area, increased stomatal conductance, and increased transpiration were observed. Guard cells with an increase in Asc redox state were less responsive to H(2)O(2) or abscisic acid signaling, and the plants exhibited greater water loss under drought conditions, whereas suppressing DHAR expression conferred increased drought tolerance. Our analyses suggest that DHAR serves to maintain a basal level of Asc recycling in guard cells that is insufficient to scavenge the high rate of H(2)O(2) produced in the afternoon, thus resulting in stomatal closure.
Collapse
|
research-article |
21 |
205 |
14
|
Abstract
Vitamin C is essential for many enzymatic reactions and also acts as a free radical scavenger. Specific non-overlapping transport proteins mediate the transport of the oxidized form of vitamin C, dehydroascorbic acid, and the reduced form, L-ascorbic acid, across biological membranes. Dehydroascorbic acid uptake is via the facilitated-diffusion glucose transporters, GLUT 1, 3 and 4, but under physiological conditions these transporters are unlikely to play a major role in the uptake of vitamin C due to the high concentrations of glucose that will effectively block influx. L-ascorbic acid enters cells via Na+-dependent systems, and two isoforms of these transporters (SVCT1 and SVCT2) have recently been cloned from humans and rats. Transport by both isoforms is stereospecific, with a pH optimum of approximately 7.5 and a Na+:ascorbic acid stoichiometry of 2:1. SVCT2 may exhibit a higher affinity for ascorbic acid than SVCT1 but with a lower maximum velocity. SVCT1 and SVCT2 are predicted to have 12 transmembrane domains, but they share no structural homology with other Na+ co-transporters. Potential sites for phosphorylation by protein kinase C exist on the cytoplasmic surface of both proteins, with an additional protein kinase A site in SVCT1. The two isoforms also differ in their tissue distribution: SVCT1 is present in epithelial tissues, whereas SVCT2 is present in most tissues with the exception of lung and skeletal muscle.
Collapse
|
Review |
24 |
201 |
15
|
Dhariwal KR, Hartzell WO, Levine M. Ascorbic acid and dehydroascorbic acid measurements in human plasma and serum. Am J Clin Nutr 1991; 54:712-6. [PMID: 1897478 DOI: 10.1093/ajcn/54.4.712] [Citation(s) in RCA: 192] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We investigated whether circulating ascorbic acid in humans is protein bound or free and whether ascorbic acid exists in its reduced form alone as ascorbic acid or in its reduced and oxidized forms as ascorbic acid and dehydroascorbic acid, respectively. Ascorbic acid and dehydroascorbic acid were determined by using HPLC with coulometric electrochemical detection, and protein binding was determined by centrifugal ultrafiltration. Ascorbic acid was free in plasma and serum of normal, healthy volunteers, 10 men and 10 women. Ascorbic acid was detectable only in its reduced form. However, dehydroascorbic acid could be made to appear in samples processed under oxidizing conditions. Because circulating ascorbic acid is free and is detected only as reduced vitamin, ascorbic acid may be available without intermediates for peripheral utilization. Dehydroascorbic acid may not be present in plasma and serum of normal humans unless assay conditions permit ascorbic acid oxidation.
Collapse
|
|
34 |
192 |
16
|
Lykkesfeldt J. Determination of ascorbic acid and dehydroascorbic acid in biological samples by high-performance liquid chromatography using subtraction methods: reliable reduction with tris[2-carboxyethyl]phosphine hydrochloride. Anal Biochem 2000; 282:89-93. [PMID: 10860503 DOI: 10.1006/abio.2000.4592] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Determination of dehydroascorbic acid in biological samples most commonly involves indirect measurement. The concentration is calculated by subtraction of the measured ascorbic acid concentration from that of total ascorbic acid analyzed after reduction of the dehydroascorbic acid present; a methodology also referred to as subtraction methods. Consequently, successful determination of dehydroascorbic acid is dependent on proper sample handling, quantitative reduction of the compound, and accurate quantification of both ascorbic acid and total ascorbic acid. In this paper, the recently introduced reductant tris[2-carboxyethyl]phosphine (TCEP) is evaluated as a reliable alternative to the commonly used reducing agent dithiothreitol (DTT). The results show that TCEP offers a more efficient reduction of dehydroascorbic acid at low pH compared to that of DTT. Moreover, while DTT maintains a reducing sample environment for less than 24 h, TCEP show complete protection from oxidation of ascorbic acid for at least 96 h following sample preparation. Removal of TCEP prior to analysis is unnecessary. A revised HPLC-EC method incorporating TCEP as reductant as well as the coanalysis of isoascorbic acid and uric acid is presented. The within- and between-day coefficients of variation for the complete assay are less than 1.5 and 3.5% for all analytes. As a whole, the method presented here is simpler and more reliable than existing methods.
Collapse
|
Comparative Study |
25 |
190 |
17
|
Matsuo Y, Kihara T, Ikeda M, Ninomiya M, Onodera H, Kogure K. Role of neutrophils in radical production during ischemia and reperfusion of the rat brain: effect of neutrophil depletion on extracellular ascorbyl radical formation. J Cereb Blood Flow Metab 1995; 15:941-7. [PMID: 7593354 DOI: 10.1038/jcbfm.1995.119] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A growing body of experimental data indicate that oxygen radicals may mediate the brain injury during ischemia-reperfusion. One potential source of oxygen radicals is activated neutrophils. To study the role of neutrophils in radical production during cerebral ischemia-reperfusion, we evaluated the effects of depletion of circulating neutrophils by administration of an anti-neutrophil monoclonal antibody (RP3) on radical formation in rats with 1-h middle cerebral artery (MCA) occlusion. In the present study, we employed a new electron spin resonance method coupled with brain microdialysis. The method uses the endogenous ascorbyl radical (AR) concentration as a marker of oxygen radicals and requires no spin-trapping agents. In the vehicle controls, extracellular AR decreased during MCA occlusion. After reperfusion, AR significantly increased at 30 min and 1 h, returned to near basal level until 2 h, and increased again at 24 h after reperfusion. In the rats treated with RP3, AR decreased during MCA occlusion to the same extent as in the vehicle control. However, RP3 treatment completely inhibited the increase in extracellular AR after reperfusion. RP3 treatment exerted no effect on the changes in extracellular ascorbate or tissue PO2 throughout the experimental period. In conclusion, neutrophils are a major source of oxygen radicals during reperfusion after focal cerebral ischemia.
Collapse
|
|
30 |
183 |
18
|
Abstract
Ascorbate is one of the major antioxidant metabolites in plant tissues. This protocol describes a microplate-adapted colorimetric ascorbate assay, in which ferric ion is reduced by ascorbate to the ferrous ion. The ferrous ion reacts with alpha-alpha'-bipyridl to form a complex with characteristic absorbance at 525 nm. With the chemical reduction of any dehydroascorbate (DHA) in a sample, total ascorbate can be assayed using the alpha-alpha'-bipyridl method, and DHA can be estimated by subtracting the reduced portion from the total ascorbate pool. The assay is performed in microcentrifuge tubes and assessed in a 96-well plate reader. Reduced ascorbate, DHA and total ascorbate of at least 64 experimental samples can be analyzed easily in 1 d.
Collapse
|
|
18 |
179 |
19
|
Abstract
This article provides a comprehensive review on ascorbate metabolism in animal cells, especially in hepatocytes. The authors deal with the synthesis and the breakdown of ascorbate as a part of the antioxidant and carbohydrate metabolism. Hepatocellular and interorgan cycles with the participation of ascorbate are proposed, based on experiments with murine and human cells; reactions of hexuronic acid pathway, non-oxidative branch of the pentose phosphate cycle, glycolysis and gluconeogenesis are involved. Besides the well-known redox coupling between the two major water-soluble antioxidants (glutathione and ascorbate), their metabolic links have been also outlined. Glycogenolysis as a major source of UDP-glucuronic acid determines the rate of hexuronic acid pathway leading to ascorbate synthesis. Glycogenolysis is regulated by oxidized and reduced glutathione; therefore, glycogen, ascorbate and glutathione metabolism are related to each other. Hydrogen peroxide formation, due to the activity of gulonolactone oxidase catalyzing the last step of ascorbate synthesis, also affects the antioxidant status in hepatocytes. Based on new observations a complex metabolic regulation is supposed. Its element might be present also in humans who lost gulonolactone oxidase but they need and metabolize ascorbate. Finally, the obvious disadvantages and the possible advantages of the lost ascorbate synthesizing ability in humans are considered.
Collapse
|
Review |
28 |
171 |
20
|
Abstract
The oxidative degradation of ascorbic acid by hydrogen peroxide was examined to determine routes of degradation and identify the initial products which form when ascorbic acid is oxidized. When reacted with hydrogen peroxide, solutions of ascorbic acid and dehydroascorbic acid are both ultimately oxidized to the same species, having a mass spectrum consistent with threonic acid. When the intermediate steps in the oxidation of ascorbic acid are examined in detail, ascorbic acid, dehydroascorbic acid, and solutions containing hydrolyzed dehydroascorbic acid are all oxidized through a six-carbon compound previously proposed to be tetrahydroxydiketohexanoic acid. Both dehydroascorbic acid and hydrolyzed dehydroascorbic acid (diketogulonic acid) are more susceptible to hydrogen peroxide oxidation than ascorbic acid. Based on mass spectral analysis, diketogulonic acid serves as an oxygen sink, implying that it may be a better reducing agent for toxic oxygen species than ascorbic acid. These data indicate that oxidation of ascorbic acid by hydrogen peroxide primarily proceeds through three major six-carbon intermediates, each with distinctive redox properties. The stable metabolite diketogulonic may be a critical antioxidant in ascorbic-acid-containing systems.
Collapse
|
|
27 |
157 |
21
|
Rumsey SC, Daruwala R, Al-Hasani H, Zarnowski MJ, Simpson IA, Levine M. Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes. J Biol Chem 2000; 275:28246-53. [PMID: 10862609 DOI: 10.1074/jbc.m000988200] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Dehydroascorbic acid (DHA), the first stable oxidation product of vitamin C, was transported by GLUT1 and GLUT3 in Xenopus laevis oocytes with transport rates similar to that of 2-deoxyglucose (2-DG), but due to inherent difficulties with GLUT4 expression in oocytes it was uncertain whether GLUT4 transported DHA (Rumsey, S. C. , Kwon, O., Xu, G. W., Burant, C. F., Simpson, I., and Levine, M. (1997) J. Biol. Chem. 272, 18982-18989). We therefore studied DHA and 2-DG transport in rat adipocytes, which express GLUT4. Without insulin, rat adipocytes transported 2-DG 2-3-fold faster than DHA. Preincubation with insulin (0.67 micrometer) increased transport of each substrate similarly: 7-10-fold for 2-DG and 6-8-fold for DHA. Because intracellular reduction of DHA in adipocytes was complete before and after insulin stimulation, increased transport of DHA was not explained by increased internal reduction of DHA to ascorbate. To determine apparent transport kinetics of GLUT4 for DHA, GLUT4 expression in Xenopus oocytes was reexamined. Preincubation of oocytes for >4 h with insulin (1 micrometer) augmented GLUT4 transport of 2-DG and DHA by up to 5-fold. Transport of both substrates was inhibited by cytochalasin B and displayed saturable kinetics. GLUT4 had a higher apparent transport affinity (K(m) of 0.98 versus 5.2 mm) and lower maximal transport rate (V(max) of 66 versus 880 pmol/oocyte/10 min) for DHA compared with 2-DG. The lower transport rate for DHA could not be explained by binding differences at the outer membrane face, as shown by inhibition with ethylidene glucose, or by transporter trans-activation and therefore was probably due to substrate-specific differences in transporter/substrate translocation or release. These novel data indicate that the insulin-sensitive transporter GLUT4 transports DHA in both rat adipocytes and Xenopus oocytes. Alterations of this mechanism in diabetes could have clinical implications for ascorbate utilization.
Collapse
|
|
25 |
150 |
22
|
Jones W, Li X, Qu ZC, Perriott L, Whitesell RR, May JM. Uptake, recycling, and antioxidant actions of alpha-lipoic acid in endothelial cells. Free Radic Biol Med 2002; 33:83-93. [PMID: 12086686 DOI: 10.1016/s0891-5849(02)00862-6] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Alpha-lipoic acid, which becomes a powerful antioxidant in its reduced form, has been suggested as a dietary supplement to treat diseases associated with excessive oxidant stress. Because the vascular endothelium is dysfunctional in many of these conditions, we studied the uptake, reduction, and antioxidant effects of alpha-lipoic acid in cultured human endothelial cells (EA.hy926). Using a new assay for dihydrolipoic acid, we found that EA.hy926 cells rapidly take up and reduce alpha-lipoic acid to dihydrolipoic acid, most of which is released into the incubation medium. Nonetheless, the cells maintain dihydrolipoic acid following overnight culture, probably by recycling it from alpha-lipoic acid. Acute reduction of alpha-lipoic acid activates the pentose phosphate cycle and consumes nicotinamide adenine dinucleotide phosphate (NADPH). Lysates of EA.hy926 cells reduce alpha-lipoic acid using both NADPH and nicotinamide adenine dinucleotide (NADH) as electron donors, although NADPH-dependent reduction is about twice that due to NADH. NADPH-dependent alpha-lipoic acid reduction is mostly due to thioredoxin reductase. Pre-incubation of cells with alpha-lipoic acid increases their capacity to reduce extracellular ferricyanide, to recycle intracellular dehydroascorbic acid to ascorbate, to decrease reactive oxygen species generated by redox cycling of menadione, and to generate nitric oxide. These results show that alpha-lipoic acid enhances both the antioxidant defenses and the function of endothelial cells.
Collapse
|
|
23 |
150 |
23
|
Burczynski ME, Sridhar GR, Palackal NT, Penning TM. The reactive oxygen species--and Michael acceptor-inducible human aldo-keto reductase AKR1C1 reduces the alpha,beta-unsaturated aldehyde 4-hydroxy-2-nonenal to 1,4-dihydroxy-2-nonene. J Biol Chem 2001; 276:2890-7. [PMID: 11060293 DOI: 10.1074/jbc.m006655200] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human aldo-keto reductase AKR1C1 (20alpha(3alpha)-hydroxysteroid dehydrogenase) is induced by electrophilic Michael acceptors and reactive oxygen species (ROS) via a presumptive antioxidant response element (Burczynski, M. E., Lin, H. K., and Penning, T. M. (1999) Cancer Res. 59, 607-614). Physiologically, AKR1C1 regulates progesterone action by converting the hormone into its inactive metabolite 20alpha-hydroxyprogesterone, and toxicologically this enzyme activates polycyclic aromatic hydrocarbon trans-dihydrodiols to redox-cycling o-quinones. However, the significance of its potent induction by Michael acceptors and oxidative stress is unknown. 4-Hydroxy-2-nonenal (HNE) and other alpha,beta-unsaturated aldehydes produced during lipid peroxidation were reduced by AKR1C1 with high catalytic efficiency. Kinetic studies revealed that AKR1C1 reduced HNE (K(m) = 34 microm, k(cat) = 8.8 min(-1)) with a k(cat)/K(m) similar to that for 20alpha-hydroxysteroids. Six other homogeneous recombinant AKRs were examined for their ability to reduce HNE. Of these, AKR1C1 possessed one of the highest specific activities and was the only isoform induced by oxidative stress and by agents that deplete glutathione (ethacrynic acid). Several hydroxysteroid dehydrogenases of the AKR1C subfamily catalyzed the reduction of HNE with higher activity than aldehyde reductase (AKR1A1). NMR spectroscopy identified the product of the NADPH-dependent reduction of HNE as 1,4-dihydroxy-2-nonene. The K(m) of recombinant AKR1C1 for nicotinamide cofactors (K(m) NADPH approximately 6 microm, K(m)(app) NADH >6 mm) suggested that it is primed for reductive metabolism of HNE. Isoform-specific reverse transcription-polymerase chain reaction showed that exposure of HepG2 cells to HNE resulted in elevated levels of AKR1C1 mRNA. Thus, HNE induces its own metabolism via AKR1C1, and this enzyme may play a hitherto unrecognized role in a response mounted to counter oxidative stress. AKRs represent alternative GSH-independent/NADPH-dependent routes for the reductive elimination of HNE. Of these, AKR1C1 provides an inducible cytosolic barrier to HNE following ROS exposure.
Collapse
|
|
24 |
145 |
24
|
May JM, Cobb CE, Mendiratta S, Hill KE, Burk RF. Reduction of the ascorbyl free radical to ascorbate by thioredoxin reductase. J Biol Chem 1998; 273:23039-45. [PMID: 9722529 DOI: 10.1074/jbc.273.36.23039] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recycling of ascorbic acid from its oxidized forms is required to maintain intracellular stores of the vitamin in most cells. Since the ubiquitous selenoenzyme thioredoxin reductase can recycle dehydroascorbic acid to ascorbate, we investigated the possibility that the enzyme can also reduce the one-electron-oxidized ascorbyl free radical to ascorbate. Purified rat liver thioredoxin reductase catalyzed the disappearance of NADPH in the presence of low micromolar concentrations of the ascorbyl free radical that were generated from ascorbate by ascorbate oxidase, and this effect was markedly stimulated by selenocystine. Dehydroascorbic acid is generated by dismutation of the ascorbyl free radical, and thioredoxin reductase can reduce dehydroascorbic acid to ascorbate. However, control studies showed that the amounts of dehydroascorbic acid generated under the assay conditions used were too low to account for the observed loss of NADPH. Electron paramagnetic resonance spectroscopy directly confirmed that the reductase decreased steady-state ascorbyl free radical concentrations, as expected if thioredoxin reductase reduces the ascorbyl free radical. Dialyzed cytosol from rat liver homogenates also catalyzed NADPH-dependent reduction of the ascorbyl free radical. Specificity for thioredoxin reductase was indicated by loss of activity in dialyzed cytosol prepared from livers of selenium-deficient rats, by inhibition with aurothioglucose at concentrations selective for thioredoxin reductase, and by stimulation with selenocystine. Microsomal fractions prepared from rat liver showed substantial NADH-dependent ascorbyl free radical reduction that was not sensitive to selenium depletion. These results suggest that thioredoxin reductase can function as a cytosolic ascorbyl free radical reductase that may complement cellular ascorbate recycling by membrane-bound NADH-dependent reductases.
Collapse
|
|
27 |
140 |
25
|
Abstract
Dehydroascorbic acid (DHA) is abundant in the human diet and also is generated from vitamin C (ascorbic acid, AA) in the lumen of the gastrointestinal tract. DHA is absorbed from the lumen of the small intestine and reduced to AA, which subsequently circulates in the blood. Utilization of AA as an antioxidant and enzyme cofactor causes its oxidation to DHA in extracellular fluid and cells. DHA has an important role in many cell types because it can be used to regenerate AA. Both physiological (e.g. insulin, insulin-like growth factor I, cyclic AMP) and pathological (e.g. oxidative stress, diabetes, sepsis) factors alter the transport and metabolic mechanisms responsible for this DHA recycling.
Collapse
|
Review |
23 |
140 |