1
|
Callister SJ, Barry RC, Adkins JN, Johnson ET, Qian WJ, Webb-Robertson BJM, Smith RD, Lipton MS. Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. J Proteome Res 2006; 5:277-86. [PMID: 16457593 PMCID: PMC1992440 DOI: 10.1021/pr050300l] [Citation(s) in RCA: 327] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Central tendency, linear regression, locally weighted regression, and quantile techniques were investigated for normalization of peptide abundance measurements obtained from high-throughput liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR MS). Arbitrary abundances of peptides were obtained from three sample sets, including a standard protein sample, two Deinococcus radiodurans samples taken from different growth phases, and two mouse striatum samples from control and methamphetamine-stressed mice (strain C57BL/6). The selected normalization techniques were evaluated in both the absence and presence of biological variability by estimating extraneous variability prior to and following normalization. Prior to normalization, replicate runs from each sample set were observed to be statistically different, while following normalization replicate runs were no longer statistically different. Although all techniques reduced systematic bias to some degree, assigned ranks among the techniques revealed that for most LC-FTICR-MS analyses linear regression normalization ranked either first or second. However, the lack of a definitive trend among the techniques suggested the need for additional investigation into adapting normalization approaches for label-free proteomics. Nevertheless, this study serves as an important step for evaluating approaches that address systematic biases related to relative quantification and label-free proteomics.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
327 |
2
|
Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, Lai B, Ravel B, Li SMW, Kemner KM, Fredrickson JK. Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol 2007; 5:e92. [PMID: 17373858 PMCID: PMC1828145 DOI: 10.1371/journal.pbio.0050092] [Citation(s) in RCA: 300] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 02/02/2007] [Indexed: 11/19/2022] Open
Abstract
In the hierarchy of cellular targets damaged by ionizing radiation (IR), classical models of radiation toxicity place DNA at the top. Yet, many prokaryotes are killed by doses of IR that cause little DNA damage. Here we have probed the nature of Mn-facilitated IR resistance in Deinococcus radiodurans, which together with other extremely IR-resistant bacteria have high intracellular Mn/Fe concentration ratios compared to IR-sensitive bacteria. For in vitro and in vivo irradiation, we demonstrate a mechanistic link between Mn(II) ions and protection of proteins from oxidative modifications that introduce carbonyl groups. Conditions that inhibited Mn accumulation or Mn redox cycling rendered D. radiodurans radiation sensitive and highly susceptible to protein oxidation. X-ray fluorescence microprobe analysis showed that Mn is globally distributed in D. radiodurans, but Fe is sequestered in a region between dividing cells. For a group of phylogenetically diverse IR-resistant and IR-sensitive wild-type bacteria, our findings support the idea that the degree of resistance is determined by the level of oxidative protein damage caused during irradiation. We present the case that protein, rather than DNA, is the principal target of the biological action of IR in sensitive bacteria, and extreme resistance in Mn-accumulating bacteria is based on protein protection. One original goal of radiobiology was to explain why cells are so sensitive to ionizing radiation (IR). Early studies in bacteria incriminated DNA as the principal radiosensitive target, an assertion that remains central to modern radiation toxicity models. More recently, the emphasis has shifted to understanding why bacteria such as Deinococcus radiodurans are extremely resistant to IR, by focusing on DNA repair systems expressed during recovery from high doses of IR. Unfortunately, as key features of DNA-centric hypotheses of extreme resistance have grown weaker, the study of alternative cellular targets has lagged far behind, mostly because of their relative biological complexity. Recent studies have shown that extreme levels of bacterial IR resistance correlate with high intracellular Mn(II) concentrations, and resistant and sensitive bacteria are equally susceptible to IR-induced DNA damage. The current work establishes a mechanistic link between Mn(II) and protection of proteins from radiation damage. In contrast to resistant bacteria, naturally sensitive bacteria are highly susceptible to IR-induced protein oxidation. We propose that sensitive bacteria sustain lethal levels of protein damage at radiation doses that elicit relatively little DNA damage, and that extreme resistance in bacteria is dependent on protein protection. A high intracellular concentration of manganese inDeinococcus radiodurans protects proteins, but not DNA, from ionizing radiation-induced oxidative damage. Protein protection may be critical to the known radiation resistance of these bacteria.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
300 |
3
|
Long F, Nicholls RA, Emsley P, Gražulis S, Merkys A, Vaitkus A, Murshudov GN. AceDRG: a stereochemical description generator for ligands. Acta Crystallogr D Struct Biol 2017; 73:112-122. [PMID: 28177307 PMCID: PMC5297914 DOI: 10.1107/s2059798317000067] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/03/2017] [Indexed: 11/11/2022] Open
Abstract
The program AceDRG is designed for the derivation of stereochemical information about small molecules. It uses local chemical and topological environment-based atom typing to derive and organize bond lengths and angles from a small-molecule database: the Crystallography Open Database (COD). Information about the hybridization states of atoms, whether they belong to small rings (up to seven-membered rings), ring aromaticity and nearest-neighbour information is encoded in the atom types. All atoms from the COD have been classified according to the generated atom types. All bonds and angles have also been classified according to the atom types and, in a certain sense, bond types. Derived data are tabulated in a machine-readable form that is freely available from CCP4. AceDRG can also generate stereochemical information, provided that the basic bonding pattern of a ligand is known. The basic bonding pattern is perceived from one of the computational chemistry file formats, including SMILES, mmCIF, SDF MOL and SYBYL MOL2 files. Using the bonding chemistry, atom types, and bond and angle tables generated from the COD, AceDRG derives the `ideal' bond lengths, angles, plane groups, aromatic rings and chirality information, and writes them to an mmCIF file that can be used by the refinement program REFMAC5 and the model-building program Coot. Other refinement and model-building programs such as PHENIX and BUSTER can also use these files. AceDRG also generates one or more coordinate sets corresponding to the most favourable conformation(s) of a given ligand. AceDRG employs RDKit for chemistry perception and for initial conformation generation, as well as for the interpretation of SMILES strings, SDF MOL and SYBYL MOL2 files.
Collapse
|
research-article |
8 |
276 |
4
|
Daly MJ, Gaidamakova EK, Matrosova VY, Kiang JG, Fukumoto R, Lee DY, Wehr NB, Viteri GA, Berlett BS, Levine RL. Small-molecule antioxidant proteome-shields in Deinococcus radiodurans. PLoS One 2010; 5:e12570. [PMID: 20838443 PMCID: PMC2933237 DOI: 10.1371/journal.pone.0012570] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 08/09/2010] [Indexed: 01/28/2023] Open
Abstract
For Deinococcus radiodurans and other bacteria which are extremely resistant to ionizing radiation, ultraviolet radiation, and desiccation, a mechanistic link exists between resistance, manganese accumulation, and protein protection. We show that ultrafiltered, protein-free preparations of D. radiodurans cell extracts prevent protein oxidation at massive doses of ionizing radiation. In contrast, ultrafiltrates from ionizing radiation-sensitive bacteria were not protective. The D. radiodurans ultrafiltrate was enriched in Mn, phosphate, nucleosides and bases, and peptides. When reconstituted in vitro at concentrations approximating those in the D. radiodurans cytosol, peptides interacted synergistically with Mn2+ and orthophosphate, and preserved the activity of large, multimeric enzymes exposed to 50,000 Gy, conditions which obliterated DNA. When applied ex vivo, the D. radiodurans ultrafiltrate protected Escherichia coli cells and human Jurkat T cells from extreme cellular insults caused by ionizing radiation. By establishing that Mn2+-metabolite complexes of D. radiodurans specifically protect proteins against indirect damage caused by gamma-rays delivered in vast doses, our findings provide the basis for a new approach to radioprotection and insight into how surplus Mn budgets in cells combat reactive oxygen species.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
240 |
5
|
Wagner JR, Zhang J, Brunzelle JS, Vierstra RD, Forest KT. High resolution structure of Deinococcus bacteriophytochrome yields new insights into phytochrome architecture and evolution. J Biol Chem 2007; 282:12298-309. [PMID: 17322301 DOI: 10.1074/jbc.m611824200] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phytochromes are red/far red light photochromic photoreceptors that direct many photosensory behaviors in the bacterial, fungal, and plant kingdoms. They consist of an N-terminal domain that covalently binds a bilin chromophore and a C-terminal region that transmits the light signal, often through a histidine kinase relay. Using x-ray crystallography, we recently solved the first three-dimensional structure of a phytochrome, using the chromophore-binding domain of Deinococcus radiodurans bacterial phytochrome assembled with its chromophore, biliverdin IXalpha. Now, by engineering the crystallization interface, we have achieved a significantly higher resolution model. This 1.45A resolution structure helps identify an extensive buried surface between crystal symmetry mates that may promote dimerization in vivo. It also reveals that upon ligation of the C3(2) carbon of biliverdin to Cys(24), the chromophore A-ring assumes a chiral center at C2, thus becoming 2(R),3(E)-phytochromobilin, a chemistry more similar to that proposed for the attached chromophores of cyanobacterial and plant phytochromes than previously appreciated. The evolution of bacterial phytochromes to those found in cyanobacteria and higher plants must have involved greater fitness using more reduced bilins, such as phycocyanobilin, combined with a switch of the attachment site from a cysteine near the N terminus to one conserved within the cGMP phosphodiesterase/adenyl cyclase/FhlA domain. From analysis of site-directed mutants in the D. radiodurans phytochrome, we show that this bilin preference was partially driven by the change in binding site, which ultimately may have helped photosynthetic organisms optimize shade detection. Collectively, these three-dimensional structural results better clarify bilin/protein interactions and help explain how higher plant phytochromes evolved from prokaryotic progenitors.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
204 |
6
|
Levin-Zaidman S, Englander J, Shimoni E, Sharma AK, Minton KW, Minsky A. Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance? Science 2003; 299:254-6. [PMID: 12522252 DOI: 10.1126/science.1077865] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The bacterium Deinococcus radiodurans survives ionizing irradiation and other DNA-damaging assaults at doses that are lethal to all other organisms. How D. radiodurans accurately reconstructs its genome from hundreds of radiation-generated fragments in the absence of an intact template is unknown. Here we show that the D. radiodurans genome assumes an unusual toroidal morphology that may contribute to its radioresistance. We propose that, because of restricted diffusion within the tightly packed and laterally ordered DNA toroids, radiation-generated free DNA ends are held together, which may facilitate template-independent yet error-free joining of DNA breaks.
Collapse
MESH Headings
- Chromatin/ultrastructure
- Cobalt Radioisotopes
- DNA Damage
- DNA Repair
- DNA, Bacterial/analysis
- DNA, Bacterial/metabolism
- DNA, Bacterial/radiation effects
- DNA, Bacterial/ultrastructure
- Deinococcus/genetics
- Deinococcus/metabolism
- Deinococcus/radiation effects
- Deinococcus/ultrastructure
- Genome, Bacterial
- Manganese/metabolism
- Manganese Compounds/pharmacology
- Microscopy, Electron
- Microscopy, Electron, Scanning
- Nucleic Acid Conformation
- Radiation Tolerance
- Radiation, Ionizing
- Rec A Recombinases/metabolism
- Recombination, Genetic
- Sulfates/pharmacology
- Templates, Genetic
- Ultraviolet Rays
Collapse
|
|
22 |
167 |
7
|
Abstract
Antibiotics target ribosomes at distinct locations within functionally relevant sites. They exert their inhibitory action by diverse modes, including competing with substrate binding, interfering with ribosomal dynamics, minimizing ribosomal mobility, facilitating miscoding, hampering the progression of the mRNA chain, and blocking the nascent protein exit tunnel. Although the ribosomes are highly conserved organelles, they possess subtle sequence and/or conformational variations. These enable drug selectivity, thus facilitating clinical usage. The structural implications of these differences were deciphered by comparisons of high-resolution structures of complexes of antibiotics with ribosomal particles from eubacteria resembling pathogens and from an archaeon that shares properties with eukaryotes. The various antibiotic-binding modes detected in these structures demonstrate that members of antibiotic families possessing common chemical elements with minute differences might bind to ribosomal pockets in significantly different modes, governed by their chemical properties. Similarly, the nature of seemingly identical mechanisms of drug resistance is dominated, directly or via cellular effects, by the antibiotics' chemical properties. The observed variability in antibiotic binding and inhibitory modes justifies expectations for structurally based improved properties of existing compounds as well as for the discovery of novel drug classes.
Collapse
|
|
20 |
158 |
8
|
Davidovich C, Bashan A, Auerbach-Nevo T, Yaggie RD, Gontarek RR, Yonath A. Induced-fit tightens pleuromutilins binding to ribosomes and remote interactions enable their selectivity. Proc Natl Acad Sci U S A 2007; 104:4291-6. [PMID: 17360517 PMCID: PMC1817833 DOI: 10.1073/pnas.0700041104] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Indexed: 11/18/2022] Open
Abstract
New insights into functional flexibility at the peptidyl transferase center (PTC) and its vicinity were obtained by analysis of pleuromutilins binding modes to the ribosome. The crystal structures of Deinococcus radiodurans large ribosomal subunit complexed with each of three pleuromutilin derivatives: retapamulin (SB-275833), SB-280080, and SB-571519, show that all bind to the PTC with their core oriented similarly at the A-site and their C14 extensions pointing toward the P-site. Except for an H-bond network with a single nucleotide, G2061, which involves the essential keto group of all three compounds, only minor hydrophobic contacts are formed between the pleuromutilin C14 extensions and any ribosomal component, consistent with the PTC tolerance to amino acid diversity. Efficient drug binding mode is attained by a mechanism based on induced-fit motions exploiting the ribosomal intrinsic functional flexibility and resulting in conformational rearrangements that seal the pleuromutilin-binding pocket and tightens it up. Comparative studies identified a network of remote interactions around the PTC, indicating that pleuromutilins selectivity is acquired by nonconserved nucleotides residing in the PTC vicinity, in a fashion resembling allosterism. Likewise, pleuromutilin resistant mechanisms involve nucleotides residing in the environs of the binding pocket, consistent with their slow resistance-development rates.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
156 |
9
|
Chakrabortee S, Tripathi R, Watson M, Kaminski Schierle GS, Kurniawan DP, Kaminski CF, Wise MJ, Tunnacliffe A. Intrinsically disordered proteins as molecular shields. MOLECULAR BIOSYSTEMS 2012; 8:210-9. [PMID: 21909508 PMCID: PMC5365143 DOI: 10.1039/c1mb05263b] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The broad family of LEA proteins are intrinsically disordered proteins (IDPs) with several potential roles in desiccation tolerance, or anhydrobiosis, one of which is to limit desiccation-induced aggregation of cellular proteins. We show here that this activity, termed molecular shield function, is distinct from that of a classical molecular chaperone, such as HSP70 - while HSP70 reduces aggregation of citrate synthase (CS) on heating, two LEA proteins, a nematode group 3 protein, AavLEA1, and a plant group 1 protein, Em, do not; conversely, the LEA proteins reduce CS aggregation on desiccation, while HSP70 lacks this ability. There are also differences in interaction with client proteins - HSP70 can be co-immunoprecipitated with a polyglutamine-containing client, consistent with tight complex formation, whereas the LEA proteins can not, although a loose interaction is observed by Förster resonance energy transfer. In a further exploration of molecular shield function, we demonstrate that synthetic polysaccharides, like LEA proteins, are able to reduce desiccation-induced aggregation of a water-soluble proteome, consistent with a steric interference model of anti-aggregation activity. If molecular shields operate by reducing intermolecular cohesion rates, they should not protect against intramolecular protein damage. This was tested using the monomeric red fluorescent protein, mCherry, which does not undergo aggregation on drying, but the absorbance and emission spectra of its intrinsic fluorophore are dramatically reduced, indicative of intramolecular conformational changes. As expected, these changes are not prevented by AavLEA1, except for a slight protection at high molar ratios, and an AavLEA1-mCherry fusion protein is damaged to the same extent as mCherry alone. A recent hypothesis proposed that proteomes from desiccation-tolerant species contain a higher degree of disorder than intolerant examples, and that this might provide greater intrinsic stability, but a bioinformatics survey does not support this, since there are no significant differences in the degree of disorder between desiccation tolerant and intolerant species. It seems clear therefore that molecular shield function is largely an intermolecular activity implemented by specialist IDPs, distinct from molecular chaperones, but with a role in proteostasis.
Collapse
|
research-article |
13 |
144 |
10
|
Berisio R, Harms J, Schluenzen F, Zarivach R, Hansen HAS, Fucini P, Yonath A. Structural insight into the antibiotic action of telithromycin against resistant mutants. J Bacteriol 2003; 185:4276-9. [PMID: 12837804 PMCID: PMC164882 DOI: 10.1128/jb.185.14.4276-4279.2003] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The crystal structure of the ketolide telithromycin bound to the Deinococcus radiodurans large ribosomal subunit shows that telithromycin blocks the ribosomal exit tunnel and interacts with domains II and V of the 23S RNA. Comparisons to other clinically relevant macrolides provided structural insights into its enhanced activity against macrolide-resistant strains.
Collapse
|
research-article |
22 |
130 |
11
|
Narumi I, Satoh K, Cui S, Funayama T, Kitayama S, Watanabe H. PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol Microbiol 2004; 54:278-85. [PMID: 15458422 DOI: 10.1111/j.1365-2958.2004.04272.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The extraordinary radiation resistance of Deinococcus radiodurans results from the efficient capacity of the bacterium to repair DNA double-strand breaks. By analysing the DNA damage repair-deficient mutant, KH311, a unique radiation-inducible gene (designated pprA) responsible for loss of radiation resistance was identified. Investigations in vitro showed that the gene product of pprA (PprA) preferentially bound to double-stranded DNA carrying strand breaks, inhibited Escherichia coli exonuclease III activity, and stimulated the DNA end-joining reaction catalysed by ATP-dependent and NAD-dependent DNA ligases. These results suggest that D. radiodurans has a radiation-induced non-homologous end-joining repair mechanism in which PprA plays a critical role.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
125 |
12
|
Bentchikou E, Servant P, Coste G, Sommer S. A major role of the RecFOR pathway in DNA double-strand-break repair through ESDSA in Deinococcus radiodurans. PLoS Genet 2010; 6:e1000774. [PMID: 20090937 PMCID: PMC2806897 DOI: 10.1371/journal.pgen.1000774] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 11/16/2009] [Indexed: 11/19/2022] Open
Abstract
In Deinococcus radiodurans, the extreme resistance to DNA-shattering treatments such as ionizing radiation or desiccation is correlated with its ability to reconstruct a functional genome from hundreds of chromosomal fragments. The rapid reconstitution of an intact genome is thought to occur through an extended synthesis-dependent strand annealing process (ESDSA) followed by DNA recombination. Here, we investigated the role of key components of the RecF pathway in ESDSA in this organism naturally devoid of RecB and RecC proteins. We demonstrate that inactivation of RecJ exonuclease results in cell lethality, indicating that this protein plays a key role in genome maintenance. Cells devoid of RecF, RecO, or RecR proteins also display greatly impaired growth and an important lethal sectoring as bacteria devoid of RecA protein. Other aspects of the phenotype of recFOR knock-out mutants paralleled that of a DeltarecA mutant: DeltarecFOR mutants are extremely radiosensitive and show a slow assembly of radiation-induced chromosomal fragments, not accompanied by DNA synthesis, and reduced DNA degradation. Cells devoid of RecQ, the major helicase implicated in repair through the RecF pathway in E. coli, are resistant to gamma-irradiation and have a wild-type DNA repair capacity as also shown for cells devoid of the RecD helicase; in contrast, DeltauvrD mutants show a markedly decreased radioresistance, an increased latent period in the kinetics of DNA double-strand-break repair, and a slow rate of fragment assembly correlated with a slow rate of DNA synthesis. Combining RecQ or RecD deficiency with UvrD deficiency did not significantly accentuate the phenotype of DeltauvrD mutants. In conclusion, RecFOR proteins are essential for DNA double-strand-break repair through ESDSA whereas RecJ protein is essential for cell viability and UvrD helicase might be involved in the processing of double stranded DNA ends and/or in the DNA synthesis step of ESDSA.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
111 |
13
|
Omelchenko MV, Makarova KS, Wolf YI, Rogozin IB, Koonin EV. Evolution of mosaic operons by horizontal gene transfer and gene displacement in situ. Genome Biol 2003; 4:R55. [PMID: 12952534 PMCID: PMC193655 DOI: 10.1186/gb-2003-4-9-r55] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2003] [Revised: 06/26/2003] [Accepted: 07/17/2003] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Shuffling and disruption of operons and horizontal gene transfer are major contributions to the new, dynamic view of prokaryotic evolution. Under the 'selfish operon' hypothesis, operons are viewed as mobile genetic entities that are constantly disseminated via horizontal gene transfer, although their retention could be favored by the advantage of coregulation of functionally linked genes. Here we apply comparative genomics and phylogenetic analysis to examine horizontal transfer of entire operons versus displacement of individual genes within operons by horizontally acquired orthologs and independent assembly of the same or similar operons from genes with different phylogenetic affinities. RESULTS Since a substantial number of operons have been identified experimentally in only a few model bacteria, evolutionarily conserved gene strings were analyzed as surrogates of operons. The phylogenetic affinities within these predicted operons were assessed first by sequence similarity analysis and then by phylogenetic analysis, including statistical tests of tree topology. Numerous cases of apparent horizontal transfer of entire operons were detected. However, it was shown that apparent horizontal transfer of individual genes or arrays of genes within operons is not uncommon either and results in xenologous gene displacement in situ, that is, displacement of an ancestral gene by a horizontally transferred ortholog from a taxonomically distant organism without change of the local gene organization. On rarer occasions, operons might have evolved via independent assembly, in part from horizontally acquired genes. CONCLUSIONS The discovery of in situ gene displacement shows that combination of rampant horizontal gene transfer with selection for preservation of operon structure provides for events in prokaryotic evolution that, a priori, seem improbable. These findings also emphasize that not all aspects of operon evolution are selfish, with operon integrity maintained by purifying selection at the organism level.
Collapse
|
research-article |
22 |
109 |
14
|
Wilkinson SP, Grove A. HucR, a Novel Uric Acid-responsive Member of the MarR Family of Transcriptional Regulators from Deinococcus radiodurans. J Biol Chem 2004; 279:51442-50. [PMID: 15448166 DOI: 10.1074/jbc.m405586200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MarR family of transcriptional regulators comprises a subset of winged helix DNA-binding proteins and includes numerous members that function in environmental surveillance of aromatic compounds. We describe the characterization of HucR, a novel MarR homolog from Deinococcus radiodurans that demonstrates phenolic sensing capabilities. HucR binds as a homodimer to a single site within its promoter/operator region with Kd = 0.29 +/- 0.02 nM. The HucR binding site contains a pseudopalindromic sequence, composed of 8-bp half-sites separated by 2 bp. The location of the HucR binding site in the intergenic region between hucR and a putative uricase suggests a mechanism of simultaneous co-repression of these two genes. The substrate of uricase, uric acid, is an efficient antagonist of DNA binding, reducing HucR-DNA complex formation to 50% at 0.26 mM ligand, compared with 5.2 and 46 mM for the aromatic compounds salicylate and acetylsalicylate, respectively. Enhanced levels in vivo of hucR and uricase transcript and increased uricase activity under conditions of excess uric acid further indicate a novel regulatory mechanism of aromatic catabolism in D. radiodurans. Since uric acid is a scavenger of reactive oxygen species, we hypothesize that HucR is a participant in the intrinsic resistance of D. radiodurans to high levels of oxidative stress.
Collapse
|
|
21 |
94 |
15
|
Brim H, Venkateswaran A, Kostandarithes HM, Fredrickson JK, Daly MJ. Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl Environ Microbiol 2003; 69:4575-82. [PMID: 12902245 PMCID: PMC169113 DOI: 10.1128/aem.69.8.4575-4582.2003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deinococcus geothermalis is an extremely radiation-resistant thermophilic bacterium closely related to the mesophile Deinococcus radiodurans, which is being engineered for in situ bioremediation of radioactive wastes. We report that D. geothermalis is transformable with plasmids designed for D. radiodurans and have generated a Hg(II)-resistant D. geothermalis strain capable of reducing Hg(II) at elevated temperatures and in the presence of 50 Gy/h. Additionally, D. geothermalis is capable of reducing Fe(III)-nitrilotriacetic acid, U(VI), and Cr(VI). These characteristics support the prospective development of this thermophilic radiophile for bioremediation of radioactive mixed waste environments with temperatures as high as 55 degrees C.
Collapse
|
research-article |
22 |
89 |
16
|
Bernstein DA, Eggington JM, Killoran MP, Misic AM, Cox MM, Keck JL. Crystal structure of the Deinococcus radiodurans single-stranded DNA-binding protein suggests a mechanism for coping with DNA damage. Proc Natl Acad Sci U S A 2004; 101:8575-80. [PMID: 15159541 PMCID: PMC423236 DOI: 10.1073/pnas.0401331101] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-stranded DNA (ssDNA)-binding (SSB) proteins are uniformly required to bind and protect single-stranded intermediates in DNA metabolic pathways. All bacterial and eukaryotic SSB proteins studied to date oligomerize to assemble four copies of a conserved domain, called an oligonucleotide/oligosaccharide-binding (OB) fold, that cooperate in nonspecific ssDNA binding. The vast majority of bacterial SSB family members function as homotetramers, with each monomer contributing a single OB fold. However, SSB proteins from the Deinococcus-Thermus genera are exceptions to this rule, because they contain two OB folds per monomer. To investigate the structural consequences of this unusual arrangement, we have determined a 1.8-A-resolution x-ray structure of Deinococcus radiodurans SSB. The structure shows that D. radiodurans SSB comprises two OB domains linked by a beta-hairpin motif. The protein assembles a four-OB-fold arrangement by means of symmetric dimerization. In contrast to homotetrameric SSB proteins, asymmetry exists between the two OB folds of D. radiodurans SSB because of sequence differences between the domains. These differences appear to reflect specialized roles that have evolved for each domain. Extensive crystallographic contacts link D. radiodurans SSB dimers in an arrangement that has important implications for higher-order structures of the protein bound to ssDNA. This assembly utilizes the N-terminal OB domain and the beta-hairpin structure that is unique to Deinococcus and Thermus species SSB proteins. We hypothesize that differences between D. radiodurans SSB and homotetrameric bacterial SSB proteins may confer a selective advantage to D. radiodurans cells that aids viability in environments that challenge genomic stability.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
88 |
17
|
Bonacossa de Almeida C, Coste G, Sommer S, Bailone A. Quantification of RecA protein in Deinococcus radiodurans reveals involvement of RecA, but not LexA, in its regulation. Mol Genet Genomics 2002; 268:28-41. [PMID: 12242496 DOI: 10.1007/s00438-002-0718-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2002] [Accepted: 06/11/2002] [Indexed: 10/27/2022]
Abstract
RecA protein is essential for the very high level of resistance of Deinococcus radiodurans to DNA damage induced by ionizing radiation or other DNA-damaging agents. Since the mechanism(s) involved in the control of recA expression and the extent of RecA induction following DNA damage in this species are still unclear, we have performed a genetic analysis of the recA locus and quantified the basal and induced levels of RecA protein in wild type, recA, and lexA mutants. We found that the two genes upstream of recA in the predicted cinA ligT recA operon appear to have no role in the regulation of recA expression or function, despite the fact that the reading frames in the operon overlap. By using a translational fusion of recA to a lacZ reporter gene, we showed that induction began with no delay following exposure to gamma-radiation or treatment with mitomycin, and continued at a constant rate until it reached a plateau. The induction efficiency increased linearly with inducer dose, levelling off at a concentration fourfold above the background. The basal concentration of RecA protein measured by Western blotting corresponded to approximately 11,000 monomers per cell, and the induced concentration to around 44,000 monomers per cell. These levels remained unchanged upon disruption of the lexA gene, indicating that LexA does not plays a role in recA regulation. However, inactivation of lexA caused cells to aggregate, suggesting that LexA may control the activity or expression of as yet undefined membrane functions. Cells bearing the recA670 mutation showed an elevated constitutive expression of recA in the absence of DNA damage. This phenotype did not result from the defect in DNA repair associated with the RecA670 protein, since the increased basal level of recA expression was also found in recA670/ recA(+) diploid cells that are proficient in DNA repair. These results suggest that RecA may be involved in regulating its own expression, possibly by stimulating proteolytic modification of other regulatory proteins.
Collapse
|
Research Support, Non-U.S. Gov't |
23 |
87 |
18
|
Wilson DN, Schluenzen F, Harms JM, Yoshida T, Ohkubo T, Albrecht R, Buerger J, Kobayashi Y, Fucini P. X-ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit. EMBO J 2004; 24:251-60. [PMID: 15616575 PMCID: PMC545814 DOI: 10.1038/sj.emboj.7600525] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Accepted: 11/26/2004] [Indexed: 11/09/2022] Open
Abstract
This study presents the crystal structure of domain I of the Escherichia coli ribosome recycling factor (RRF) bound to the Deinococcus radiodurans 50S subunit. The orientation of RRF is consistent with the position determined on a 70S-RRF complex by cryoelectron microscopy (cryo-EM). Alignment, however, requires a rotation of 7 degrees and a shift of the cryo-EM RRF by a complete turn of an alpha-helix, redefining the contacts established with ribosomal components. At 3.3 A resolution, RRF is seen to interact exclusively with ribosomal elements associated with tRNA binding and/or translocation. Furthermore, these results now provide a high-resolution structural description of the conformational changes that were suspected to occur on the 70S-RRF complex, which has implications for the synergistic action of RRF with elongation factor G (EF-G). Specifically, the tip of the universal bridge element H69 is shifted by 20 A toward h44 of the 30S subunit, suggesting that RRF primes the intersubunit bridge B2a for the action of EF-G. Collectively, our data enable a model to be proposed for the dual action of EF-G and RRF during ribosome recycling.
Collapse
|
Journal Article |
21 |
81 |
19
|
Chen X, Taylor DW, Fowler CC, Galan JE, Wang HW, Wolin SL. An RNA degradation machine sculpted by Ro autoantigen and noncoding RNA. Cell 2013; 153:166-77. [PMID: 23540697 DOI: 10.1016/j.cell.2013.02.037] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 01/10/2013] [Accepted: 02/19/2013] [Indexed: 11/18/2022]
Abstract
Many bacteria contain an ortholog of the Ro autoantigen, a ring-shaped protein that binds noncoding RNAs (ncRNAs) called Y RNAs. In the only studied bacterium, Deinococcus radiodurans, the Ro ortholog Rsr functions in heat-stress-induced ribosomal RNA (rRNA) maturation and starvation-induced rRNA decay. However, the mechanism by which this conserved protein and its associated ncRNAs act has been obscure. We report that Rsr and the exoribonuclease polynucleotide phosphorylase (PNPase) form an RNA degradation machine that is scaffolded by Y RNA. Single-particle electron microscopy, followed by docking of atomic models into the reconstruction, suggests that Rsr channels single-stranded RNA into the PNPase cavity. Biochemical assays reveal that Rsr and Y RNA adapt PNPase for effective degradation of structured RNAs. A Ro ortholog and ncRNA also associate with PNPase in Salmonella Typhimurium. Our studies identify another ribonucleoprotein machine and demonstrate that ncRNA, by tethering a protein cofactor, can alter the substrate specificity of an enzyme.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
76 |
20
|
Marion GM, Fritsen CH, Eicken H, Payne MC. The search for life on Europa: limiting environmental factors, potential habitats, and Earth analogues. ASTROBIOLOGY 2003; 3:785-811. [PMID: 14987483 DOI: 10.1089/153110703322736105] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The putative ocean of Europa has focused considerable attention on the potential habitats for life on Europa. By generally clement Earth standards, these Europan habitats are likely to be extreme environments. The objectives of this paper were to examine: (1) the limits for biological activity on Earth with respect to temperature, salinity, acidity, desiccation, radiation, pressure, and time; (2) potential habitats for life on Europa; and (3) Earth analogues and their limitations for Europa. Based on empirical evidence, the limits for biological activity on Earth are: (1) the temperature range is from 253 to 394 K; (2) the salinity range is a(H2O) = 0.6-1.0; (3) the desiccation range is from 60% to 100% relative humidity; (4) the acidity range is from pH 0 to 13; (5) microbes such as Deinococcus are roughly 4,000 times more resistant to ionizing radiation than humans; (6) the range for hydrostatic pressure is from 0 to 1,100 bars; and (7) the maximum time for organisms to survive in the dormant state may be as long as 250 million years. The potential habitats for life on Europa are the ice layer, the brine ocean, and the seafloor environment. The dual stresses of lethal radiation and low temperatures on or near the icy surface of Europa preclude the possibility of biological activity anywhere near the surface. Only at the base of the ice layer could one expect to find the suitable temperatures and liquid water that are necessary for life. An ice layer turnover time of 10 million years is probably rapid enough for preserving in the surface ice layers dormant life forms originating from the ocean. Model simulations demonstrate that hypothetical oceans could exist on Europa that are too cold for biological activity (T < 253 K). These simulations also demonstrate that salinities are high, which would restrict life to extreme halophiles. An acidic ocean (if present) could also potentially limit life. Pressure, per se, is unlikely to directly limit life on Europa. But indirectly, pressure plays an important role in controlling the chemical environments for life. Deep ocean basins such as the Mariana Trench are good analogues for the cold, high-pressure ocean of Europa. Many of the best terrestrial analogues for potential Europan habitats are in the Arctic and Antarctica. The six factors likely to be most important in defining the environments for life on Europa and the focus for future work are liquid water, energy, nutrients, low temperatures, salinity, and high pressures.
Collapse
|
|
22 |
74 |
21
|
Li L, Shemetov AA, Baloban M, Hu P, Zhu L, Shcherbakova DM, Zhang R, Shi J, Yao J, Wang LV, Verkhusha VV. Small near-infrared photochromic protein for photoacoustic multi-contrast imaging and detection of protein interactions in vivo. Nat Commun 2018; 9:2734. [PMID: 30013153 PMCID: PMC6048155 DOI: 10.1038/s41467-018-05231-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
Photoacoustic (PA) computed tomography (PACT) benefits from genetically encoded probes with photochromic behavior, which dramatically increase detection sensitivity and specificity through photoswitching and differential imaging. Starting with a DrBphP bacterial phytochrome, we have engineered a near-infrared photochromic probe, DrBphP-PCM, which is superior to the full-length RpBphP1 phytochrome previously used in differential PACT. DrBphP-PCM has a smaller size, better folding, and higher photoswitching contrast. We have imaged both DrBphP-PCM and RpBphP1 simultaneously on the basis of their unique signal decay characteristics, using a reversibly switchable single-impulse panoramic PACT (RS-SIP-PACT) with a single wavelength excitation. The simple structural organization of DrBphP-PCM allows engineering a bimolecular PA complementation reporter, a split version of DrBphP-PCM, termed DrSplit. DrSplit enables PA detection of protein-protein interactions in deep-seated mouse tumors and livers, achieving 125-µm spatial resolution and 530-cell sensitivity in vivo. The combination of RS-SIP-PACT with DrBphP-PCM and DrSplit holds great potential for noninvasive multi-contrast deep-tissue functional imaging.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
73 |
22
|
Wilson DN, Harms JM, Nierhaus KH, Schlünzen F, Fucini P. Species-specific antibiotic-ribosome interactions: implications for drug development. Biol Chem 2005; 386:1239-52. [PMID: 16336118 DOI: 10.1515/bc.2005.141] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the cell, the protein synthetic machinery is a highly complex apparatus that offers many potential sites for functional interference and therefore represents a major target for antibiotics. The recent plethora of crystal structures of ribosomal subunits in complex with various antibiotics has provided unparalleled insight into their mode of interaction and inhibition. However, differences in the conformation, orientation and position of some of these drugs bound to ribosomal subunits of Deinococcus radiodurans (D50S) compared to Haloarcula marismortui (H50S) have raised questions regarding the species specificity of binding. Revisiting the structural data for the bacterial D50S-antibiotic complexes reveals that the mode of binding of the macrolides, ketolides, streptogramins and lincosamides is generally similar to that observed in the archaeal H50S structures. However, small discrepancies are observed, predominantly resulting from species-specific differences in the ribosomal proteins and rRNA constituting the drug-binding sites. Understanding how these small alterations at the binding site influence interaction with the drug will be essential for rational design of more potent inhibitors.
Collapse
|
|
20 |
71 |
23
|
Banci L, Bertini I, Ciofi-Baffoni S, Katsari E, Katsaros N, Kubicek K, Mangani S. A copper(I) protein possibly involved in the assembly of CuA center of bacterial cytochrome c oxidase. Proc Natl Acad Sci U S A 2005; 102:3994-9. [PMID: 15753304 PMCID: PMC554794 DOI: 10.1073/pnas.0406150102] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Indexed: 11/18/2022] Open
Abstract
Sco1 and Cox17 are accessory proteins required for the correct assembly of eukaryotic cytochrome c oxidase. At variance with Sco1, Cox17 orthologs are found only in eukaryotes. We browsed bacterial genomes to search proteins functionally equivalent to Cox17, and we identified a class of proteins of unknown function displaying a conserved gene neighborhood to bacterial Sco1 genes, all sharing a potential metal binding motif H(M)X10MX21HXM. Two members of this group, DR1885 from Deinococcus radiodurans and CC3502 from Caulobacter crescentus, were expressed, and their interaction with copper was investigated. The solution structure and extended x-ray absorption fine structure data on the former protein reveal that the protein binds copper(I) through a histidine and three Mets in a cupredoxin-like fold. The surface location of the copper-binding site as well as the type of coordination are well poised for metal transfer chemistry, suggesting that DR1885 might transfer copper, taking the role of Cox17 in bacteria. On the basis of our results, a possible pathway for copper delivery to the Cu(A) center in bacteria is proposed.
Collapse
|
research-article |
20 |
71 |
24
|
Ruggiero CE, Boukhalfa H, Forsythe JH, Lack JG, Hersman LE, Neu MP. Actinide and metal toxicity to prospective bioremediation bacteria. Environ Microbiol 2005; 7:88-97. [PMID: 15643939 DOI: 10.1111/j.1462-2920.2004.00666.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Bacteria may be beneficial for alleviating actinide contaminant migration through processes such as bioaccumulation or metal reduction. However, sites with radioactive contamination often contain multiple additional contaminants, including metals and organic chelators. Bacteria-based bioremediation requires that the microorganism functions in the presence of the target contaminant, as well as other contaminants. Here, we evaluate the toxicity of actinides, metals and chelators to two different bacteria proposed for use in radionuclide bioremediation, Deinococcus radiodurans and Pseudomonas putida, and the toxicity of Pu(VI) to Shewanella putrefaciens. Growth of D. radiodurans was inhibited at metal concentrations ranging from 1.8 microM Cd(II) to 32 mM Fe(III). Growth of P. putida was inhibited at metal concentrations ranging from 50 microM Ni(II) to 240 mM Fe(III). Actinides inhibited growth at mM concentrations: chelated Pu(IV), U(VI) and Np(V) inhibit D. radiodurans growth at 5.2, 2.5 and 2.1 mM respectively. Chelated U(VI) inhibits P. putida growth at 1.7 mM, while 3.6 mM chelated Pu(IV) inhibits growth only slightly. Pu(VI) inhibits S. putrefaciens growth at 6 mM. These results indicate that actinide toxicity is primarily chemical (not radiological), and that radiation resistance does not ensure radionuclide tolerance. This study also shows that Pu is less toxic than U and that actinides are less toxic than other types of metals, which suggests that actinide toxicity will not impede bioremediation using naturally occurring bacteria.
Collapse
|
|
20 |
65 |
25
|
Leiros HKS, Kozielski-Stuhrmann S, Kapp U, Terradot L, Leonard GA, McSweeney SM. Structural basis of 5-nitroimidazole antibiotic resistance: the crystal structure of NimA from Deinococcus radiodurans. J Biol Chem 2004; 279:55840-9. [PMID: 15492014 DOI: 10.1074/jbc.m408044200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
5-Nitroimidazole-based antibiotics are compounds extensively used for treating infections in humans and animals caused by several important pathogens. They are administered as prodrugs, and their activation depends upon an anaerobic 1-electron reduction of the nitro group by a reduction pathway in the cells. Bacterial resistance toward these drugs is thought to be caused by decreased drug uptake and/or an altered reduction efficiency. One class of resistant strains, identified in Bacteroides, has been shown to carry Nim genes (NimA, -B, -C, -D, and -E), which encode for reductases that convert the nitro group on the antibiotic into a non-bactericidal amine. In this paper, we have described the crystal structure of NimA from Deinococcus radiodurans (drNimA) at 1.6 A resolution. We have shown that drNimA is a homodimer in which each monomer adopts a beta-barrel fold. We have identified the catalytically important His-71 along with the cofactor pyruvate and antibiotic binding sites, all of which are found at the monomer-monomer interface. We have reported three additional crystal structures of drNimA, one in which the antibiotic metronidazole is bound to the protein, one with pyruvate covalently bound to His-71, and one with lactate covalently bound to His-71. Based on these structures, a reaction mechanism has been proposed in which the 2-electron reduction of the antibiotic prevents accumulation of the toxic nitro radical. This mechanism suggests that Nim proteins form a new class of reductases, conferring resistance against 5-nitroimidazole-based antibiotics.
Collapse
|
Journal Article |
21 |
60 |