1
|
Sukhikh N, Golyaev V, Laboureau N, Clavijo G, Rustenholz C, Marmonier A, Chesnais Q, Ogliastro M, Drucker M, Brault V, Pooggin MM. Deep Sequencing Analysis of Virome Components, Viral Gene Expression and Antiviral RNAi Responses in Myzus persicae Aphids. Int J Mol Sci 2024; 25:13199. [PMID: 39684909 DOI: 10.3390/ijms252313199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
The green peach aphid (Myzus persicae) is a generalist pest damaging crops and transmitting viral pathogens. Using Illumina sequencing of small (s)RNAs and poly(A)-enriched long RNAs, we analyzed aphid virome components, viral gene expression and antiviral RNA interference (RNAi) responses. Myzus persicae densovirus (family Parvoviridae), a single-stranded (ss)DNA virus persisting in the aphid population, produced 22 nucleotide sRNAs from both strands of the entire genome, including 5'- and 3'-inverted terminal repeats. These sRNAs likely represent Dicer-dependent small interfering (si)RNAs, whose double-stranded RNA precursors are produced by readthrough transcription beyond poly(A) signals of the converging leftward and rightward transcription units, mapped here with Illumina reads. Additionally, the densovirus produced 26-28 nucleotide sRNAs, comprising those enriched in 5'-terminal uridine and mostly derived from readthrough transcripts and those enriched in adenosine at position 10 from their 5'-end and mostly derived from viral mRNAs. These sRNAs likely represent PIWI-interacting RNAs generated by a ping-pong mechanism. A novel ssRNA virus, reconstructed from sRNAs and classified into the family Flaviviridae, co-persisted with the densovirus and produced 22 nucleotide siRNAs from the entire genome. Aphids fed on plants versus artificial diets exhibited distinct RNAi responses affecting densovirus transcription and flavivirus subgenomic RNA production. In aphids vectoring turnip yellows virus (family Solemoviridae), a complete virus genome was reconstituted from 21, 22 and 24 nucleotide viral siRNAs likely acquired with plant phloem sap. Collectively, deep-sequencing analysis allowed for the identification and de novo reconstruction of M. persicae virome components and uncovered RNAi mechanisms regulating viral gene expression and replication.
Collapse
|
2
|
Penzes JJ, Holm M, Yost SA, Kaelber JT. Cryo-EM-based discovery of a pathogenic parvovirus causing epidemic mortality by black wasting disease in farmed beetles. Cell 2024; 187:5604-5619.e14. [PMID: 39208798 DOI: 10.1016/j.cell.2024.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 05/23/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
We use cryoelectron microscopy (cryo-EM) as a sequence- and culture-independent diagnostic tool to identify the etiological agent of an agricultural pandemic. For the past 4 years, American insect-rearing facilities have experienced a distinctive larval pathology and colony collapse of farmed Zophobas morio (superworm). By means of cryo-EM, we discovered the causative agent: a densovirus that we named Zophobas morio black wasting virus (ZmBWV). We confirmed the etiology of disease by fulfilling Koch's postulates and characterizing strains from across the United States. ZmBWV is a member of the family Parvoviridae with a 5,542 nt genome, and we describe intersubunit interactions explaining its expanded internal volume relative to human parvoviruses. Cryo-EM structures at resolutions up to 2.1 Å revealed single-strand DNA (ssDNA) ordering at the capsid inner surface pinned by base-binding pockets in the capsid inner surface. Also, we demonstrated the prophylactic potential of non-pathogenic strains to provide cross-protection in vivo.
Collapse
|
3
|
Huang DY, Qin JS, Dong RK, Liu SN, Chen N, Yuan DW, Li S, Wang Z, Xia X. Ben-JNK signaling is required for host mortality during Periplaneta fuliginosa densovirus infection. PEST MANAGEMENT SCIENCE 2024; 80:4495-4504. [PMID: 38676657 DOI: 10.1002/ps.8154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Cockroaches are widely acknowledged as significant vectors of pathogenic microorganisms. The Periplaneta fuliginosa densovirus (PfDNV) infects the smoky-brown cockroach P. fuliginosa and causes host mortality, which identifies the PfDNV as a species-specific and environmentally friendly biopesticide. However, although the biochemical characterization of PfDNV has been extensively studied, the immune response against PfDNV remains largely unclear. RESULTS Here, we investigated the replication of PfDNV and its associated pathological phenotype in the foregut and hindgut. Consequently, we dissected and performed transcriptome sequencing on the foregut, midgut, and hindgut separately. We revealed the up-regulation of immune response signaling pathway c-Jun N-terminal kinase (JNK) and apoptosis in response to viral infection. Furthermore, knockdown of the JNK upstream gene Ben resulted in a decrease in virus titer and delayed host mortality. CONCLUSION Taken together, our findings provide evidence that the Ben-JNK signaling plays a crucial role in PfDNV infection, leading to excessive apoptosis in intestinal tissues and ultimately resulting in the death of the host. Our results indicated that the host response to PfDNV fosters viral infection, thereby increasing host lethality. This underscores the potential of PfDNV as a viable, environmentally friendly biopesticide. © 2024 Society of Chemical Industry.
Collapse
|
4
|
Dong Y, Li T, Hou Y, Wilson K, Wang X, Su C, Li Y, Ren G, Xu P. Densovirus infection facilitates plant-virus transmission by an aphid. THE NEW PHYTOLOGIST 2024; 243:1539-1553. [PMID: 39021237 DOI: 10.1111/nph.19908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
The interactions among plant viruses, insect vectors, and host plants have been well studied; however, the roles of insect viruses in this system have largely been neglected. We investigated the effects of MpnDV infection on aphid and PVY transmission using bioassays, RNA interference (RNAi), and GC-MS methods and green peach aphid (Myzus persicae (Sulzer)), potato virus Y (PVY), and densovirus (Myzus persicae nicotianae densovirus, MpnDV) as model systems. MpnDV increased the activities of its host, promoting population dispersal and leading to significant proliferation in tobacco plants by significantly enhancing the titer of the sesquiterpene (E)-β-farnesene (EβF) via up-regulation of expression levels of the MpFPPS1 gene. The proliferation and dispersal of MpnDV-positive individuals were faster than that of MpnDV-negative individuals in PVY-infected tobacco plants, which promoted the transmission of PVY. These results combined showed that an insect virus may facilitate the transmission of a plant virus by enhancing the locomotor activity and population proliferation of insect vectors. These findings provide novel opportunities for controlling insect vectors and plant viruses, which can be used in the development of novel management strategies.
Collapse
|
5
|
Lim FS, González-Cabrera J, Keilwagen J, Kleespies RG, Jehle JA, Wennmann JT. Advancing pathogen surveillance by nanopore sequencing and genotype characterization of Acheta domesticus densovirus in mass-reared house crickets. Sci Rep 2024; 14:8525. [PMID: 38609404 PMCID: PMC11014933 DOI: 10.1038/s41598-024-58768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Rapid and reliable detection of pathogens is crucial to complement the growing industry of mass-reared insects, in order to safeguard the insect colonies from outbreak of diseases, which may cause significant economic loss. Current diagnostic methods are mainly based on conventional PCR and microscopic examination, requiring prior knowledge of disease symptoms and are limited to identifying known pathogens. Here, we present a rapid nanopore-based metagenomics approach for detecting entomopathogens from the European house cricket (Acheta domesticus). In this study, the Acheta domesticus densovirus (AdDV) was detected from diseased individuals using solely Nanopore sequencing. Virus reads and genome assemblies were obtained within twenty-four hours after sequencing. Subsequently, due to the length of the Nanopore reads, it was possible to reconstruct significantly large parts or even the entire AdDV genome to conduct studies for genotype identification. Variant analysis indicated the presence of three AdDV genotypes within the same house cricket population, with association to the vital status of the diseased crickets. This contrast provided compelling evidence for the existence of non-lethal AdDV genotypes. These findings demonstrated nanopore-based metagenomics sequencing as a powerful addition to the diagnostic tool kit for routine pathogen surveillance and diagnosis in the insect rearing industry.
Collapse
|
6
|
Worawittayatada J, Angsujinda K, Sinnuengnong R, Attasart P, Smith DR, Assavalapsakul W. Simultaneous Production of a Virus-Like Particle Linked to dsRNA to Enhance dsRNA Delivery for Yellow Head Virus Inhibition. Viruses 2022; 14:v14122594. [PMID: 36560598 PMCID: PMC9785521 DOI: 10.3390/v14122594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
A co-expressed Penaeus stylirostris densovirus (PstDNV) capsid and dsRNA specific to the yellow head virus (YHV) protease (CoEx cpPstDNV/dspro) has been shown to suppress YHV replication in the Pacific white-legged shrimp (Litopenaeus vannamei). However, maintaining two plasmids in a single bacterial cell is not desirable; therefore, a single plasmid harboring both the PstDNV capsid and the dsRNA-YHV-pro gene was constructed under the regulation of a single T7 promoter, designated pET28a-Linked cpPstDNV-dspro. Following induction, this novel construct expressed an approximately 37-kDa recombinant protein associated with a roughly 400-bp dsRNA (Linked cpPstDNV-dspro). Under a transmission electron microscope, the virus-like particles (VLP; Linked PstDNV VLPs-dspro) obtained were seen to be monodispersed, similar to the native PstDNV virion. A nuclease digestion assay indicated dsRNA molecules were both encapsulated and present outside the Linked PstDNV VLPs-dspro. In addition, the amount of dsRNA produced from this strategy was higher than that obtained with a co-expression strategy. In a YHV infection challenge, the Linked PstDNV VLPs-dspro was more effective in delaying and reducing mortality than other constructs tested. Lastly, the linked construct provides protection for the dsRNA cargo from nucleolytic enzymes present in the shrimp hemolymph. This is the first report of a VLP carrying virus-inhibiting dsRNA that could be produced without disassembly and reassembly to control virus infection in shrimp.
Collapse
|
7
|
Batool K, Alam I, Liu P, Shu Z, Zhao S, Yang W, Jie X, Gu J, Chen XG. Recombinant Mosquito Densovirus with Bti Toxins Significantly Improves Pathogenicity against Aedes albopictus. Toxins (Basel) 2022; 14:147. [PMID: 35202174 PMCID: PMC8879223 DOI: 10.3390/toxins14020147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Mosquito densoviruses (MDVs) are mosquito-specific viruses that are recommended as mosquito bio-control agents. The MDV Aedes aegypti densovirus (AeDNV) is a good candidate for controlling mosquitoes. However, the slow activity restricts their widespread use for vector control. In this study, we introduced the Bacillus thuringiensis (Bti) toxin Cry11Aa domain II loop α8 and Cyt1Aa loop β6-αE peptides into the AeDNV genome to improve its mosquitocidal efficiency; protein expression was confirmed using nanoscale liquid chromatography coupled to tandem mass spectrometry (nano LC-MS/MS). Recombinant plasmids were transfected into mosquito C6/36 cell lines, and the expression of specific peptides was detected through RT-PCR. A toxicity bioassay against the first instar Aedes albopictus larvae revealed that the pathogenic activity of recombinant AeDNV was significantly higher and faster than the wild-type (wt) viruses, and mortality increased in a dose-dependent manner. The recombinant viruses were genetically stable and displayed growth phenotype and virus proliferation ability, similar to wild-type AeDNV. Our novel results offer further insights by combining two mosquitocidal pathogens to improve viral toxicity for mosquito control.
Collapse
|
8
|
Hewson I, Sewell MA. Surveillance of densoviruses and mesomycetozoans inhabiting grossly normal tissues of three Aotearoa New Zealand asteroid species. PLoS One 2021; 16:e0241026. [PMID: 33886557 PMCID: PMC8061988 DOI: 10.1371/journal.pone.0241026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/23/2021] [Indexed: 11/19/2022] Open
Abstract
Asteroid wasting events and mass mortality have occurred for over a century. We currently lack a fundamental understanding of the microbial ecology of asteroid disease, with disease investigations hindered by sparse information about the microorganisms associated with grossly normal specimens. We surveilled viruses and protists associated with grossly normal specimens of three asteroid species (Patiriella regularis, Stichaster australis, Coscinasterias muricata) on the North Island / Te Ika-a-Māui, Aotearoa New Zealand, using metagenomes prepared from virus and ribosome-sized material. We discovered several densovirus-like genome fragments in our RNA and DNA metagenomic libraries. Subsequent survey of their prevalence within populations by quantitative PCR (qPCR) demonstrated their occurrence in only a few (13%) specimens (n = 36). Survey of large and small subunit rRNAs in metagenomes revealed the presence of a mesomycete (most closely matching Ichthyosporea sp.). Survey of large subunit prevalence and load by qPCR revealed that it is widely detectable (80%) and present predominately in body wall tissues across all 3 species of asteroid. Our results raise interesting questions about the roles of these microbiome constituents in host ecology and pathogenesis under changing ocean conditions.
Collapse
|
9
|
Fahsbender E, Charlys da-Costa A, Elise Gill D, Augusto de Padua Milagres F, Brustulin R, Julio Costa Monteiro F, Octavio da Silva Rego M, Soares D’Athaide Ribeiro E, Cerdeira Sabino E, Delwart E. Plasma virome of 781 Brazilians with unexplained symptoms of arbovirus infection include a novel parvovirus and densovirus. PLoS One 2020; 15:e0229993. [PMID: 32134963 PMCID: PMC7058308 DOI: 10.1371/journal.pone.0229993] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Plasma from patients with dengue-like symptoms was collected in 2013 to 2016 from the Brazilian states of Tocantins and Amapa. 781 samples testing negative for IgM against Dengue, Zika, and Chikungunya viruses and for flaviviruses, alphaviruses and enteroviruses RNA using RT-PCRs were analyzed using viral metagenomics. Viral particles-associated nucleic acids were enriched, randomly amplified, and deep sequenced in 102 mini-pools generating over 2 billion reads. Sequence data was analyzed for the presence of known and novel eukaryotic viral reads. Anelloviruses were detected in 80%, human pegivirus 1 in 19%, and parvovirus B19 in 17% of plasma pools. HIV and enteroviruses were detected in two pools each. Previously uncharacterized viral genomes were also identified, and their presence in single plasma samples confirmed by PCR. Chapparvovirus and ambidensovirus genomes, both in the Parvoviridae family, were partially characterized showing 33% and 34% identity in their NS1 sequences to their closest relative. Molecular surveillance using pre-existing plasma from febrile patients provides a readily scalable approach for the detection of novel, potentially emerging, viruses.
Collapse
|
10
|
Herz M, Brehm K. Evidence for densovirus integrations into tapeworm genomes. Parasit Vectors 2019; 12:560. [PMID: 31771643 PMCID: PMC6880638 DOI: 10.1186/s13071-019-3820-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tapeworms lack a canonical piRNA-pathway, raising the question of how they can silence existing mobile genetic elements (MGE). Investigation towards the underlying mechanisms requires information on tapeworm transposons which is, however, presently scarce. METHODS The presence of densovirus-related sequences in tapeworm genomes was studied by bioinformatic approaches. Available RNA-Seq datasets were mapped against the Echinococcus multilocularis genome to calculate expression levels of densovirus-related genes. Transcription of densovirus loci was further analyzed by sequencing and RT-qPCR. RESULTS We herein provide evidence for the presence of densovirus-related elements in a variety of tapeworm genomes. In the high-quality genome of E. multilocularis we identified more than 20 individual densovirus integration loci which contain the information for non-structural and structural virus proteins. The majority of densovirus loci are present as head-to-tail concatemers in isolated repeat containing regions of the genome. In some cases, unique densovirus loci have integrated close to histone gene clusters. We show that some of the densovirus loci of E. multilocularis are actively transcribed, whereas the majority are transcriptionally silent. RT-qPCR data further indicate that densovirus expression mainly occurs in the E. multilocularis stem cell population, which probably forms the germline of this organism. Sequences similar to the non-structural densovirus genes present in E. multilocularis were also identified in the genomes of E. canadensis, E. granulosus, Hydatigera taeniaeformis, Hymenolepis diminuta, Hymenolepis microstoma, Hymenolepis nana, Taenia asiatica, Taenia multiceps, Taenia saginata and Taenia solium. CONCLUSIONS Our data indicate that densovirus integration has occurred in many tapeworm species. This is the first report on widespread integration of DNA viruses into cestode genomes. Since only few densovirus integration sites were transcriptionally active in E. multilocularis, our data are relevant for future studies into gene silencing mechanisms in tapeworms. Furthermore, they indicate that densovirus-based vectors might be suitable tools for genetic manipulation of cestodes.
Collapse
|
11
|
Sinnuengnong R, Attasart P, Smith DR, Panyim S, Assavalapsakul W. Administration of co-expressed Penaeus stylirostris densovirus-like particles and dsRNA-YHV-Pro provide protection against yellow head virus in shrimp. J Biotechnol 2018; 267:63-70. [PMID: 29307838 DOI: 10.1016/j.jbiotec.2018.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/03/2018] [Indexed: 12/17/2022]
Abstract
The activation of the innate RNA interference pathway through double-stranded RNAs (dsRNAs) is one of the approaches to protecting shrimp from viruses. Previous studies have shown that injection of specific dsRNAs can successfully inhibit viral infection in shrimp. However, inhibition requires high levels of dsRNA and dsRNA stability in shrimp is limited. Virus-like particles (VLPs) have been applied to deliver nucleic acids into host cells because of the protection of dsRNAs from host endonucleases as well as the target specificity provided by VLPs. Therefore, this study aimed to develop Penaeus stylirostris densovirus (PstDNV) VLPs for dsRNA deliver to shrimp. The PstDNV capsid protein was expressed and can be self-assembled to form PstDNV VLPs. Co-expression of dsRNA-YHV-Pro and PstDNV capsid protein was achieved in the same bacterial cells, whose structure was displayed as the aggregation of VLPs by TEM. Tested for their inhibiting yellow head virus (YHV) from infecting shrimp, the dsRNA-YHV-Pro-PstDNV VLPs gave higher levels of YHV suppression and a greater reduction in shrimp mortality than the delivery of naked dsRNA-YHV-Pro. Therefore, PstDNV-VLPs are a promising vehicle for dsRNA delivery that maintains the anti-virus activity of dsRNA in shrimp over a longer period of time as compared to native dsRNAs.
Collapse
|
12
|
Orosco FL, Lluisma AO. Prevalence, diversity and co-occurrence of the white spot syndrome virus, monodon baculovirus and Penaeus stylirostris densovirus in wild populations of Penaeus monodon in the Philippines. DISEASES OF AQUATIC ORGANISMS 2017; 125:199-206. [PMID: 28792418 DOI: 10.3354/dao03150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The farming of the black tiger shrimp Penaeus monodon in the Philippines relies on wild broodstock. PCR was thus used to determine the prevalence of white spot syndrome virus (WSSV), monodon baculovirus (MBV) and Penaeus stylirostris densovirus (PstDV) in a total of 178 shrimp from 6 geographically disparate locations where broodstock are captured for use in hatcheries. PCR amplicons were also sequenced to identify phylogenetic relationships of the virus haplotypes detected. Shrimp from southeastern Luzon (Camarines Norte) had the highest prevalence of each of the 3 viruses and were frequently co-infected with 2 or more viruses. No viruses were detected in shrimp from northwestern Luzon (Pangasinan). MBV was most prevalent and PstDV strains displayed the most genetic diversity. WSSV was detected at 3 sites, and a VP28 gene sequence examined was invariant and consistent with strains found in many countries, including Thailand, China, Japan, Korea, Indonesia, Iran, Brazil and Mexico. WSSV open reading frame 94 gene sequence analysis identified location-specific repeat types. MBV sequences were dissimilar to haplotypes detected in India. PstDV sequences were diverse and included 2 lineages detected either in Australia or in the United States, Ecuador, Taiwan, China and Vietnam. The PCR data confirmed that WSSV, MBV and PstDV are endemic in P. monodon in the Philippines but that populations at some locations might remain free of infection.
Collapse
|
13
|
Guo J, Wang Y. [Construction of AalDV-3 Mediated mirRNA Sponge Delivery System and Its Effect on Cell and Larva of Aedes aegypti]. BING DU XUE BAO = CHINESE JOURNAL OF VIROLOGY 2016; 32:423-428. [PMID: 29979549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
microRNAs (miRNAs) not only play the key roles in regulation of the growth and development of mosquito, but also has an important function in interaction between the pathogen and vector. So, miRNAs can be used as the molecular target for development of an alternative method for mosquito and mosquito-borne disease control. However, an effective delivery system is still need. Mosquito densovirus have the potential for vector control as transducing agents to express foreign toxins or small interfering RNAs molecules in vitro and in vivo. In this study, we report the development of a recombinant Aedes albopictus densovirus-3(AalDV-3) miRNA sponge expression system, using an intronic miRNA sponge expression strategy. To test the inhibition effect of recombinant virus medicated miRNA sponge on endogenous miR-210, Aedes aegypti Aag2 cell and 1st-2nd larvae were infected, respectively. The splicing of the intronic miRNA sponge expression constructs in vitro and in vivo were tested by RT-PCR with intron span primers, and the relatively expression level of miR-210 was confirmed by qPCR. As results,AalDV-3can be used to decrease endogenous miRNAs by generating an antisense sponge in vitro and in vivo, which represents a tool for the functional analysis of mosquito genes and lays the foundation for the application of densovirus for vector control.
Collapse
|
14
|
Yang WT, Shi SH, Jiang YL, Zhao L, Chen HL, Huang KY, Yang GL, Wang CF. Genetic characterization of a densovirus isolated from great tit (Parus major) in China. INFECTION GENETICS AND EVOLUTION 2016; 41:107-112. [PMID: 27051046 DOI: 10.1016/j.meegid.2016.03.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 11/16/2022]
Abstract
During a study of ornithophilous viruses in China, a new densovirus (DNV) was isolated from the lung tissue of Parus major (PmDNV-JL). The complete genome of PmDNV-JL was cloned and sequenced. Five open reading frames (ORFs) were identified in the 5166nt sequence, on the basis of deduced amino acids. It was further shown that this virus caused cytopathic effects (CPE) in Feline kidney cells. The NS1 gene sequence of PmDNV-JL shares 70-99% nucleotide sequence identity with isolates of the Blattella germanica densovirus (BgDNV) and BgDNV-like virus. Phylogenetic analysis indicated that the predicted amino acid sequences of capsid (VP) and non-structural domain (NS1) of PmDNV-JL clustered with the BgDNV and were similar to BgDNV-HB within the genus Densovirus.
Collapse
|
15
|
Kozlov EN, Martynova EU, Roshina NV, Karakozova MV, Mukha DV. [Expression of cDNA of the Gene for the Capsid Protein VP2 of German Cockroach Densovirus in the Transgenic Strain of Drosophila melanogaster]. GENETIKA 2016; 52:503-508. [PMID: 27529987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Transgenic strains of Drosophila melanogaster capable of expressing a cDNA fragment corresponding to open reading frame (ORF) of the gene for the German cockroach densonucleosis virus capsid protein VP2 (ORF VP2) in specific tissues and at a certain stage of development depending on the type of chosen driver strains (GAL-UAS system) were obtained. The ORF VP2 transcription was examined at the imago stage after crossing the obtained transgenic Drosophila with the driver line expressing the inducer protein (GAL4) under control of actin promoter (the ORF VP2 expression is induced in all tissues of the first-generation Drosophila). It was demonstrated that the greater part of transcribed foreign RNA was represented by three spliced variants in which RNA fragments either between nucleotides 137 and 353 or between nucleotides 609 and 1925 were excised; the third spliced variant was represented by RNA lacking both introns. Using the next-generation sequencing (NGS) technique, the proportion of unspliced form relative to spliced variants of the analyzed RNA was assessed. It was shown that the ratio of unspliced form to the identified spliced variants of the analyzed RNA was approximately 1:6. It is suggested that splicing of viral RNA foreign to Drosophila can be a sort of defense mechanism preventing the large-scale production of the capsid protein, potentially hazardous to the host organism.
Collapse
|
16
|
Tang S, Song X, Xue L, Wang X, Wang X, Xu P, Ren G. Characterization and Distribution Analysis of a Densovirus Infecting Myzus persicae nicotianae (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:580-587. [PMID: 26791818 DOI: 10.1093/jee/tov399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Densoviruses (DVs) are a group of viruses that contain a linear single-stranded DNA genome between 4–6 kb in length. Herein, we report a DV with a 5,480-nt genome, isolated from tobacco aphid (Myzus persicae nicotianae Blackman), named MpnDV. Unlike the genome of M. persicae densovirus (MpDV), which possesses five open reading frames (ORFs), the genome of MpnDV contains four putative ORFs—the nonstructural protein 1 (NS1) and NS2 from MpnDV are 98- and 52-amino acids longer than those of MpDV, respectively, at the N-terminus, and the capsid proteins (VP) are 102 amino acids longer at the C-terminus than those of MpDV. Mapping of the MpnDV transcripts by RACE method indicated that the ORF of NS2 started at nt 340 and the right two putative ORFs were combined together by deleting two introns, one of 95 bp located at nt 2,932–3,026 and the other of 145 bp located at nt 4,715–4,859, suggesting transcript mapping was necessary for analyzing of genome organization. Alignment analysis indicated that MpnDV shows 97% sequence identity with MpDV, and that the shortened ORFs resulted from nucleotide indels, suggesting MpnDV and MpDV were two isolates of the same virus. Thus, MpnDV and MpDV clustered together in a tree-based analysis. The prevalence of MpnDV infection in wild populations of tobacco aphids differed among 29 locations; 34% of the 622 individuals sampled were positive. The genome organization, transcript strategy, and widespread distribution in wild populations suggest that MpnDV might possess a biological function different from that of MpDV.
Collapse
|
17
|
Boonnak K, Suttitheptumrong A, Jotekratok U, Pattanakitsakul SN. PHYLOGENETIC ANALYSIS REVEALS GENETIC VARIATIONS OF DENSOVIRUS ISOLATED FROM FIELD MOSQUITOES IN BANGKOK AND SURROUNDING REGIONS. THE SOUTHEAST ASIAN JOURNAL OF TROPICAL MEDICINE AND PUBLIC HEALTH 2015; 46:207-214. [PMID: 26513923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Screening for densoviruses (DNVs) from Aedes, Culex and Toxorhynchites mosquitoes collected in Bangkok and surrounding regions identified two clades of Aedes DNV; Ae. aegypti DNV (AaeDNV) and Ae. albopictus DNV (AalDNV) by PCR-restriction fragment length polymorphism (PCR-RFLP). From nucleotide sequencing and phylogenetic analysis of PCR amplicons of a fragment of DNV capsid gene, these DNVs were shown to be new DNV genetic variations similar to AaeDNV. Isolation and identification of densoviruses from indigenous field mosquitoes reside in natural habitat should be helpful in monitoring the distribution of DNVs in important mosquitoes, especially Ae. aegypti and Ae. albopictus, vector for dengue and yellow fever viruses.
Collapse
|
18
|
Kozlov EN, Mukha DV. [Mammalian cell culture as a model for studying the intracellular traffic of densovirus proteins]. GENETIKA 2015; 51:271-276. [PMID: 25966595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The intracellular localization of the fusion protein composed of green fluorescent protein (GFP) and one of the capsid proteins (namely VP1) of the German cockroach densovirus BgDV1 was investigated using the HeLa human cell culture. The intracellular localization of GFP was analyzed in a series of control experiments. Histochemical analysis with GFP antibodies showed that the fusion protein is localized exclusively inside the nucleus of cells because of the transitory expression of the corresponding vector constructions, whereas the GFP is located both in the nucleus and the cytoplasm. We can conclude that the signal of the nuclear localization of the capsid protein of the German cockroach densovirus is functionally active, not only within the cells of this insect but within the human cell culture as well. This observation extends the experimental possibilities for studying the genetic control of intracellular traffic of densovirus proteins.
Collapse
|
19
|
Jotekratok U, Boonnak K, Suttitheptumrong A, Pattanakitsakul SN. Application of post-PCR methods for analysis of mosquito densovirus. THE SOUTHEAST ASIAN JOURNAL OF TROPICAL MEDICINE AND PUBLIC HEALTH 2014; 45:801-807. [PMID: 25427347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Two clades of Aedes densovirus, Aedes aegypti densovirus and Aedes albopictus densovirus, were classified according to the origin of isolation. These two densoviruses were isolated from indigenous mosquitoes and mosquito cell lines, respectively. This group of invertebrate viruses belongs to the subfamily Densovirinae of the Parvoviridae family and infects only insects. Several types of densoviruses have been isolated from mosquitoes especially Aedes aegypti and Aedes albopictus, which are important vectors of dengue hemorrhagic fever and yellow fever in humans. We describe applications of post-PCR techniques, re- striction fragment length polymorphism (RFLP) and single-strand conformation polymorphism (SSCP) to classify these two clades of Aedes densoviruses isolated from different origins. These methods are simple and rapid and are applicable to identify other groups of densoviruses isolated from biological samples.
Collapse
|
20
|
Suzuki Y, Niu G, Hughes GL, Rasgon JL. A viral over-expression system for the major malaria mosquito Anopheles gambiae. Sci Rep 2014; 4:5127. [PMID: 24875042 PMCID: PMC4038844 DOI: 10.1038/srep05127] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/14/2014] [Indexed: 11/08/2022] Open
Abstract
Understanding pathogen/mosquito interactions is essential for developing novel strategies to control mosquito-borne diseases. Technical advances in reverse-genetics, such as RNA interference (RNAi), have facilitated elucidation of components of the mosquito immune system that are antagonistic to pathogen development, and host proteins essential for parasite development. Forward genetic approaches, however, are limited to generation of transgenic insects, and while powerful, mosquito transgenesis is a resource- and time-intensive technique that is not broadly available to most laboratories. The ability to easily "over-express" genes would enhance molecular studies in vector biology and expedite elucidation of pathogen-refractory genes without the need to make transgenic insects. We developed and characterized an efficient Anopheles gambiae densovirus (AgDNV) over-expression system for the major malaria vector Anopheles gambiae. High-levels of gene expression were detected at 3 days post-infection and increased over time, suggesting this is an effective system for gene induction. Strong expression was observed in the fat body and ovaries. We validated multiple short promoters for gene induction studies. Finally, we developed a polycistronic system to simultaneously express multiple genes of interest. This AgDNV-based toolset allows for consistent transduction of genes of interest and will be a powerful molecular tool for research in Anopheles gambiae mosquitoes.
Collapse
|
21
|
Martynova EU, Kapelinskaia TV, Schal C, Mukha DV. [The intracellular localization of the regulatory proteins of the densovirus of German cockroach, Blattella germanica]. Mol Biol (Mosk) 2014; 48:349-352. [PMID: 25850305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The intracellular localization of the regulatory proteins encoded by the genome of the densovirus of German cockroach was analyzed using western-blotting of nuclear and cytoplasmic extracts of the densovirus-infected passaging cells tissue culture BGE-2. Two of the three regulatory proteins, NS1 and NS3, were shown to possess mainly nuclear localization, while NS2 protein was distributed between the nucleus and cytoplasm. Data obtained provide new information necessary for prediction of the functions of densovirus regulatory proteins. Intracellular localization of NS3 protein was described for the densoviruses for the first time.
Collapse
|
22
|
Suttitheptumrong A, Pattanakitsakul SN. Application of quantitative PCR for quantization of densovirus genome. THE SOUTHEAST ASIAN JOURNAL OF TROPICAL MEDICINE AND PUBLIC HEALTH 2014; 45:47-52. [PMID: 24964653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Densovirus is classified as invertebrate virus belonging to the subfamily Densovirinae of Parvoviridae family. This group of viruses infects only insects and several densoviruses have been isolated from indigenous mosquitoes and mosquito cell lines. A number of mosquitoes, especially Aedes aegypti and Ae. albopictus are important vectors of viruses, which are the major causes of dengue hemorrhagic fever and yellow fever in humans. As densoviruses do not cause any pathology in humans, these viruses have been proposed to be a potential vector for use in biological control of mosquitoes and insects. We report the application of quantitative (q)PCR to determine the amount of densovirus genome in mosquito cell culture supernatant and mosquito. This method is simple, rapid and has a wide dynamic range, and therefore is likely to be useful and applicable in the determination of viral load of other viruses in a variety of biological specimens.
Collapse
|
23
|
Xu P, Cheng P, Liu Z, Li Y, Murphy RW, Wu K. Complete genome sequence of a monosense densovirus infecting the cotton bollworm, Helicoverpa armigera. J Virol 2012; 86:10909. [PMID: 22966197 PMCID: PMC3457278 DOI: 10.1128/jvi.01912-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 07/23/2012] [Indexed: 12/22/2022] Open
Abstract
Densoviruses (DNVs) infecting arthropods are members of the family Parvoviridae. Here we report the complete genome sequence of a novel DNV with a monosense genome that infects cotton bollworms (Helicoverpa armigera), named HaDNV-1. Alignment and phylogenetic analysis revealed that HaDNV-1 showed high identity with the genus Iteravirus.
Collapse
|
24
|
Sangdee K, Pattanakitsakul SN. New genetic variation of Aedes albopictus densovirus isolated from mosquito C6/36 cell line. THE SOUTHEAST ASIAN JOURNAL OF TROPICAL MEDICINE AND PUBLIC HEALTH 2012; 43:1122-1133. [PMID: 23431818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Densovirus (DNV) is a small single-stranded DNA, non-enveloped virus belonging to the subfamily Densovirinae of the Parvoviridae family. This group of invertebrate viruses infects exclusively insects. Two of the major densoviruses, Aedes aegypti (AaeDNV) and Ae. albopictus (AalDNV), infect mosquitoes that carry viruses responsible for two important public health diseases, namely, dengue hemorrhagic fever and yellow fever. The present study describes cloning, sequencing and phylogenetic analysis of a new densovirus, AalDNV-4, from infected Ae. albopictus C6/36 cell line. The total nucleotide sequence (3.9 kb) of AalDNV-4 was obtained from sequencing of DNA fragments, and is 98% homologous to the initial AalDNV previously isolated, and distinguishable from other AalDNVs reported earlier. This full-length viral genome contains a 40-bp deletion at the left terminal region, 12 substitutions and 3 indels. Phylogenetic analysis of AalDNV-4 genome indicates that this virus is more closely related to the original AalDNV found in C6/36 cell line than to AaeDNV isolated from other mosquitoes. It was concluded that AalDNV-4 may have been derived from the original DNV found in the C6/36 cell line and has transferred worldwide from the exchange of this cell line among laboratories.
Collapse
|
25
|
Yu Q, Fédière G, Abd-Alla A, Bergoin M, Tijssen P. Iteravirus-like genome organization of a densovirus from Sibine fusca Stoll. J Virol 2012; 86:8897-8. [PMID: 22843858 PMCID: PMC3421747 DOI: 10.1128/jvi.01267-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 05/22/2012] [Indexed: 11/20/2022] Open
Abstract
The complete genome of Sibine fusca densovirus was cloned and sequenced. The genome contained 5,012 nucleotides (nt), including inverted terminal repeats (ITRs) of 230 nt with terminal hairpins of 161 nt. Its DNA sequence and monosense organization with 3 open reading frames (ORFs) is typical of the genus Iteravirus in the subfamily Densovirinae of the Parvoviridae.
Collapse
|