1
|
Laforest M, Soufiane B, Simard MJ, Obeid K, Page E, Nurse RE. Acetyl-CoA carboxylase overexpression in herbicide-resistant large crabgrass (Digitaria sanguinalis). PEST MANAGEMENT SCIENCE 2017; 73:2227-2235. [PMID: 28755464 DOI: 10.1002/ps.4675] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND The occurrence of herbicide-resistant weed biotypes is increasing and this report of an acetyl-CoA carboxylase (ACCase) inhibitor-resistant Digitaria sanguinalis L. Scop. from southwestern Ontario is another example. The identified weed escaped control in an onion and carrot rotation in which graminicides were used for several consecutive years. Our goal was to characterize the level and mechanism of resistance of the biotype. RESULTS The biotype was resistant to all five ACCase inhibitor herbicides tested. Gene-expression profiling was performed because none of the mutations known to confer resistance in the ACCase gene were detected. RNASeq and quantitative reverse-transcriptase PCR (qRT-PCR) results indicated that transcription of ACCase was 3.4-9.3 times higher in the resistant biotype than the susceptible biotype. ACCase gene copy number was determined by qPCR to be five to seven times higher in the resistant compared with the susceptible biotype. ACCase gene overexpression was directly related to the increase of the ACCase gene copy number. CONCLUSION Our results are consistent with the hypothesis that overexpression of the herbicide target gene ACCase confers resistance to the herbicide. This is the first reported case of target gene duplication conferring resistance to a herbicide other than glyphosate. © 2017 Society of Chemical Industry See related Article.
Collapse
|
|
8 |
67 |
2
|
de Carvalho LB, Alves PLDCA, González-Torralva F, Cruz-Hipolito HE, Rojano-Delgado AM, De Prado R, Gil-Humanes J, Barro F, de Castro MDL. Pool of resistance mechanisms to glyphosate in Digitaria insularis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:615-22. [PMID: 22175446 DOI: 10.1021/jf204089d] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Digitaria insularis biotypes resistant to glyphosate have been detected in Brazil. Studies were carried out in controlled conditions to determine the role of absorption, translocation, metabolism, and gene mutation as mechanisms of glyphosate resistance in D. insularis. The susceptible biotype absorbed at least 12% more (14)C-glyphosate up to 48 h after treatment (HAT) than resistant biotypes. High differential (14)C-glyphosate translocation was observed at 12 HAT, so that >70% of the absorbed herbicide remained in the treated leaf in resistant biotypes, whereas 42% remained in the susceptible biotype at 96 HAT. Glyphosate was degraded to aminomethylphosphonic acid (AMPA), glyoxylate, and sarcosine by >90% in resistant biotypes, whereas a small amount of herbicide (up to 11%) was degraded by the susceptible biotype up to 168 HAT. Two amino acid changes were found at positions 182 and 310 in EPSPS, consisting of a proline to threonine and a tyrosine to cysteine substitution, respectively, in resistant biotypes. Therefore, absorption, translocation, metabolism, and gene mutation play an important role in the D. insularis glyphosate resistance.
Collapse
|
|
13 |
64 |
3
|
Zhao Q, Liu S, Li Y, Wang Q. Design, synthesis, and biological activities of novel 2-cyanoacrylates containing oxazole, oxadiazole, or quinoline moieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:2849-2855. [PMID: 19271709 DOI: 10.1021/jf803632t] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A series of novel 2-cyanoacrylates containing an oxazole, oxadiazole, or quinoline moiety were designed and synthesized, and their structures were characterized by (1)H NMR and elemental analysis (or high-resolution mass spectrometry). Their herbicidal activities against four weeds were evaluated, and the result indicated that some of the title compounds showed excellent herbicidal activities against rape and amaranth pigweed in postemergence treatment at a dose of 375 g/ha. Furthermore, most of these cyanoacrylates exhibited interesting plant growth regulatory activities.
Collapse
|
|
16 |
41 |
4
|
Lee HB, Kim CJ, Kim JS, Hong KS, Cho KY. A bleaching herbicidal activity of methoxyhygromycin (MHM) produced by an actinomycete strain Streptomyces sp. 8E-12. Lett Appl Microbiol 2003; 36:387-91. [PMID: 12753247 DOI: 10.1046/j.1472-765x.2003.01327.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To screen bioherbicidal isolates and evaluate herbicidal activity of methoxyhygromycin (MHM) produced by Streptomyces sp. 8E-12. METHODS AND RESULTS Streptomyces sp. 8E-12 with herbicidal activity was selected through seed germination bioassay. An active metabolite, MHM was isolated from culture broth by carbon absorption, butanol extraction, silica gel, Sephadex LH-20 and G-10 chromatography, and preparative HPLC. The metabolite was identified by electrospray ionization mass spectra (ESI-MS) and 1H- and 13C-NMR spectral data analyses. In vivo herbicidal activity was examined against weeds and crops grown on pots. CONCLUSIONS Streptomyces sp. 8E-12 produced a selective herbicidal metabolite which was identified as MHM. The metabolite showed stronger in vivo activity against monocotyledonous plants than dicotyledonous plants, and caused a bleaching (albino symptom) on some weeds including Digitaria sanguinalis and Echinochloa crus-galli. SIGNIFICANCE AND IMPACT OF THE STUDY These results showed that Streptomyces sp. 8E-12 produced a bioherbicidal metabolite, MHM and can be developed as a biocontrol agent (BCA) for weed control.
Collapse
|
|
22 |
33 |
5
|
Che JY, Xu XY, Tang ZL, Gu YC, Shi DQ. Synthesis and herbicidal activity evaluation of novel α-amino phosphonate derivatives containing a uracil moiety. Bioorg Med Chem Lett 2016; 26:1310-3. [PMID: 26786699 DOI: 10.1016/j.bmcl.2016.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/23/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
A series of novel α-amino phosphonate derivatives containing a uracil moiety 3a-3l were designed and synthesized by a Lewis acid (magnesium perchlorate) catalyzed the Kabachnik-Fields reaction. The bioassays {in vitro, in vivo [Glass House 1 (GH1) and Glass House 2 (GH2)]} showed that most of compounds 3 exhibited excellent and selective herbicidal activities; for example, in GH1 test, compounds 3b, 3d, 3f, 3h and 3j showed excellent and wide spectrum herbicidal activities at the dose of 1000 g/ha, and compounds 3b and 3j exhibited 100% inhibition activities against the four plants in both post- and pre-emergence treatments. Moreover, most of compounds 3 showed higher inhibition against Amaranthus retroflexus and Digitaria sanguinalis than Glyphosate did in pre-emergence treatment. In GH2 test, the four compounds (3b, 3d, 3h and 3j) exhibited 100% inhibition against Solanum nigrum, Amaranthus retroflexus and Ipomoea hederacea in post-emergence treatment and displayed 100% inhibition against Solanum nigrum, Amaranthus retroflexus in pre-emergence treatment at the rate of 250 g/ha, and compound 3b showed the best and broad spectrum herbicidal activities against the six test plants. However, the four compounds displayed weaker herbicidal activities against Lolium perenne and Echinochloa crus-galli than the other four plants at the rate of 250 g/ha in both pre- and post-emergence treatments. So, compounds 3 can be used as a lead compound for further structure optimization for developing potential selective herbicidal agent. Their preliminary structure-activity relationships were also investigated.
Collapse
|
|
9 |
28 |
6
|
Motti CA, Bourguet-Kondracki ML, Longeon A, Doyle JR, Llewellyn LE, Tapiolas DM, Yin P. Comparison of the biological properties of several marine sponge-derived sesquiterpenoid quinones. Molecules 2007; 12:1376-88. [PMID: 17909493 PMCID: PMC6149455 DOI: 10.3390/12071376] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 07/06/2007] [Accepted: 07/09/2007] [Indexed: 11/16/2022] Open
Abstract
Eight naturally occurring marine-sponge derived sesquiterpenoid quinones were evaluated as potential inhibitors of pyruvate phosphate dikinase (PPDK), a C4 plant regulatory enzyme. Of these, the hydroxyquinones ilimaquinone, ethylsmenoquinone and smenoquinone inhibited PPDK activity with IC50's (reported with 95% confidence intervals) of 285.4 (256.4-317.7), 316.2 (279.2-358.1) and 556.0 (505.9-611.0) microM, respectively, as well as being phytotoxic to the C4 plant Digitaria ciliaris. The potential anti-inflammatory activity of these compounds, using bee venom phospholipase A2 (PLA2), was also evaluated. Ethylsmenoquinone, smenospongiarine, smenospongidine and ilimaquinone inhibited PLA2 activity (% inhibition of 73.2 +/- 4.8 at 269 microM, 61.5 +/- 6.1 at 242 microM, 41.0 +/- 0.6 at 224 microM and 36.4 +/- 8.2 at 279 microM, respectively). SAR analyses indicate that a hydroxyquinone functionality and a short, hydroxide/alkoxide side-chain atC-20 is preferred for inhibition of PPDK activity, and that a larger amine side-chain at C-20 is tolerated for PLA2 inhibitory activity.
Collapse
|
Comparative Study |
18 |
23 |
7
|
Motti CA, Bourne DG, Burnell JN, Doyle JR, Haines DS, Liptrot CH, Llewellyn LE, Ludke S, Muirhead A, Tapiolas DM. Screening marine fungi for inhibitors of the C4 plant enzyme pyruvate phosphate dikinase: unguinol as a potential novel herbicide candidate. Appl Environ Microbiol 2007; 73:1921-7. [PMID: 17220253 PMCID: PMC1828816 DOI: 10.1128/aem.02479-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A total of 2,245 extracts, derived from 449 marine fungi cultivated in five types of media, were screened against the C(4) plant enzyme pyruvate phosphate dikinase (PPDK), a potential herbicide target. Extracts from several fungal isolates selectively inhibited PPDK. Bioassay-guided fractionation of one isolate led to the isolation of the known compound unguinol, which inhibited PPDK with a 50% inhibitory concentration of 42.3 +/- 0.8 muM. Further kinetic analysis revealed that unguinol was a mixed noncompetitive inhibitor of PPDK with respect to the substrates pyruvate and ATP and an uncompetitive inhibitor of PPDK with respect to phosphate. Unguinol had deleterious effects on a model C(4) plant but no effect on a model C(3) plant. These results indicate that unguinol inhibits PPDK via a novel mechanism of action which also translates to an herbicidal effect on whole plants.
Collapse
MESH Headings
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Digitaria/drug effects
- Enzyme Inhibitors/isolation & purification
- Enzyme Inhibitors/pharmacology
- Fungi/classification
- Fungi/isolation & purification
- Fungi/metabolism
- Herbicides/isolation & purification
- Herbicides/pharmacology
- Heterocyclic Compounds, 3-Ring/isolation & purification
- Heterocyclic Compounds, 3-Ring/pharmacology
- Hordeum/drug effects
- Kinetics
- Molecular Sequence Data
- Phylogeny
- Protein Binding
- Pyruvate, Orthophosphate Dikinase/antagonists & inhibitors
- RNA, Ribosomal, 18S/genetics
- Sequence Analysis, DNA
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
21 |
8
|
Mei Y, Si C, Liu M, Qiu L, Zheng M. Investigation of resistance levels and mechanisms to nicosulfuron conferred by non-target-site mechanisms in large crabgrass (Digitaria sanguinalis L.) from China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 141:84-89. [PMID: 28911745 DOI: 10.1016/j.pestbp.2016.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/24/2016] [Accepted: 12/05/2016] [Indexed: 06/07/2023]
Abstract
Large crabgrass is a major grass weed widely distributed across China. This weed infests maize fields and has evolved resistance to the acetolactate synthase (ALS)-inhibiting herbicide nicosulfuron due to continuous and intensive use. In this study, a total of 25 out of 26 large crabgrass populations collected from maize field demonstrated resistance to nicosulfuron. Amino acid modifications in ALS known to confer resistance to ALS-inhibiting herbicides in other weeds, were not found in the 9 tested resistant populations. The P450 inhibitor malathion significantly reversed resistance to nicosulfuron in 3 tested populations, indicating one or more P450s may be involved. Nicosulfuron was metabolized more rapidly in one resistant large crabgrass population than in a susceptible biotype. This demonstrates that the metabolic resistance mechanisms involving one or more P450s may be responsible for large crabgrass resistance to nicosulfuron in this biotype.
Collapse
|
|
8 |
17 |
9
|
Yan Z, Yang Z, Deng X, Lin D, Wu M, Li J, Chen A, Ye J, Hu A, Liao H. Novel aryloxyphenoxypropionate derivates containing benzofuran moiety: Design, synthesis, herbicidal activity, docking study and theoretical calculation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 154:78-87. [PMID: 30765060 DOI: 10.1016/j.pestbp.2018.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
A series of novel aryloxyphenoxypropionate (APP) herbicides containing benzofuran moiety were designed, synthesized and tested for herbicidal activity. The bioassay results indicated that most of target compounds possessed moderate to good herbicidal activity against monocotyledonous weeds. Compounds 5a-5d and 6a-6d showed 100% control efficiency against crabgrass (Digitaria sanguinalis) and barnyard grass (Echinochloa crus-galli) in both pre-emergence and post-emergence treatments at the dosage of 1500 g a.i. ha-1. Compound 6c was the most promising, with herbicidal activity better than clodinafop-propargyl. Molecular docking for compound 6c and its hydrolysis acid 1c were performed. ACCase activities of some compounds were also tested. Theoretical calculations for corresponding hydrolysis products 1a-1ewere carried out. Based on the results of molecular docking, enzyme activity test and theoretical calculation, the potential mechanism for herbicidal activity of these compounds was evaluated.
Collapse
|
|
6 |
16 |
10
|
Pardo-Muras M, Puig CG, López-Nogueira A, Cavaleiro C, Pedrol N. On the bioherbicide potential of Ulex europaeus and Cytisus scoparius: Profiles of volatile organic compounds and their phytotoxic effects. PLoS One 2018; 13:e0205997. [PMID: 30372468 PMCID: PMC6205617 DOI: 10.1371/journal.pone.0205997] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/18/2018] [Indexed: 11/26/2022] Open
Abstract
The phytotoxic potential of the legume shrubs Ulex europaeus L. (gorse) and Cytisus scoparius (L.) Link. (Scotch broom) is studied in this work for the first time. On the basis of their richness in active principles, the previous evidence of biological activity, and the abundance of biomass in their native range and invaded areas, a question arose: can U. europaeus and C. scoparius be considered as potential sources of natural herbicides for sustainable agriculture? By means of volatile bioassays, the flowering fresh plant material of both shrub species was shown to produce and emit volatile organic compounds (VOCs) able to inhibit the germination and/or early growth of two agricultural weeds: Amaranthus retroflexus and Digitaria sanguinalis. Novel complete VOCs profiles from the volatile extracts of the shrub species were obtained by GC and GC/MS. A total of 20 compounds were identified from U. europaeus flowering biomass, theaspirane and eugenol, among others, being described in gorse for the first instance. The chemical profile of C. scoparius yielded 28 compounds and was rich in oxygenated monoterpenes such as terpinen-4-ol, verbenol, α-terpineol, and verbenone, which were also identified in this species for the first time. Using dose-response bioassays with pure compounds, these VOCs were argued to be involved in the phytotoxicity observed for the plant materials, even at very low concentrations. The phytotoxic effects were predominantly irreversible, particularly for D. sanguinalis, since the seeds exposed to the VOCs produced damaged seedlings, were unable to recover germination capacity after removing the phytotoxin or, when recovered, produced unviable seedlings. Our results extend the interest of the abundant U. europaeus and C. scoparius for the obtention of natural products with bioherbicide potential, or to be used as allelopathic biomass in the development of new sustainable agricultural practices.
Collapse
|
research-article |
7 |
14 |
11
|
White PM, Wolf DC, Thoma GJ, Reynolds CM. Influence of organic and inorganic soil amendments on plant growth in crude oil-contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2003; 5:381-397. [PMID: 14750564 DOI: 10.1080/15226510309359044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Phytoremediation can be a viable alternative to traditional, more costly remediation techniques. Three greenhouse studies were conducted to evaluate plant growth with different soil amendments in crude oil-contaminated soil. Growth of alfalfa (Medicago sativa L., cultivar: Riley), bermudagrass (Cynodon dactylon L., cultivar: Common), crabgrass (Digitaria sanguinalis, cultivar: Large), fescue (Lolium arundinaceum Schreb., cultivar: Kentucky 31), and ryegrass (Lolium multiflorum Lam., cultivar: Marshall) was determined in crude oil-contaminated soil amended with either inorganic fertilizer, hardwood sawdust, papermill sludge, broiler litter or unamended (control). In the first study, the addition of broiler litter reduced seed germination for ryegrass, fescue, and alfalfa. In the second study, bermudagrass grown in broiler litter-amended soil produced the most shoot biomass, bermudagrass produced the most root biomass, and crabgrass and bermudagrass produced the most root length. In the third study, soil amended with broiler litter resulted in the greatest reduction in gravimetric total petroleum hydrocarbon (TPH) levels across the six plant treatments following the 14-wk study. Ryegrass produced more root biomass than any other species when grown in inorganic fertilizer- or hardwood sawdust + inorganic fertilizer-amended soil. The studies demonstrated that soil amendments and plant species selection were important considerations for phytoremediation of crude oil-contaminated soil.
Collapse
|
|
22 |
12 |
12
|
Pardo-Muras M, G. Puig C, Pedrol N. Cytisus scoparius and Ulex europaeus Produce Volatile Organic Compounds with Powerful Synergistic Herbicidal Effects. Molecules 2019; 24:molecules24244539. [PMID: 31835831 PMCID: PMC6943486 DOI: 10.3390/molecules24244539] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022] Open
Abstract
New herbicides based on natural products are claimed to address weed resistance and environmental concerns related to synthetic herbicides. In our previous studies, certain volatile organic compounds (VOCs) produced by Ulex europaeus and Cytisus scoparius were argued to be responsible for the phytotoxicity of both shrub species. Interactions among VOCs were hypothesized to explain the inconsistency between the effects of the identified pure compounds and those naturally emitted from fresh plant material. In this work, eugenol, verbenone, terpinen-4-ol, α-terpineol, and linalool were assayed as binary mixtures of Amaranthus retroflexus and Digitaria sanguinalis. Powerful synergistic inhibitory effects were revealed for germination and early growth. Only 3.1 ppm of verbenone was enough to inhibit A. retroflexus germination when paired to other VOCs. Eugenol was capable of exacerbating the effects of terpinen-4-ol on A. retroflexus, even though it was innocuous when acting alone at 12.5 ppm. The verbenone and linalool pair produced very significant synergistic effects in terms of D. sanguinalis germination. The synergistic effects were predominantly irreversible for D. sanguinalis, since seeds exposed to paired VOCs were unable to recover their germination capacity after removing the phytotoxins or produced damaged seedlings. Both shrub species have been revealed as sources of natural herbicide molecules, with promising synergistic modes of action that deserve to be studied in depth.
Collapse
|
|
6 |
11 |
13
|
Kim HJ, Bo AB, Kim JD, Kim YS, Khaitov B, Ko YK, Cho KM, Jang KS, Park KW, Choi JS. Herbicidal Characteristics and Structural Identification of the Potential Active Compounds from Streptomyces sp. KRA17-580. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15373-15380. [PMID: 33345538 DOI: 10.1021/acs.jafc.0c01974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Weeds are notorious plant species exhibiting a harmful impact on crops. Biological weed control is an efficient and environmentally friendly technique, usually constitutes naturally derived compounds, including bioherbicidal metabolites produced by Streptomyces sp. The isolation and structural identification of phytotoxic compounds from Streptomyces have recently been proposed as an effective way to the discovery of novel bioherbicides. In the screening of bioherbicidal agents, isolated Streptomyces strain KRA17-580 demonstrated significant phytotoxic activity against Digitaria ciliaris. Phylogenetic analysis of the 16S rRNA sequence indicated that isolated KRA17-580 is similar to Streptomyces olivochromogenes. The bacterial culture conditions were optimized for temperature, agitation, and initial pH. Streptomyces strain KRA17-580 showed intense phytotoxic activity and high cell mass at an initial pH of 5.5-7.0, more than 150 rpm, and 25-30 °C. The herbicidal compounds isolated from the culture filtrate of strain KRA17-580 were purified by solvent partition, C18, Sephadex LH20 column chromatography, and high-performance liquid chromatography. By 1D-NMR, 2D-NMR, and electrospray ionization mass spectrometry analysis, the 580-H1 and 580-H2 compounds were identified as a cinnoline-4-carboxamide (MW, 173.0490; C9H7N3O2) and cinnoline-4-carboxylic acid (MW, 174.0503; C9H6N2O2), respectively. Only these two herbicidal compounds showed strong phytotoxic activity against D. ciliaris in foliar applications. However, compound 580-H2 was more phytotoxic than 580-H1 and the toxicity was dose-dependent. The herbicidal metabolite KRA17-580 produced by Streptomyces sp. is a new bioherbicidal candidate that may provide a new lead molecule for more efficient phytotoxic compounds.
Collapse
|
|
5 |
8 |
14
|
Ekmekci Y, Bohms A, Thomson JA, Mundree SG. Photochemical and Antioxidant Responses in the Leaves of Xerophyta viscosa Baker and Digitaria sanguinalis L. under Water Deficit. ACTA ACUST UNITED AC 2014; 60:435-43. [PMID: 16042345 DOI: 10.1515/znc-2005-5-612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, photochemical and antioxidant responses of the monocotyledonous resurrection plant Xerophyta viscosa Baker and the crab grass Digitaria sanguinalis L. under water deficit were investigated as a function of time. Water deficit was imposed by withholding irrigation for 21 d. Gas exchange and chlorophyll a fluorescence analyses indicated that the dehydration treatment caused photoinhibition in both species. The reduction in the photosynthesis rate in both species during water deficit probably contributed to the decline in the photochemical efficiency of PSII and electron transport rate. However, the stomatal conductance of both species did not change during treatment whereas the intercellular CO2 pressure increased after 10 d of water deficit treatment. These observations could be related to nonstomatal limitations. The increasing net transpiration rate of both species may have contributed to leaf cooling because of water limitations. Prolonged water deficit resulted in photosynthetic pigment chlorophyll (a + b) and carotenoids content loss in only D. sanguinalis. Both species especially D. sanguinalis had increased the level of anthocyanin after 15 d of treatment, possibly to prevent the damaging effect of photooxidation. The total SOD activity of D. sanguinalis was significantly different from X. viscosa during the treatment. The total peroxidase activity in D. sanguinalis was significantly higher than in X. viscosa. X. viscosa acclimated to water deficit with no ultimate apparent oxidative damage due to endogenous protective mechanisms of resurrection. In case of D. sanguinalis, water deficit induced considerable stress and possibly caused some oxidative damage, despite the upregulation of protection mechanisms.
Collapse
|
|
11 |
8 |
15
|
Galeano E, Barroso AAM, Vasconcelos TS, López-Rubio A, Albrecht AJP, Victoria Filho R, Carrer H. EPSPS variability, gene expression, and enzymatic activity in glyphosate-resistant biotypes of Digitaria insularis. GENETICS AND MOLECULAR RESEARCH 2016; 15:gmr8730. [PMID: 27525929 DOI: 10.4238/gmr.15038730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Weed resistance to herbicides is a natural phenomenon that exerts selection on individuals in a population. In Brazil, glyphosate resistance was recently detected in Digitaria insularis. The objective of this study was to elucidate mechanisms of weed resistance in this plant, including genetic variability, allelism, amino acid substitutions, gene expression, and enzymatic activity levels. Most of these have not previously been studied in this species. D. insularis DNA sequences were used to analyze genetic variability. cDNA from resistant and susceptible plants was used to identify mutations, alleles, and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) expression, using real-time quantitative reverse transcription-polymerase chain reaction. In addition, EPSPS activity was measured. We found a decrease in genetic variability between populations related to glyphosate application. Substitutions from proline to threonine and tyrosine to cysteine led to a decrease in EPSPS affinity for the glyphosate. In addition, the EPSPS enzymatic activity was slightly higher in resistant plants, whereas EPSPS gene expression was almost identical in both biotypes, suggesting feedback regulation at different levels. To conclude, our results suggest new molecular mechanisms used by D. insularis to increase glyphosate resistance.
Collapse
|
|
9 |
5 |
16
|
Roireau JH, Rosano RJ, Lazzara NC, Chen T, Bajsa-Hirschel J, Schrader KK, Duke SO, Wykoff D, Giuliano RM. Synthesis of Pyranopyrans Related to Diplopyrone and Evaluation as Antibacterials and Herbicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9906-9916. [PMID: 32808779 DOI: 10.1021/acs.jafc.0c02564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stereoselective syntheses of new pyranopyrans that are related to the natural product diplopyrone, which is a phytotoxin implicated in cork oak decline, have been achieved from carbohydrate starting materials in two approaches that are based on C-glycosides as key intermediates. A C-alkynyl glycoside prepared by Ferrier rearrangement was used as the precursor to a new pyranopyran alkyne that showed potent antibacterial activity against the common bacterial pathogen Edwardsiella ictaluri that causes enteric septicemia in catfish. The C-alkynyl glycoside also showed herbicidal activity. New bioassay data for the pyranopyran nitrile (4aR,6S,8aR)-6-cyano-6,8a-dihydropyrano-[3,2-b]pyran-2(4aH)-one, the most potent of the pyranopyrans synthesized to date, were obtained in greenhouse studies that revealed additional herbicidal activity. Other new analogues that were synthesized included desmethylpyranopyrans that were prepared by Isobe C-alkynylation-rearrangement/reduction and RCM-based pyranopyran construction. The antibiotic and phytotoxic activities of the new pyranopyrans synthesized in this study highlight the importance of substituents on the nonlactone ring and demonstrate the potential of such compounds as antibiotics and herbicides.
Collapse
|
|
5 |
3 |
17
|
Sato S, Sofian FF, Suehiro W, Harneti D, Maharani R, Supratman U, Abdullah FF, Salam S, Koseki T, Shiono Y. β-Resorcylic Acid Derivatives, with Their Phytotoxic Activities, from the Endophytic Fungus Lasiodiplodia theobromae in the Mangrove Plant Xylocarpus granatum. Chem Biodivers 2021; 18:e2000928. [PMID: 33555653 DOI: 10.1002/cbdv.202000928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022]
Abstract
Nine new β-resorcylic acid derivatives, (15S)-de-O-methyllasiodiplodin (1), (13S,15S)-13-hydroxy-de-O-methyllasiodiplodin (2), (14S,15S)-14-hydroxy-de-O-methyllasiodiplodin (3), (13R,14S,15S)-13,14-dihydroxy-de-O-methyllasiodiplodin (4), ethyl (S)-2,4-dihydroxy-6-(8-hydroxynonyl)benzoate (5), ethyl 2,4-dihydroxy-6-(8-hydroxyheptyl)benzoate (6), ethyl 2,4-dihydroxy-6-(4-methoxycarbonylbutyl)benzoate (7), 3-(2-ethoxycarbonyl-3,5-dihydroxyphenyl)propionic acid (8), and isobutyl (S)-2,4-dihydroxy-6-(8-hydroxynonyl)benzoate (9), together with a known ethyl 2,4-dihydroxy-6-(8-oxononyl)benzoate (10) were obtained from Lasiodiplodia theobromae GC-22. The structures of these compounds were elucidated by extensive spectroscopic analyses. Compounds 1, 3, and 6 showed growth inhibitory effects against Digitaria ciliaris. Conversely, treatment with compounds 5, 6, 7, 9, and 10 stimulated elongation activity toward the root of Lactuca sativa. These data expand the repertoire of new β-resorcylic acid derivatives that may function as lead compounds in the synthesis of new agrochemical agents.
Collapse
|
|
4 |
3 |
18
|
Alvarenga R, Auad AM, Moraes JC, Silva SE. Do silicon and nitric oxide induce resistance to Mahanarva spectabilis (Hemiptera: Cercopidae) in forage grasses? PEST MANAGEMENT SCIENCE 2019; 75:3282-3292. [PMID: 31006949 DOI: 10.1002/ps.5450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 03/08/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Great efforts have been made to identify grasses that are resistant to spittlebugs (Hemiptera: Cercopidae). However, the time required to develop and launch new cultivars is relatively long. The employment of resistance inducers is a current strategy that may be useful for the control of insect pests. This analysis evaluates the feasibility of using the chemical inducers silicon and nitric oxide to increase spittlebug resistance based on changes in forage grass vegetative characteristics and the biological traits of Mahanarva spectabilis (Distant, 1909). RESULTS Mahanarva spectabilis nymphs and adults can cause significant damage to forage grasses. Furthermore, silicon and nitric oxide inducers were not sufficient to lessen this damage by positively influencing the growth and development of forage grasses. These inducers did not negatively alter the biological parameters of M. spectabilis or diminish its population. However, phenolic compound concentrations increased when forage grasses were treated with silicon or attacked by adult insects, but this parameter was not useful to predict spittlebug resistance. This fact suggests that the physiological and biochemical changes caused by silicon should be further studied. CONCLUSION The current analysis demonstrated that application of the chemical inducers silicon and nitric oxide is currently not a viable strategy for the effective and economic management of M. spectabilis on Brachiaria ruziziensis, Pennisetum purpureum and Digitaria sp. © 2019 Society of Chemical Industry.
Collapse
|
|
6 |
1 |
19
|
Li W, Xue Y, Yao Z, Weng H, Zhang B, Ma Z. Bioactivity evaluation and active compounds identification of Symphoricarpos orbiculatus as potential botanical herbicide. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8965-8974. [PMID: 38975904 DOI: 10.1002/jsfa.13724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Evaluation of herbicidal activity and identification of active compounds are important bases for the development of new botanical herbicides. RESULTS This study confirmed that Symphoricarpos orbiculatus has high herbicidal activities against mono-dicotyledonous weeds, including Echinochloa crusgalli, Digitaria sanguinalis, Amaranthus retroflexus and Portulaca oleracea. By bioassay-guided isolation, 12 compounds were isolated and identified from S. orbiculatus for the first time, including iridoids: naucledal (K1), loganin (K2), loganigenin (K3), loganin acid (K4), glucologanin (K5) and vogeloside (K6), as well as flavonoids: quercetine (K7), luteolin (K8), nobiletin (K9), astragalin (K10), isorhamnetin 3-d-glucoside (K11) and rutin (K12). Biological assays showed that iridoids are the main active ingredients of S. orbiculatus. The compounds of K5 and K6 could inhibit both the root (IC50 = 37.54 and 38.91 μg mL-1, respectively) and shoot (IC50 = 42.78 and 45.72 μg mL-1, respectively) of Portulaca oleracea, which have a weeding toxicity similar to that of the commercialized plant-based herbicide pelargonic acid. In addition, the results of pot culture assay showed that S. orbiculatus ethanol extracts had high fresh weight control effect against Digitaria sanguinalis and P. oleracea at the concentration of 40 g L-1. After 7 days, both the soil treatment and the stem and leaf spray method resulted in severe leaf necrosis and significant leaf etiolation. CONCLUSION Symphoricarpos orbiculatus and its herbicidal active compounds have the potential to develop into botanical herbicides, and are first reported in the present study. © 2024 Society of Chemical Industry.
Collapse
|
|
1 |
|
20
|
Li C, Wang J, Dong H, Yang D, Li P, Cao S, Li C, An Z, Zhang J, Wang YE. Design, Synthesis, and Herbicidal Activity Study of Novel Pyrazole-Carboxamides as Potential Transketolase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:216-225. [PMID: 39708348 DOI: 10.1021/acs.jafc.4c08397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Transketolase (TKL; EC 2.2.1.1) has been identified as a potential new herbicide target. In order to discover highly herbicidal active compounds targeting TKL and improve their structural diversity for lead compounds, a series of pyrazole-carboxamides 7a-7v were designed and synthesized through structural optimization for pyrazole-containing phenoxy amide compound 4u. Among the synthesized compounds, compound 7r possessed excellent herbicidal efficacy against Digitaria sanguinalis (Ds) and Amaranthus retroflexus (Ar) by the small cup method (the inhibition about 95%, 100 mg/L) and the foliar spray method (the inhibition over 90%, 150 g ai/ha) in a greenhouse, which were superior to that of the positive control nicosulfuron. More significantly, compound 7r displayed good crop selectivity toward both maize and wheat even at 375 g of ai/ha. The studies on mode of action (MOA) of high herbicidal active compounds, including the enzyme inhibition activity, fluorescent quenching experiments, and molecular docking analysis between Setaria viridis (Sv)TKL and ligand, suggested that compound 7r acts as a typical TKL inhibitor, and the benzothiazole ring is an important motif for SvTKL inhibition activity. Above all, compound 7r could be a potential candidate for the development of herbicides with new MOA for weed control in maize and wheat field.
Collapse
|
|
1 |
|
21
|
Sun S, Li Y, Wang W, Kou S, Huo J, An Z, Zhu L, Li K, Chen L, Zhang J. Discovery of novel Propionamide-Pyrazole-Carboxylates as Transketolase-inhibiting herbicidal candidates. PEST MANAGEMENT SCIENCE 2024; 80:4897-4905. [PMID: 38808579 DOI: 10.1002/ps.8202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Transketolase (TKL, EC 2.2.1.1) is a key enzyme in the pentose phosphate pathway and Calvin cycle, and is expected to act as a herbicidal site-of-action. On the basis of TKL, we designed and synthesized a series of 1-oxy-propionamide-pyrazole-3-carboxylate analogues and evaluated their herbicidal activities. RESULTS Methyl 1-methyl-5-((1-oxo-1-((4-(trifluoromethyl)phenyl)amino)propan-2-yl)oxy)-1H-pyrazole-3-carboxylate (C23) and methyl 1-methyl-5-((1-oxo-1-((perfluorophenyl)amino)propan-2-yl)oxy)-1H-pyrazole-3-carboxylate (C33) were found to provide better growth-inhibition activities against Digitaria sanguinalis root than those of nicosulfuron, mesotrione and pretilachlor at 200 mg L-1 using the small-cup method. These compounds were also identified as promising compounds in pre-emergence and postemergence herbicidal-activity experiments, with relatively good inhibitory effects toward Amaranthus retroflexus and D. sanguinalis at 150 g ai ha-1. In addition, enzyme inhibition assays and molecular docking studies revealed that C23 and C33 interact favourably with SvTKL (Setaria viridis TKL). CONCLUSION C23 and C33 are promising lead TKL inhibitors for the optimization of new herbicides. © 2024 Society of Chemical Industry.
Collapse
|
|
1 |
|
22
|
McCurdy JD, McElroy JS, Kopsell DA, Sams CE. Mesotrione control and pigment concentration of large crabgrass (Digitaria sanguinalis) under varying environmental conditions. PEST MANAGEMENT SCIENCE 2009; 65:640-644. [PMID: 19235182 DOI: 10.1002/ps.1723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND Mesotrione is a carotenoid biosynthesis-inhibiting herbicide currently labeled for crabgrass (Digitaria spp.) control. Mesotrione control of large crabgrass has been reported to vary with temperature and relative humidity; however, the effect of irradiance on mesotrione efficacy has not previously been reported. Likewise, little is known about pigment concentrations of Digitaria spp. The present research investigated the effects of mesotrione on large crabgrass, Digitaria sanguinalis (L.) Scop., control and pigment concentrations under varying irradiance at three temperatures. RESULTS Mesotrione (0.28 kg ha(-1)) control of large crabgrass did not differ between temperature levels (18, 26 and 32 degrees C). Control was similar at tested irradiance levels (600, 1100 and 1600 micromol m(-2) s(-1)). Mesotrione reduced large crabgrass chlorophyll a, chlorophyll b and total carotenoid concentrations, as well as chlorophyll a to b ratios. Treated plant bleaching was highest 7 days after treatment (DAT) but decreased by 21 DAT. Treated plants were less than 10% necrotic 3 and 7 DAT but nearly 35% necrotic 21 DAT. Treated large crabgrass bleaching was highest and photochemical efficiency was lowest 7 DAT. These results indicate that some plant recovery occurs prior to 21 DAT. CONCLUSION Although mesotrione efficacy has previously been reported to vary according to environmental factors, mesotrione control of large crabgrass did not vary with measured temperature and irradiance levels in this study. On account of crabgrass convalescence, secondary applications of mesotrione may control large crabgrass more effectively when applied prior to 21 DAT.
Collapse
|
|
16 |
|
23
|
Gaspar YDS, Silva ÁA, Porcari AM, Araújo FDDS. Herbicidal Activity and Metabolic Profiling of Piper tuberculatum Jacq. Leachates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8160-8171. [PMID: 40147006 PMCID: PMC11987020 DOI: 10.1021/acs.jafc.4c11286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Understanding how allelochemicals with herbicidal activity are released in plant interactions is key to developing sustainable weed control strategies. This study aimed to investigate the herbicidal activity and metabolic profile of Piper tuberculatum Jacq. leachates. In vitro bioassays were performed with P. tuberculatum leaf leachates to evaluate their effects on the germination and early growth of Bidens bipinnata L. and Digitaria insularis (L.) Fedde. (DIGIN.). The leachate extracts were subsequently characterized via liquid chromatography high-resolution mass spectrometry-based metabolomics and molecular networking. The results showed that weed germination and seedling development were significantly affected by the P. tuberculatum leachates. Metabolomic analysis revealed that allelochemicals belonging to the classes of alkaloids, fatty acids, phenolic compounds, steroids, and terpenoids are potentially involved in herbicidal activity. These findings suggest that P. tuberculatum could be explored as a natural alternative for sustainable weed management, potentially reducing the dependence on synthetic herbicides.
Collapse
|
research-article |
1 |
|
24
|
Silva PVD, Silva de Medeiros E, Ferrari Schedenffeldt B, Cristina Bicalho Medeiros C, Mauad M, Cesar Munaro F, Antônio Vougodo Salmazo P, de Carvalho Dias R, Andrea Monquero P, Yuji Shirota L. Efficacy of weed control and selectivity in soybean in the application of preemergent herbicides and their carryover in sorghum and maize. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:792-802. [PMID: 39673121 DOI: 10.1080/03601234.2024.2432167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/17/2024] [Indexed: 12/16/2024]
Abstract
Further studies are necessary to evaluate not only the effectiveness of preemergent herbicides for weed control and selectivity in soybeans but also the potential carryover damage to crops planted in succession, such as sorghum and maize. This study aimed to assess the efficacy of preemergent herbicides in controlling Euphorbia heterophylla L. and Digitaria insularis L., as well as their selectivity in soybeans (Glycine max L.) and the residual effects on crops sown in succession, including maize (Zea mays L.) and sorghum (Sorghum bicolor (L.) Moench). Two field experiments were conducted with soybean, both in a randomized block design, consisting of the following treatments: sulfentrazone + diuron, flumioxazin + imazethapyr, diclosulam, sulfentrazone, s-metolachlor and flumioxazin, in addition to weeded controls and without weeding, with four replicates. Subsequently, the sowing of maize and sorghum was performed. Visual evaluations of weed control were performed at 14, 21, 28, 35 and 42 days after application of the treatments (DAA) and of phytotoxicity in soybean, sorghum and maize at 14, 21, 28, 35 and 42 days after planting emergence (DAE), and at the end, yield estimate. It was found that the sulfentrazone, sulfentrazone + diuron and imazethapyr + flumioxazin treatments were effective in controlling D. insularis and E. heterophylla up to 42 DAA. For sorghum and maize, no significant injury levels were observed for any treatment, with the exception of sulfentrazone alone, which provided significant reductions in productivity.
Collapse
|
|
1 |
|
25
|
Guan Y, Liu L, Zou Y, Yang C, Ji M. Involvement of P450s in the metabolic resistance of Digitaria sanguinalis (L.) Scop. To ALS-inhibiting herbicides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106038. [PMID: 39277365 DOI: 10.1016/j.pestbp.2024.106038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 09/17/2024]
Abstract
Weed resistance to a range of herbicides has rapidly evolved, often with different mechanisms of action. The resulting uninhibited growth of weeds poses demonstrable threats to crop production and sustainable agriculture. Digitaria sanguinalis (L.) Scop., a troublesome weed in corn and other agricultural fields, has developed resistance to herbicides that inhibiting ALS (Acetolactate Synthase), such as nicosulfuron. Understanding the weed's resistance patterns and mechanisms is crucial. However, little is known of the non-target site resistance (NTSR) mechanisms of D. sanguinalis owing to a lack of relevant genome sequences and other materials. Therefore, in this study, a population of D.sanguinalis presenting multiple resistance was tested and found that its high level of resistance to ALS-inhibiting herbicides was not associated with target-related alterations.Administration of P450 inhibitors reversed the resistance to ALS-inhibiting herbicides. Following the application of ALS-inhibiting herbicides, the activities of NADPH-P450 reductase and p-nitroanisole O-demethylase (PNOD) were notably greater in the resistant population of D. sanguinalis than those in the susceptible population. The results suggested P450 enzyme familyplays a major role in the metabolic resistance mechanism, that increased P450 enzyme activity promote cross-resistance in D. sanguinalis to ALS-inhibiting herbicides. RNA-seq analysis showed that five genes from the P450 family (CYP709B2, CYP714C2, CYP71A1, CYP76C2, and CYP81E8) were upregulated in resistant D. sanguinalis. In conclusion, the upregulation of several P450 genes is responsible for establishing resistance to ALS-inhibiting herbicides in D. sanguinalis.
Collapse
|
|
1 |
|