1
|
Bourgin M, Beck B, Boehler M, Borowska E, Fleiner J, Salhi E, Teichler R, von Gunten U, Siegrist H, McArdell CS. Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products. WATER RESEARCH 2018; 129:486-498. [PMID: 29190578 DOI: 10.1016/j.watres.2017.10.036] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/08/2017] [Accepted: 10/17/2017] [Indexed: 05/08/2023]
Abstract
To protect the ecosystem and drinking water resources in Switzerland and in the countries of the downstream catchments, a new Swiss water protection act entered into force in 2016 aiming to reduce the discharge of micropollutants from wastewater treatment plants (WWTPs). As a consequence, selected WWTPs must be upgraded by an advanced treatment for micropollutant abatement with suitable and economic options such as (powdered) activated carbon treatment or ozonation. WWTP Neugut (105'000 people equivalent) was the first WWTP in Switzerland to implement a long-term full-scale ozonation. Differing specific ozone doses in the range of 0.35-0.97 g O3/g DOC were applied to determine the adequate ozone dose to fulfill the requirements of the Swiss water protection act. Based on this assessment, a specific ozone dose of 0.55 g O3/g DOC is recommended at this plant to ensure an average abatement of the twelve selected indicator substances by ≥80% over the whole treatment. A monitoring of 550 substances confirmed that this dose was very efficient to abate a broad range of micropollutants by >79% on average. After ozonation, an additional biological post-treatment is required to eliminate possible negative ecotoxicological effects generated during ozonation caused by biodegradable ozonation transformation products (OTPs) and oxidation by-products (OBPs). Three biological treatments (sand filtration, moving bed, fixed bed) and granular activated carbon (GAC, fresh and pre-loaded) filtration were evaluated as post-treatments after ozonation. In parallel, a fresh GAC filter directly connected to the effluent of the secondary clarifier was assessed. Among the three purely biological post-treatments, the sand filtration performed best in terms of removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and total suspended solids (TSS). The fresh activated carbon filtration ensured a significant additional micropollutants abatement after ozonation due to sorption. The relative abatement of the indicator substances ranged between 20 and 89% after 27'000 bed volumes (BV) and was still substantial at 50'000 BV. In an identical GAC filter running in parallel and being fed with the effluent of the secondary clarifier, the elimination was less efficient. Seven primary OTPs (chlorothiazide and six N-oxides) formed during ozonation could be quantified thanks to available reference standards. Their concentration decreased with increasing specific ozone doses with the concomitant formation of other OTPs. The seven OTPs were found to be stable compounds and were not abated in the biological post-treatments. They were sorbed in the fresh GAC filter, but less efficiently than the corresponding parent compounds. Two OBPs, bromate (BrO3-) and N-nitrosodimethylamine (NDMA), were formed during ozonation but did not exceeded 5 μg/L for bromate and 30 ng/L for NDMA at the recommended specific ozone dose of 0.55 g O3/g DOC. NDMA was well abated in all post-treatments (minimum 41% during fixed bed filtration, maximum 83% during fresh GAC filtration), while bromate was very stable as expected.
Collapse
|
Evaluation Study |
7 |
244 |
2
|
Krasner SW, Westerhoff P, Chen B, Rittmann BE, Amy G. Occurrence of disinfection byproducts in United States wastewater treatment plant effluents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:8320-5. [PMID: 19924963 DOI: 10.1021/es901611m] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Effluents from wastewater treatment plants (WWTPs) contain disinfection byproducts (DBPs) of health concern when the water is utilized downstream as a potable water supply. The pattern of DBP formation was strongly affected by whether or not the WWTP achieved good nitrification. Chlorine addition to poorly nitrified effluents formed low levels of halogenated DBPs, except for (in some cases) dihalogenated acetic acids, but often substantial amounts of N-nitrosodimethyamine (NDMA). Chlorination of well-nitrified effluent typically resulted in substantial formation of halogenated DBPs but much less NDMA. For example, on a median basis after chlorine addition, the well-nitrified effluents had 57 microg/L of trihalomethanes [THMs] and 3 ng/L of NDMA, while the poorly nitrified effluents had 2 microg/L of THMs and 11 ng/L of NDMA. DBPs with amino acid precursors (haloacetonitriles, haloacetaldehydes) formed at substantial levels after chlorination of well-nitrified effluent. The formation of halogenated DBPs but not that of NDMA correlated with the formation of THMs in WWTP effluents disinfected with free chlorine. However, THM formation did not correlate with the formation of other DBPs in effluents disinfected with chloramines. Because of the relatively high levels of bromide in treated wastewater, bromine incorporation was observed in various classes of DBPs.
Collapse
|
|
16 |
236 |
3
|
Schmidt CK, Brauch HJ. N,N-dimethylsulfamide as precursor for N-nitrosodimethylamine (NDMA) formation upon ozonation and its fate during drinking water treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:6340-6346. [PMID: 18800499 DOI: 10.1021/es7030467] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Application and microbial degradation of the fungicide tolylfluanide gives rise to a new decomposition product named N,N-dimethylsulfamide (DMS). In Germany, DMS was found in groundwaters and surface waters with typical concentrations in the range of 100-1000 ng/L and 50-90 ng/L, respectively. Laboratory-scale and field investigations concerning its fate during drinking water treatment showed that DMS cannot be removed via riverbank filtration, activated carbon filtration, flocculation, and oxidation or disinfection procedures based on hydrogen peroxide, potassium permanganate, chlorine dioxide, or UV irradiation. Even nanofiltration does not provide a sufficient removal efficiency. During ozonation about 30-50% of DMS are converted to the carcinogenic N-nitrosodimethylamine (NDMA). The NDMA being formed is biodegradable and can at least partially be removed by subsequent biologically active drinking water treatment steps including sand or activated carbon filtration. Disinfection with hypochlorous acid converts DMS to so far unknown degradation products but not to NDMA or 1,1-dimethylhydrazine (UDMH).
Collapse
|
|
17 |
198 |
4
|
Lee W, Westerhoff P, Croué JP. Dissolved organic nitrogen as a precursor for chloroform, dichloroacetonitrile, N-nitrosodimethylamine, and trichloronitromethane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:5485-90. [PMID: 17822121 DOI: 10.1021/es070411g] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Nitrogen-containing disinfection byproducts (N-DBPs) are potentially toxic. This study assessed the formation of three N-DBPs (dichloroacetonitrile (DCAN), trichloronitromethane (TCNM), and N-nitrosodimethylamine (NDMA)) and one regulated DBP (chloroform) upon adding free chlorine and monochloramine into solutions containing different fractions (hydrophobic, transphilic, hydrophilic, and colloidal) of dissolved organic matter (DOM) isolates (n=17). We hypothesized that N-DBP formation would increase for organic matter enriched in organic nitrogen. Formation potential tests were conducted with free chlorine or preformed monochloramine. Chloramination formed, on average, 10 times lower chloroform concentrations, but 5 times higher DCAN concentrations, as compared with free chlorine addition. The formation of the two halogenated N-DBPs (DCAN and TCNM) increased as the dissolved organic carbon (DOC) to dissolved organic nitrogen (DON) ratio decreased upon adding free chlorine, but the N-DBP formation was relatively constant upon adding monochloramine. NDMA, a nonhalogenated N-DBP, formed on average 0.26 nmol per mg of DOC (4.5 nmol per mg of DON) upon adding monochloramine; no NDMA formation occurred upon adding free chlorine. NDMA formation increased as the DOC/DON ratio decreased (i.e., increasing nitrogen content of DOM). NDMA formation also increased as the amino sugar to aromatic ratio of DOM increased. The results support the hypothesis that DON promotes the formation of N-DBPs.
Collapse
|
|
18 |
183 |
5
|
Katsoyiannis IA, Canonica S, von Gunten U. Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2. WATER RESEARCH 2011; 45:3811-22. [PMID: 21645916 DOI: 10.1016/j.watres.2011.04.038] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/15/2011] [Accepted: 04/18/2011] [Indexed: 05/22/2023]
Abstract
The energy consumptions of conventional ozonation and the AOPs O(3)/H(2)O(2) and UV/H(2)O(2) for transformation of organic micropollutants, namely atrazine (ATR), sulfamethoxazole (SMX) and N-nitrosodimethylamine (NDMA) were compared. Three lake waters and a wastewater were assessed. With p-chlorobenzoic acid (pCBA) as a hydroxyl radical ((•)OH) probe compound, we experimentally determined the rate constants of organic matter of the selected waters for their reaction with (•)OH (k(OH,DOM)), which varied from 2.0 × 10(4) to 3.5 × 10(4) L mgC(-1) s(-1). Based on these data we calculated (•)OH scavenging rates of the various water matrices, which were in the range 6.1-20 × 10(4) s(-1). The varying scavenging rates influenced the required oxidant dose for the same degree of micropollutant transformation. In ozonation, for 90% pCBA transformation in the water with the lowest scavenging rate (lake Zürich water) the required O(3) dose was roughly 2.3 mg/L, and in the water with the highest scavenging rate (Dübendorf wastewater) it was 13.2 mg/L, corresponding to an energy consumption of 0.035 and 0.2 kWh/m(3), respectively. The use of O(3)/H(2)O(2) increased the rate of micropollutant transformation and reduced bromate formation by 70%, but the H(2)O(2) production increased the energy requirements by 20-25%. UV/H(2)O(2) efficiently oxidized all examined micropollutants but energy requirements were substantially higher (For 90% pCBA conversion in lake Zürich water, 0.17-0.75 kWh/m(3) were required, depending on the optical path length). Energy requirements between ozonation and UV/H(2)O(2) were similar only in the case of NDMA, a compound that reacts slowly with ozone and (•)OH but is transformed efficiently by direct photolysis.
Collapse
|
|
14 |
175 |
6
|
Lee C, Yoon J, Von Gunten U. Oxidative degradation of N-nitrosodimethylamine by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide. WATER RESEARCH 2007; 41:581-90. [PMID: 17184813 DOI: 10.1016/j.watres.2006.10.033] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 10/27/2006] [Accepted: 10/30/2006] [Indexed: 05/13/2023]
Abstract
This study investigates the oxidative degradation of N-nitrosodimethylamine (NDMA), a probable human carcinogen, by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide (AOP O(3)/H(2)O(2)). The rate constants of reactions of NDMA with ozone and hydroxyl radical ((*)OH) were determined to be 0.052+/-0.0016M(-1)s(-1) and (4.5+/-0.21)x10(8)M(-1)s(-1), respectively. The experiments performed with buffered deionized water varying solution pH and employing H(2)O(2) and HCO(3)(-) clearly showed that the reaction with (*)OH dominates the NDMA oxidation during ozonation. Conventional ozonation with up to 160 microM (=7.7 mgL(-1)) ozone led to less than 25% NDMA oxidation in natural waters. The AOP O(3)/H(2)O(2) required 160-320 microM ozone ([O(3)](0)/[H(2)O(2)](0)=2:1) to achieve 50-75% NDMA oxidation. However, multiple injections of ozone of the same overall dose somewhat improved the oxidant utilization efficiency by minimizing (*)OH scavenging contribution of oxidants. Methylamine (MA) was found to be a major amino product from NDMA oxidation initiated by (*)OH. The mechanism of NDMA oxidation to MA is discussed based on the results obtained in this study and the previous literature. Bromate formation may be the limiting factor for NDMA oxidation during ozonation and ozone-based AOPs in bromide-containing waters.
Collapse
|
|
18 |
124 |
7
|
Le Roux J, Gallard H, Croué JP. Chloramination of nitrogenous contaminants (pharmaceuticals and pesticides): NDMA and halogenated DBPs formation. WATER RESEARCH 2011; 45:3164-3174. [PMID: 21496861 DOI: 10.1016/j.watres.2011.03.035] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/17/2011] [Accepted: 03/19/2011] [Indexed: 05/30/2023]
Abstract
Disinfection with chloramines is often used to reduce the production of regulated disinfection by-products (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs). However, chloramination can lead to the formation of N-nitrosamines, including N-nitrosodimethylamine (NDMA), a probable human carcinogen. Previous research used dimethylamine (DMA) as a model precursor of NDMA, but certain widely used tertiary dimethylamines (e.g. the pharmaceutical ranitidine) show much higher conversion rates to NDMA than DMA. This study investigates the NDMA formation potential of several tertiary amines including pharmaceuticals and herbicides. The reactivity of these molecules with monochloramine (NH(2)Cl) is studied through the formation of NDMA, and other halogenated DBPs such as haloacetonitriles (HANs) and AOX (Adsorbable Organic Halides). Several compounds investigated formed NDMA in greater amounts than DMA, revealing the importance of structural characteristics of tertiary amines for NDMA formation. Among these compounds, the pharmaceutical ranitidine showed the highest molar conversion to NDMA. The pH and dissolved oxygen content of the solution were found to play a major role for the formation of NDMA from ranitidine. NDMA was formed in higher amounts at pH around pH 8 and a lower concentration of dissolved oxygen dramatically decreased NDMA yields. These findings seem to indicate that dichloramine (NHCl(2)) is not the major oxidant involved in the formation of NDMA from ranitidine, results in contradiction with the reaction mechanisms proposed in the literature. Dissolved oxygen was also found to influence the formation of other oxygen-containing DBPs (i.e. trichloronitromethane and haloketones). The results of this study identify several anthropogenic precursors of NDMA, indicating that chloramination of waters impacted by these tertiary amines could lead to the formation of significant amounts of NDMA and other non-regulated DBPs of potential health concern (e.g. dichloroacetonitrile or trichloronitromethane). This could be of particular importance for the chloramination of wastewater effluents, especially during water reuse processes.
Collapse
|
|
14 |
120 |
8
|
Pehlivanoglu-Mantas E, Sedlak DL. Measurement of dissolved organic nitrogen forms in wastewater effluents: concentrations, size distribution and NDMA formation potential. WATER RESEARCH 2008; 42:3890-3898. [PMID: 18672263 DOI: 10.1016/j.watres.2008.05.017] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 05/21/2008] [Accepted: 05/27/2008] [Indexed: 05/26/2023]
Abstract
Dissolved organic nitrogen (DON), which may act as a nutrient and a disinfection by-product precursor, accounts for most of the dissolved nitrogen in nitrified-denitrified wastewater effluents. To gain insight into the behavior of wastewater-derived DON in engineered and natural systems, samples from treatment plants employing a range of different processes were characterized by several different methods. Dissolved free and combined amino acids accounted for the majority of the identifiable DON. Combined amino acids typically accounted for less than 10-20% of the wastewater-derived DON. Other organic-nitrogen containing species such as EDTA and humic substances from the water source only accounted for a few percent of the remaining DON. The remaining DON mainly consisted of hydrophilic, low-molecular weight compounds, capable of passing through a 1kDa ultrafilter. This fraction of the DON also contained most of the precursors of N-nitrosodimethylamine (NDMA). The chemical properties of wastewater-derived DON pose challenges to designers of wastewater treatment plants because most physical and chemical treatment processes will not remove low-molecular weight, hydrophilic compounds.
Collapse
|
|
17 |
118 |
9
|
Nawrocki J, Andrzejewski P. Nitrosamines and water. JOURNAL OF HAZARDOUS MATERIALS 2011; 189:1-18. [PMID: 21353742 DOI: 10.1016/j.jhazmat.2011.02.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/17/2011] [Accepted: 02/03/2011] [Indexed: 05/30/2023]
Abstract
This paper provides an overview of all current issues that are connected to the presence of nitrosamines in water technology. N-nitrosodimethylamine (NDMA) is the most frequently detected member of this family. Nitrosamines became the hottest topic in drinking water science when they were identified as disinfection by-products (DBPs) in chloraminated waters. The danger that they pose to consumer health seems to be much higher than that from chlorinated DBPs. This review summarizes our contemporary knowledge of these compounds in water, their occurrence, and precursors of nitrosamines in drinking and wastewaters, in addition to attempts to remove nitrosamines from water. The paper also reviews our knowledge of the mechanisms of nitrosamine formation in water technology. The current, commonly accepted mechanism of NDMA formation during chloramination of drinking waters assumes that dichloramine reacts with dimethylamine, forms unsymmetrical dimethylhydrazine and further oxidizes to NDMA. The question to answer is which precursors are responsible for delivering the DMA moiety for the reaction since the presence of DMA in water cannot explain the quantities of NDMA that are formed. There are also reports that other oxidants that are commonly used in water technology may generate NDMA. However, the mechanisms of such transformations are unknown. Methods for the removal of nitrosamines from water are described briefly. However, the research that has been undertaken on such methods seems to be at an early stage of development. It is predicted that photolytic methods may have the greatest potential for technological application.
Collapse
|
Review |
14 |
116 |
10
|
von Gunten U, Salhi E, Schmidt CK, Arnold WA. Kinetics and mechanisms of N-nitrosodimethylamine formation upon ozonation of N,N-dimethylsulfamide-containing waters: bromide catalysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:5762-5768. [PMID: 20614903 DOI: 10.1021/es1011862] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
N,N-Dimethylsulfamide (DMS), a newly identified, ubiquitous degradation product of the fungicide tolylfluanide, has been shown to be a N-nitrosodimethylamine (NDMA) precursor during ozonation. In this study, batch ozonation experiments in ultrapure buffered water, surface water, and tap water were performed to determine the kinetics and elucidate the mechanism of NDMA formation from DMS. It was found that at circumneutral pH, DMS reacts slowly with ozone (k approximately 20 M(-1) s(-1)) and moderately with hydroxyl radicals (k=1.5x10(9) M(-1)s(-1)). The reaction of DMS with these oxidants does not lead to NDMA. NDMA was only formed if bromide was present during ozonation of DMS-containing waters. Bromide is oxidized to hypobromous acid (HOBr) by ozone which then reacts with the primary amine of DMS to form a Br-DMS species. The rate limiting step of the formation of Br-DMS is the formation of HOBr. The reaction to form Br-DMS has an apparent second order rate constant at pH 8 of >3x10(4) M(-1)s(-1). The Br-DMS is transformed by ozone to NDMA and nitrate (k>or=5000 M(-1) s(-1)), with yields of 54% and 39%, respectively, based on the primary amine nitrogen of DMS. These reactions release bromide, making bromide a catalyst. NDMA is also formed during ozonation of DMS in the presence of hypochlorous acid (20-30% yield). The last step of NDMA formation is an intramolecular rearrangement with sulfur dioxide extrusion. On the basis of the mechanistic and kinetic information, it was possible to model NDMA formation in DMS-containing Lake Zurich water.
Collapse
|
|
15 |
101 |
11
|
Park SH, Wei S, Mizaikoff B, Taylor AE, Favero C, Huang CH. Degradation of amine-based water treatment polymers during chloramination as N-nitrosodimethylamine (NDMA) precursors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:1360-6. [PMID: 19350904 DOI: 10.1021/es802732z] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Recent studies indicated that water treatment polymers such as poly(epichlorohydrin dimethylamine) (polyamine) and poly(diallyldimethylammonium chloride) (polyDADMAC) may form N-nitrosodimethylamine (NDMA) when in contact with chloramine water disinfectants. To minimize such potential risk and improve the polymer products, the mechanisms of how the polymers behave as NDMA precursors need to be elucidated. Direct chloramination of polymers and intermediate monomers in reagent water was conducted to probe the predominant mechanisms. The impact of polymer properties including polymer purity, polymer molecular weight and structure, residual dimethylamine (DMA), and other intermediate compounds involved in polymer synthesis, and reaction conditions such as pH, oxidant dose, and contact time on the NDMA formation potential (NDMA-FP) was investigated. Polymer degradation after reaction with chloramines was monitored at the molecular level using FT-IR and Raman spectroscopy. Overall, polyamines have greater NDMA-FP than polyDADMAC, and the NDMA formation from both polymers is strongly related to polymer degradation and DMA release during chloramination. Polyamines' tertiary amine chain ends play a major role in their NDMA-FP, while polyDADMACs' NDMA-FP is related to degradation of the quaternary ammonium ring group.
Collapse
|
|
16 |
99 |
12
|
Lee Y, Gerrity D, Lee M, Gamage S, Pisarenko A, Trenholm RA, Canonica S, Snyder SA, von Gunten U. Organic Contaminant Abatement in Reclaimed Water by UV/H2O2 and a Combined Process Consisting of O3/H2O2 Followed by UV/H2O2: Prediction of Abatement Efficiency, Energy Consumption, and Byproduct Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3809-3819. [PMID: 26909504 DOI: 10.1021/acs.est.5b04904] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
UV/H2O2 processes can be applied to improve the quality of effluents from municipal wastewater treatment plants by attenuating trace organic contaminants (micropollutants). This study presents a kinetic model based on UV photolysis parameters, including UV absorption rate and quantum yield, and hydroxyl radical (·OH) oxidation parameters, including second-order rate constants for ·OH reactions and steady-state ·OH concentrations, that can be used to predict micropollutant abatement in wastewater. The UV/H2O2 kinetic model successfully predicted the abatement efficiencies of 16 target micropollutants in bench-scale UV and UV/H2O2 experiments in 10 secondary wastewater effluents. The model was then used to calculate the electric energies required to achieve specific levels of micropollutant abatement in several advanced wastewater treatment scenarios using various combinations of ozone, UV, and H2O2. UV/H2O2 is more energy-intensive than ozonation for abatement of most micropollutants. Nevertheless, UV/H2O2 is not limited by the formation of N-nitrosodimethylamine (NDMA) and bromate whereas ozonation may produce significant concentrations of these oxidation byproducts, as observed in some of the tested wastewater effluents. The combined process of O3/H2O2 followed by UV/H2O2, which may be warranted in some potable reuse applications, can achieve superior micropollutant abatement with reduced energy consumption compared to UV/H2O2 and reduced oxidation byproduct formation (i.e., NDMA and/or bromate) compared to conventional ozonation.
Collapse
|
|
9 |
99 |
13
|
Selbes M, Kim D, Ates N, Karanfil T. The roles of tertiary amine structure, background organic matter and chloramine species on NDMA formation. WATER RESEARCH 2013; 47:945-953. [PMID: 23237238 DOI: 10.1016/j.watres.2012.11.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/12/2012] [Accepted: 11/07/2012] [Indexed: 06/01/2023]
Abstract
N-nitrosodimethylamine (NDMA), a probable human carcinogen, is a disinfection by-product that has been detected in chloraminated and chlorinated drinking waters and wastewaters. Formation mechanisms and precursors of NDMA are still not well understood. The main objectives of this study were to systematically investigate (i) the effect of tertiary amine structure, (ii) the effect of background natural organic matter (NOM), and (iii) the roles of mono vs. dichloramine species on the NDMA formation. Dimethylamine (DMA) and 20 different tertiary aliphatic and aromatic amines were carefully examined based on their functional groups attached to the basic DMA structure. The wide range (0.02-83.9%) of observed NDMA yields indicated the importance of the structure of tertiary amines, and both stability and electron distribution of the leaving group of tertiary amines on NDMA formation. DMA associated with branched alkyl groups or benzyl like structures having only one carbon between the ring and DMA structure consistently gave higher NDMA yields. Compounds with electron withdrawing groups (EWG) reacted preferentially with monochloramine, whereas compounds with electron donating group (EDG) showed tendency to react with dichloramine to form NDMA. When the selected amines were present in NOM solutions, NDMA formation increased for compounds with EWG while decreased for compounds with EDG. This impact was attributed to the competitions between NOM and amines for chloramine species. The results provided additional information to the commonly accepted mechanism for NDMA formation including chloramine species reacting with tertiary amines and the role of the leaving group on overall NDMA conversion.
Collapse
|
|
12 |
90 |
14
|
Plumlee MH, Reinhard M. Photochemical attenuation of N-nitrosodimethylamine (NDMA) and other nitrosamines in surface water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:6170-6176. [PMID: 17937298 DOI: 10.1021/es070818l] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The aqueous photolysis of seven alkyl nitrosamines was studied by irradiation in a solar simulator. Nitrosamines included N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), N-nitrosodi-n-butylamine (NDBA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr). Direct photolysis at irradiations of 765 W/m2, representing Southern California midsummer, midday sun, resulted in half-lives of 16 min for NDMA and 12-15 min for the other nitrosamines. The quantum yield for NDMA was determined to be phi = 0.41 and phi = 0.43-0.61 for the other nitrosamines. Quantified products of NDMA photolysis included methylamine, dimethylamine, nitrite, nitrate, and formate, with nitrogen and carbon balances exceeding 98 and 79%, respectively. Indirect photolysis of nitrosamines in surface water was not observed; increasing dissolved organic carbon (DOC) slowed the NDMA photolysis rate because of light screening. Removal of NDMA measured in tertiary treated effluent flowing in a shallow, sunlit engineered channel agreed with photolysis rates predicted based on the measured quantum yield and system parameters. Because biodegradation is relatively slow, aquatic photolysis of NDMA is generally expected to be more significant even at relatively low levels of solar irradiation (t(1/2) = 8-38 h at 244-855 W/m2, 51 degrees N latitude, 1 m depth).
Collapse
|
|
18 |
84 |
15
|
Padhye L, Luzinova Y, Cho M, Mizaikoff B, Kim JH, Huang CH. PolyDADMAC and dimethylamine as precursors of N-nitrosodimethylamine during ozonation: reaction kinetics and mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:4353-9. [PMID: 21504218 DOI: 10.1021/es104255e] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Interactions of ozone with organic precursors during water treatment may generate carcinogenic N-nitrosodimethylamine (NDMA) byproduct. This study investigates the reaction mechanisms responsible for NDMA formation from ozonation of the commonly used poly(diallyldimethylammonium chloride) (polyDADMAC) coagulant. Upon ozonation, polyDADMAC yields the highest amount of NDMA among several water treatment polymers, including polyamines and cationic polyacrylamides. Ozonation transforms polyDADMAC to dimethylamine (DMA) and NDMA formation is correlated to polyDADMAC degradation and DMA release. Hydroxyl radicals generated from ozone play an important role in the degradation of polyDADMAC's quaternary ammonium ring groups and subsequent release of secondary amine. Although nitrite and formaldehyde are detected as ozonation products of DMA and polyDADMAC, contribution of formaldehyde-enhanced nitrosation pathway is determined to be insignificant in NDMA formation. In contrast, reaction of hydroxylamine, another ozonation product of DMA, with DMA in the presence of ozone is deemed critical in the formation of NDMA during ozonation. The study results show that that contact of polyDADMAC with ozone will lead to release of the more potent NDMA precursor DMA but may not generate a significant amount of NDMA under typical drinking water treatment conditions due to low yield. The mechanistic understanding from this study can help develop source control strategies for minimization of NDMA formation risk at water and wastewater utilities.
Collapse
|
|
14 |
79 |
16
|
Le Roux J, Gallard H, Croué JP. Formation of NDMA and halogenated DBPs by chloramination of tertiary amines: the influence of bromide ion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:1581-9. [PMID: 22214364 DOI: 10.1021/es203785s] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The formation of NDMA and other DBPs (including THMs, HANs, and HKs) has been investigated by chloramination of several tertiary amines in the absence and presence of bromide ion. NDMA formation from the most reactive tertiary amines (e.g., dimethylaminomethylfurfuryl alcohol or DMP30) was enhanced in the presence of bromide due to the formation of brominated oxidant species such as bromochloramine (NHBrCl) and the hypothetical UDMH-Br as an intermediate. The formation of NDMA by chloramination of less reactive model compounds was inhibited in the presence of bromide. This can be explained by competitive reactions leading to the production of brominated DBPs (i.e., THMs). In the presence of bromide, the formation of brominated THMs during chloramination can be attributed to the presence of small amounts of HOBr produced by the decomposition of chloramines and bromamines. The results are of particular interest to understand NDMA formation mechanisms, especially during chloramination of wastewaters impacted by anthropogenic tertiary amines and containing bromide ion.
Collapse
|
|
13 |
78 |
17
|
Wert EC, Rosario-Ortiz FL. Intracellular organic matter from cyanobacteria as a precursor for carbonaceous and nitrogenous disinfection byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:6332-6340. [PMID: 23675656 DOI: 10.1021/es400834k] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The formation of total organic halogen (TOX), carbonaceous disinfection byproducts (DBPs) (trihalomethanes (THMs) and haloacetic acids (HAAs)), and nitrogenous DBPs (trichloronitromethane (TCNM) or chloropicrin, haloacetonitriles (HANs), and nitrosamines) was examined during the chlorination or chloramination of intracellular organic matter (IOM) extracted from Microcystis aeruginosa, Oscillatoria sp. (OSC), and Lyngbya sp. (LYN). The percentage of unknown TOX (22-38%) during chlorination indicated that the majority of DBPs were identified among THMs, HAAs, TCNM, and HANs. Bromide was readily incorporated into DBPs with speciation shifting slightly from dihalogenated species to trihalogenated species. During formation potential testing with chloramines, nitrosamine yields from IOM were measured for N-nitrosodimethylamine (NDMA, 10-52 ng/mgC), N-nitrosopyrrolidine (NPYR, 14 ng/mgC), N-nitrosopiperidine (NPIP, 3.7-5.5 ng/mgC), and N-nitrosomethylethylamine (NMEA, 2.1-2.6 ng/mgC). When IOM was added to a natural water matrix, the nitrosamine yields were not realized likely due to competition from natural organic matter. Ozonation increased NDMA and NMEA formation and reduced NPYR and NPIP formation during subsequent chloramination. In addition, ozone oxidation of IOM formed detectable concentrations of aldehydes, which may contribute to DBP formation. Finally, bioluminescence-based test results showed that >99% of the IOM extracted from OSC and LYN was biodegradable. Therefore, a biological treatment process could minimize this source of DBP precursor material during drinking water treatment.
Collapse
|
|
12 |
78 |
18
|
Roux JL, Gallard H, Croué JP, Papot S, Deborde M. NDMA formation by chloramination of ranitidine: kinetics and mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:11095-11103. [PMID: 22967139 DOI: 10.1021/es3023094] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The kinetics of decomposition of the pharmaceutical ranitidine (a major precursor of NDMA) during chloramination was investigated and some decomposition byproducts were identified by using high performance liquid chromatography coupled with mass spectrometry (HPLC-MS). The reaction between monochloramine and ranitidine followed second order kinetics and was acid-catalyzed. Decomposition of ranitidine formed different byproducts depending on the applied monochloramine concentration. Most identified products were chlorinated and hydroxylated analogues of ranitidine. In excess of monochloramine, nucleophilic substitution between ranitidine and monochloramine led to byproducts that are critical intermediates involved in the formation of NDMA, for example, a carbocation formed from the decomposition of the methylfuran moiety of ranitidine. A complete mechanism is proposed to explain the high formation yield of NDMA from chloramination of ranitidine. These results are of great importance to understand the formation of NDMA by chloramination of tertiary amines.
Collapse
|
|
13 |
77 |
19
|
Chen Z, Valentine RL. Formation of N-nitrosodimethylamine (NDMA) from humic substances in natural water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:6059-65. [PMID: 17937282 DOI: 10.1021/es0705386] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
N-nitrosodimethylamine (NDMA)formation in chloraminated Iowa River water (IRW) is primarily attributed to reactions with natural organic matter (NOM) generally classified as humic substances. Experiments were conducted to determine the contribution of various NOM humic fractions to the NDMA formation potential (NDMA FP) in this drinking water source. NOM was concentrated by reverse osmosis (RO) and humic fractions were obtained by a series of resin elution procedures. Mass balances showed that nearly 90% of the NDMA formation potential could be recovered in the NOM concentrate and in water reconstituted using additions of the various humic fractions. Generally, the hydrophilic fractions tended to form more NDMA than hydrophobic fractions, and basic fractions tend to form more NDMA than acid fractions when normalized to a carbon basis. Overall, the hydrophobic acid fraction was the dominant source of NDMA when both formation efficiency and water composition were considered. The amount of NDMA formed in a sample was found to correlate linearly with an oxidation-induced decrease in specific UV absorbance (SUVA) value at 272 nm. This is consistent with a mechanism in which precursors are formed as the direct consequence of the oxidation of NOM. The NDMA FP estimated using the slope of this relationship and the initial SUVA value compared closely to the value obtained by measuring the NDMA formed in solutions dosed with excess concentrations of monochloramine that presumably exhaust all potential precursor sources. However, the NOMA FP could not be correlated to the SUVA value of the individual humic fractions indicating that the relationship of the NDMA FP to SUVA value is probably a water-specific parameter dependent on the exact composition of humic fractions. It is hypothesized that either specific NDMA precursors are distributed among the various humic fractions or that the humic material itself represents a "generic" nonspecific precursor source that requires some degree of oxidation to eventually produce NDMA. The nonmonotonic behavior of NOM fluorescence spectra during chloramination and lack of correlation between NOM fluorescence characteristics and NDMA formation limited the usage of fluorescence spectra into probing NDMA formation.
Collapse
|
|
18 |
75 |
20
|
Steinle-Darling E, Zedda M, Plumlee MH, Ridgway HF, Reinhard M. Evaluating the impacts of membrane type, coating, fouling, chemical properties and water chemistry on reverse osmosis rejection of seven nitrosoalklyamines, including NDMA. WATER RESEARCH 2007; 41:3959-67. [PMID: 17582457 DOI: 10.1016/j.watres.2007.05.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 05/10/2007] [Accepted: 05/15/2007] [Indexed: 05/15/2023]
Abstract
Reverse osmosis (RO) treatment has been found to be effective for a wide range of organics but generally small, polar, uncharged molecules such as N-nitrosodimethylamine (NDMA) can be poorly rejected. The rejection of seven N-nitrosoalkylamines with molecular masses in the range of 78-158Da, including NDMA, N-nitrosodiethylamine (NDEA), N-nitrosomethylethylamine (NMEA), N-nitrosodipropylamine (NDPA), N-nitrosodibutylamine (NDBA), N-nitrosopyrrolidine (NPyr), N-nitrosopiperidine (NPip) by three commercial brackish-water reverse osmosis membranes was studied in flat-sheet cells under cross-flow conditions. The membranes used were ESPA3 (Hydranautics), LFC3 (Hydranautics) and BW-30 (Dow/Filmtec), commonly used in water reuse applications. The effects of varying ionic strength and pH, dip-coating membranes with PEBAX 1657, a hydrophilic polymer, and artificial fouling with alginate on nitrosamine rejection were quantified. Rejection in deionized (DI) water increased with molecular mass from 56 to 70% for NDMA, to 80-91% for NMEA, 89-97% for NPyr, 92-98% for NDEA, and to beyond the detection limits for NPip, NDPA and NDBA. For the nitrosamines with quantifiable transmission, linear correlations (r(2)>0.97) were found between the number of methyl groups and the log(transmission), with factor 0.35 to 0.55 decreases in transmission per added methyl group. A PEBAX coating lowered the ESPA3 rejection of NDMA by 11% but increased the LFC3 and BW30 rejection by 6% and 15%, respectively. Artificially fouling ESPA3 membrane coupons with 170g/m(2) alginate decreased the rejection of NDMA by 18%. A feed concentration of 100mM NaCl decreased rejection of NDMA by 15% and acidifying the DI water feed to pH=3 decreased the rejection by 5%, whereas increasing the pH to 10 did not have a significant (p<0.05) effect.
Collapse
|
|
18 |
71 |
21
|
Lee C, Choi W, Kim YG, Yoon J. UV photolytic mechanism of N-nitrosodimethylamine in water: dual pathways to methylamine versus dimethylamine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:2101-6. [PMID: 15871243 DOI: 10.1021/es0488941] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The direct ultraviolet (UV) photolysis of N-nitrosodimethyl-amine (NDMA), a well-known potential carcinogen, was investigated in aqueous solution with its degradation products analyzed quantitatively. NDMA is known to be photolyzed either to dimethylamine (DMA) or to methylamine (MA) by two distinct pathways. However, the mechanism through which NDMA is photolyzed to DMA is still not clearly understood. This study reveals a new mechanistic pathway of NDMA photolysis to DMA by identifying the factors influencing the photolysis pathway. The two pathways of NDMA photolysis were found to be strongly dependent on the initial NDMA concentration and solution pH. Increasing the initial NDMA concentration clearly favored the DMA formation path. DMA production was optimized in the region of pH 4-5. The nitrite ion (NO2-) produced from the NDMA photolysis was identified as a key reagent in directing the NDMA photolysis toward DMA production. The observed photolytic behaviors of NDMA photolysis could be successfully explained in terms of the new mechanism involving the role of NO2-.
Collapse
|
Comparative Study |
20 |
65 |
22
|
Sgroi M, Roccaro P, Oelker GL, Snyder SA. N-nitrosodimethylamine formation upon ozonation and identification of precursors source in a municipal wastewater treatment plant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10308-15. [PMID: 25029629 DOI: 10.1021/es5011658] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ozone doses normalized to the dissolved organic carbon concentration were applied to the primary influent, primary effluent, and secondary effluent of a wastewater treatment plant producing water destined for potable reuse. Results showed the most N-Nitrosodimethylamine (NDMA) production from primary effluent, and the recycle streams entering the primary clarifiers were identified as the main source of NDMA precursors. The degradation of aminomethylated polyacrylamide (Mannich) polymer used for sludge treatment was a significant cause of precursor occurrence. A strong correlation between NDMA formation and ammonia concentration was found suggesting an important role of ammonia oxidation on NDMA production. During ozonation tests in DI water using dimethylamine (DMA) as model precursor, the NDMA yield significantly increased in the presence of ammonia and bromide due to the formation of hydroxylamine and brominated nitrogenous oxidants. In addition, NDMA formation during ozonation of dimethylformamide (DMF), the other model precursor used in this study, occurred only in the presence of ammonia, and it was attributable to the oxidation of DMF by hydroxyl radicals. Filtered wastewater samples (0.7 μm) produced more NDMA than unfiltered samples, suggesting that ozone reacted with dissolved precursors and supporting the hypothesis of polymer degradation. Particularly, the total suspended solids content similarly affected NDMA formation and the UV absorbance decrease during ozonation due to the different ozone demand created in filtered and unfiltered samples.
Collapse
|
|
11 |
62 |
23
|
George J, Tsuchishima M, Tsutsumi M. Molecular mechanisms in the pathogenesis of N-nitrosodimethylamine induced hepatic fibrosis. Cell Death Dis 2019; 10:18. [PMID: 30622238 PMCID: PMC6325159 DOI: 10.1038/s41419-018-1272-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
Hepatic fibrosis is marked by excessive synthesis and deposition of connective tissue proteins, especially interstitial collagens in the extracellular matrix of the liver. It is a result of an abnormal wound healing in response to chronic liver injury from various causes such as ethanol, viruses, toxins, drugs, or cholestasis. The chronic stimuli involved in the initiation of fibrosis leads to oxidative stress and generation of reactive oxygen species that serve as mediators of molecular events involved in the pathogenesis of hepatic fibrosis. These processes lead to cellular injury and initiate inflammatory responses releasing a variety of cytokines and growth factors that trigger activation and transformation of resting hepatic stellate cells into myofibroblast like cells, which in turn start excessive synthesis of connective tissue proteins, especially collagens. Uncontrolled and extensive fibrosis results in distortion of lobular architecture of the liver leading to nodular formation and cirrhosis. The perpetual injury and regeneration process could also results in genomic aberrations and mutations that lead to the development of hepatocellular carcinoma. This review covers most aspects of the molecular mechanisms involved in the pathogenesis of hepatic fibrosis with special emphasize on N-Nitrosodimethylamine (NDMA; Dimethylnitorsmaine, DMN) as the inducing agent.
Collapse
|
Review |
6 |
61 |
24
|
Farré MJ, Reungoat J, Argaud FX, Rattier M, Keller J, Gernjak W. Fate of N-nitrosodimethylamine, trihalomethane and haloacetic acid precursors in tertiary treatment including biofiltration. WATER RESEARCH 2011; 45:5695-5704. [PMID: 21903236 DOI: 10.1016/j.watres.2011.08.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/16/2011] [Accepted: 08/20/2011] [Indexed: 05/31/2023]
Abstract
The presence of disinfection by-products (DBPs) such as trihalomethanes (THMs), haloacetic acids (HAAs) and N-nitrosamines in water is of great concern due to their adverse effects on human health. In this work, the removal of N-nitrosodimethylamine (NDMA), total THM and five HAA precursors from secondary effluent by biological activated carbon (BAC) is investigated at full and pilot scale. In the pilot plant two filter media, sand and granular activated carbon, are tested. In addition, we evaluate the influence of ozonation prior to BAC filtration on its performance. Among the bulk of NDMA precursors, the fate of four pharmaceuticals containing a dimethylamino moiety in the chemical structure are individually investigated. Both NDMA formation potential and each of the studied pharmaceuticals are dramatically reduced by the BAC even in the absence of main ozonation prior to the filtration. The low removal of NDMA precursors at the sand filtration in comparison to the removal of NDMA precursors at the BAC suggests that adsorption may play an important role on the removal of NDMA precursors by BAC. Contrary, the precursors for THM and HAA formation are reduced in both sand filtration and BAC indicating that the precursors for the formation of these DBPs are to some extent biodegradable.
Collapse
|
|
14 |
60 |
25
|
Kosaka K, Asami M, Konno Y, Oya M, Kunikane S. Identification of antiyellowing agents as precursors of N-nitrosodimethylamine production on ozonation from sewage treatment plant influent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:5236-5241. [PMID: 19708347 DOI: 10.1021/es900227g] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In Japan, N-nitrosodimethylamine (NDMA) formation associated with ozonation at a relatively high concentration has been reported only at a small number of water treatment plants (WTPs) in the western part of Japan for which the source water is the Yodo River. In the present study, the formation of relatively high concentrations of NDMA was found upon ozonation of water samples taken from sewage treatment plants (STPs) located upstream of the water intake points of the WTPs in the Yodo River basin. NDMA concentrations before and after ozonation were 16-290 and 14-280 ng/L, respectively. At least some of the STPs investigated receive industrial effluents. At one STP in this area, an extremely high concentration of NDMA (10,000ng/L) was found in one influent water sample after ozonation. To identify potential NDMA precursors upon ozonation in the influent at this STP, the concentrated extracts of the influent were fractionated by high-performance liquid chromatography (HPLC). Ultraperformance liquid chromatography coupled with tandem mass spectrometry (UPLC/MS/MS) identified 4,4'-hexamethylenebis(1,1-dimethylsemicarbazide) (HDMS) and 1,1,1',1'-tetramethyl-4,4'-(methylene-di-p-phenylene)disemicarbazide (TMDS) as precursors of NDMA on ozonation of the influent. Both HDMS and TMDS are used as antiyellowing agents in polyurethane fibers and as light stabilizers in polyamide resins. Their contributions to NDMA production on ozonation of water samples at STPs were up to 17%. The remaining unidentified NDMA precursors may be hydrophilic compounds that were not trapped by the cartridges used for extraction of the water samples. HDMS and TMDS were frequently present in surface waters and STP effluents in the Yodo River basin and were also detected in surface waters from several other areas in Japan.
Collapse
|
|
16 |
59 |