1
|
Wang N, Ostuni E, Whitesides GM, Ingber DE. Micropatterning tractional forces in living cells. CELL MOTILITY AND THE CYTOSKELETON 2002; 52:97-106. [PMID: 12112152 DOI: 10.1002/cm.10037] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here we describe a method for quantifying traction in cells that are physically constrained within micron-sized adhesive islands of defined shape and size on the surface of flexible polyacrylamide gels that contain fluorescent microbeads (0.2-microm diameter). Smooth muscle cells were plated onto square (50 x 50 microm) or circular (25- or 50-microm diameter) adhesive islands that were created on the surface of the gels by applying a collagen coating through microengineered holes in an elastomeric membrane that was later removed. Adherent cells spread to take on the size and shape of the islands and cell tractions were quantitated by mapping displacement fields of the fluorescent microbeads within the gel. Cells on round islands did not exhibit any preferential direction of force application, but they exerted their strongest traction at sites where they formed protrusions. When cells were confined to squares, traction was highest in the corners both in the absence and presence of the contractile agonist, histamine, and cell protrusions were also observed in these regions. Quantitation of the mean traction exerted by cells cultured on the different islands revealed that cell tension increased as cell spreading was promoted. These results provide a mechanical basis for past studies that demonstrated a similar correlation between spreading and growth within various anchorage-dependent cells. This new approach for analyzing the spatial distribution of mechanical forces beneath individual cells that are experimentally constrained to defined sizes and shapes may provide additional insight into the biophysical basis of cell regulation.
Collapse
|
|
23 |
200 |
2
|
Grossmann G, Guo WJ, Ehrhardt DW, Frommer WB, Sit RV, Quake SR, Meier M. The RootChip: an integrated microfluidic chip for plant science. THE PLANT CELL 2011; 23:4234-40. [PMID: 22186371 PMCID: PMC3269862 DOI: 10.1105/tpc.111.092577] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/17/2011] [Accepted: 12/03/2011] [Indexed: 05/18/2023]
Abstract
Studying development and physiology of growing roots is challenging due to limitations regarding cellular and subcellular analysis under controlled environmental conditions. We describe a microfluidic chip platform, called RootChip, that integrates live-cell imaging of growth and metabolism of Arabidopsis thaliana roots with rapid modulation of environmental conditions. The RootChip has separate chambers for individual regulation of the microenvironment of multiple roots from multiple seedlings in parallel. We demonstrate the utility of The RootChip by monitoring time-resolved growth and cytosolic sugar levels at subcellular resolution in plants by a genetically encoded fluorescence sensor for glucose and galactose. The RootChip can be modified for use with roots from other plant species by adapting the chamber geometry and facilitates the systematic analysis of root growth and metabolism from multiple seedlings, paving the way for large-scale phenotyping of root metabolism and signaling.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
153 |
3
|
Liao H, Andersson AS, Sutherland D, Petronis S, Kasemo B, Thomsen P. Response of rat osteoblast-like cells to microstructured model surfaces in vitro. Biomaterials 2003; 24:649-54. [PMID: 12437959 DOI: 10.1016/s0142-9612(02)00379-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The role of surface microtopography in combination with different surface wettability for rat calvaria cell differentiation was examined. Mineralization and alkaline phosphatase (ALP) activity of rat calvaria cells on flat polydimethylsiloxane (PDMS) or PDMS contained pyramids which were either hydrophilic or hydrophobic were compared. ALP expressing cells were more frequent on hydrophilic PDMS contained pyramids. ALP activity, peaked at day 9, was highest for hydrophilic pyramids followed by hydrophobic pyramids and flat hydrophilic PDMS surfaces. A similar pattern was obtained with respect to mineralized nodules. These observations showed that micro-sized surface features promote differentiation of rat calvaria cells. Further, hydrophilic surfaces are more prone to stimulate differentiation in comparison with hydrophobic surfaces. The results suggest that both material surface chemistry and topography affect osteoblast differentiation.
Collapse
|
|
22 |
99 |
4
|
Xi W, Sonam S, Beng Saw T, Ladoux B, Teck Lim C. Emergent patterns of collective cell migration under tubular confinement. Nat Commun 2017; 8:1517. [PMID: 29142242 PMCID: PMC5688140 DOI: 10.1038/s41467-017-01390-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 09/14/2017] [Indexed: 02/07/2023] Open
Abstract
Collective epithelial behaviors are essential for the development of lumens in organs. However, conventional assays of planar systems fail to replicate cell cohorts of tubular structures that advance in concerted ways on out-of-plane curved and confined surfaces, such as ductal elongation in vivo. Here, we mimic such coordinated tissue migration by forming lumens of epithelial cell sheets inside microtubes of 1-10 cell lengths in diameter. We show that these cell tubes reproduce the physiological apical-basal polarity, and have actin alignment, cell orientation, tissue organization, and migration modes that depend on the extent of tubular confinement and/or curvature. In contrast to flat constraint, the cell sheets in a highly constricted smaller microtube demonstrate slow motion with periodic relaxation, but fast overall movement in large microtubes. Altogether, our findings provide insights into the emerging migratory modes for epithelial migration and growth under tubular confinement, which are reminiscent of the in vivo scenario.
Collapse
|
research-article |
8 |
95 |
5
|
Anderson JM, Ziats NP, Azeez A, Brunstedt MR, Stack S, Bonfield TL. Protein adsorption and macrophage activation on polydimethylsiloxane and silicone rubber. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 1996; 7:159-69. [PMID: 7654630 DOI: 10.1163/156856295x00670] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Static and dynamic human blood adsorption studies on polydimethylsiloxane, PDMS, and silicone rubber show that these materials are similar, but not identical, in their protein adsorption behavior. Fibrinogen, immunoglobulin G, and albumin were the predominant proteins identified on the material surfaces with fibronectin, Hageman factor (factor XII), and factor VIII/vWF adsorbing at intermediate levels. While the protein adsorption characteristics for the two materials were similar, higher levels of the respective proteins were identified on silicone rubber compared to PDMS. Monocytes/macrophages incubated on PDMS, silicone rubber and low density polyethylene, LDPE, with or without protein adsorption produced variable levels of IL-1 beta, IL-6 and TNF-alpha dependent on the polymer and adsorbed protein. PDMS showed lower levels of the cytokines when compared to the polystyrene control and polyethylene. Protein preadsorption on the PDMS, polystyrene, and LDPE surfaces showed lower levels of cytokines when compared to the respective quantities produced with no protein adsorption suggesting a passivating effect by the protein adsorption phenomenon on monocyte/macrophage activation. Preadsorption of IgG, fibrinogen or fibronectin decreased the quantitative expression of IL-1 beta but increased the functional activity in the thymocyte proliferation assay indicating the presence of monocyte/macrophage activation products which either downregulated the activity of IL-1 beta or upregulated thymocyte proliferation in an independent fashion.
Collapse
|
Comparative Study |
29 |
76 |
6
|
Mata A, Boehm C, Fleischman AJ, Muschler G, Roy S. Growth of connective tissue progenitor cells on microtextured polydimethylsiloxane surfaces. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2002; 62:499-506. [PMID: 12221697 DOI: 10.1002/jbm.10353] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Growth of human connective tissue progenitor cells (CTPs) was characterized on smooth and microtextured polydimethylsiloxane (PDMS) surfaces. Human bone-marrow-derived cells were cultured for 9 days under conditions promoting osteoblastic differentiation on smooth PDMS surfaces and on PDMS post microtextures that were 6 microm high and 5, 10, 20, and 40 microm in diameter, respectively. Glass tissue-culture dishes were used as controls. The number of viable cells was determined, and an alkaline phosphatase stain was used as a marker for osteoblastic phenotype. CTPs attached, proliferated, and differentiated on all surfaces. Cells on the smooth PDMS and control surfaces spread and proliferated as colonies in proximity to other cells and migrated in random directions, with cell process lengths of up to 80 microm. In contrast, cells on the PDMS post microtextures grew as sparsely distributed networks of cells, with processes, occasionally up to 300 microm, that appeared to interact with the posts. Cell counts revealed that there were fewer (50%) CTPs on the smooth PDMS surface than were on the glass control surfaces. However, there were consistently more (>144%) CTPs on the PDMS post textures than on the controls. In particular, the 10-microm-in-diameter posts (268%) exhibited a significantly (p < 0.05) greater cell number than did the smooth PDMS.
Collapse
|
|
23 |
64 |
7
|
Dinh Le TS, An J, Huang Y, Vo Q, Boonruangkan J, Tran T, Kim SW, Sun G, Kim YJ. Ultrasensitive Anti-Interference Voice Recognition by Bio-Inspired Skin-Attachable Self-Cleaning Acoustic Sensors. ACS NANO 2019; 13:13293-13303. [PMID: 31687810 DOI: 10.1021/acsnano.9b06354] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Human voice recognition systems (VRSs) are a prerequisite for voice-controlled human-machine interfaces (HMIs). In order to avoid interference from unexpected background noises, skin-attachable VRSs are proposed to directly detect physiological mechanoacoustic signals based on the vibrations of vocal cords. However, the sensitivity and response time of existing VRSs are bottlenecks for efficient HMIs. In addition, water-based contaminants in our daily lives, such as skin moisture and raindrops, normally result in performance degradation or even functional failure of VRSs. Herein, we present a skin-attachable self-cleaning ultrasensitive and ultrafast acoustic sensor based on a reduced graphene oxide/polydimethylsiloxane composite film with bioinspired microcracks and hierarchical surface textures. Benefitting from the synergetic effect of the spider-slit-organ-like multiscale jagged microcracks and the lotus-leaf-like hierarchical structures, our superhydrophobic VRS exhibits an ultrahigh sensitivity (gauge factor, GF = 8699), an ultralow detection limit (ε = 0.000 064%), an ultrafast response/recovery behavior, an excellent device durability (>10 000 cycles), and reliable detection of acoustic vibrations over the audible frequency range (20-20 000 Hz) with high signal-to-noise ratios. These superb performances endow our skin-attachable VRS with anti-interference perception of human voices with high precision even in noisy environments, which will expedite the voice-controlled HMIs.
Collapse
|
|
6 |
54 |
8
|
Kurian P, Kasibhatla B, Daum J, Burns CA, Moosa M, Rosenthal KS, Kennedy JP. Synthesis, permeability and biocompatibility of tricomponent membranes containing polyethylene glycol, polydimethylsiloxane and polypentamethylcyclopentasiloxane domains. Biomaterials 2003; 24:3493-503. [PMID: 12809778 DOI: 10.1016/s0142-9612(03)00189-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The synthesis of "smart" tricomponent amphiphilic membranes containing poly(ethylene glycol) (PEG), polydimethylsiloxane (PDMS) and polypentamethylcyclopentasiloxane (PD(5)) domains is described. Contact angle hysteresis indicates that in air, the surfaces of such PEG/PD(5)/PDMS membranes are enriched by the hydrophobic components, PDMS and PD(5), while in water, the surfaces are rich in the hydrophilic PEG. The oxygen permeability of a series of membranes with varying M(c,hydrophilic) (M(n,PEG)=4600, 10,000 and 20,000 g/mol) and varying PEG/PD(5)/PDMS compositions was studied. Oxygen permeability increased with the amount of PDMS in the membrane. The molecular weight cut-off (MWCO) ranges and permeability coefficients of insulin through a series of PEG/PD(5)/PDMS(=29/14/57) membranes with varying M(c,hydrophilic) were determined. Insulin permeability is directly related to M(c,hydrophilic) of the membrane. MWCO studies show that the membranes are semipermeable to, i.e., allow the transport of smaller proteins such as insulin (M(n)=5733 g/mol, R(s)=1.34 nm) and cytochrome c (M(n)=12,400 g/mol, R(s)=1.63 nm), but are barriers to larger proteins such as albumin (M(n)=66,000 g/mol, R(s)=3.62 nm). Implantation of representative membranes in rats showed them to be biocompatible. According to these studies, PEG/PD(5)/PDMS membranes may be suitable for biological applications, e.g., immunoisolation of cells.
Collapse
|
Evaluation Study |
22 |
50 |
9
|
Wickham MG, Rudolph R, Abraham JL. Silicon identification in prosthesis-associated fibrous capsules. Science 1978; 199:437-9. [PMID: 619466 DOI: 10.1126/science.619466] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The use of correlated microscopic techniques, including the scanning electron microscopic modes of backscattered electron imaging and energy dispersive x-ray analysis, aid in defining the process of dispersion of silicon-containing material around silicone rubber (polydimethylsiloxane) prosthetic devices.
Collapse
|
|
47 |
48 |
10
|
Grümping R, Michalke K, Hirner AV, Hensel R. Microbial degradation of octamethylcyclotetrasiloxane. Appl Environ Microbiol 1999; 65:2276-8. [PMID: 10224038 PMCID: PMC91335 DOI: 10.1128/aem.65.5.2276-2278.1999] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microbial degradation of low-molecular-weight polydimethylsiloxanes was investigated through laboratory experiments. Octamethylcyclotetrasiloxane was found to be biodegraded under anaerobic conditions in composted sewage sludge, as monitored by the occurrence of the main polydimethylsiloxane degradation product, dimethylsilanediol, compared to that found in experiments with sterilized control samples.
Collapse
|
research-article |
26 |
45 |
11
|
Wang Y, Lee D, Zhang L, Jeon H, Mendoza-Elias JE, Harvat TA, Hassan SZ, Zhou A, Eddington DT, Oberholzer J. Systematic prevention of bubble formation and accumulation for long-term culture of pancreatic islet cells in microfluidic device. Biomed Microdevices 2012; 14:419-26. [PMID: 22252566 PMCID: PMC3303988 DOI: 10.1007/s10544-011-9618-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Reliable long-term cell culture in microfluidic system is limited by air bubble formation and accumulation. In this study, we developed a bubble removal system capable of both trapping and discharging air bubbles in a consistent and reliable manner. Combined with PDMS (Polydimethylsiloxane) hydrophilic surface treatment and vacuum filling, a microfluidic perifusion system equipped with the bubble trap was successfully applied for long-term culture of mouse pancreatic islets with no bubble formation and no flow interruption. In addition to demonstrating normal cell viability and islet morphology, post-cultured islets exhibited normal insulin secretion kinetics, intracellular calcium signaling, and changes in mitochondrial potentials in response to glucose challenge. This design could be easily adapted by other microfluidic systems due to its simple design, ease of fabrication, and portability.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
44 |
12
|
Khan GM, Frum Y, Sarheed O, Eccleston GM, Meidan VM. Assessment of drug permeability distributions in two different model skins. Int J Pharm 2005; 303:81-7. [PMID: 16102922 DOI: 10.1016/j.ijpharm.2005.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 06/24/2005] [Accepted: 07/02/2005] [Indexed: 11/22/2022]
Abstract
Past in vitro studies with human skin have indicated that drug permeability coefficient (Kp) distributions do not always follow a Gaussian-normal pattern. This has major statistical implications, exemplified by the fact that use of t-tests to evaluate significance is limited to normally distributed populations. Percutaneous absorption research often involves using animal or synthetic skins to simulate less readily available human skin. However, negligible work has been performed on assessing the permeability variabilities of these model membranes. This paper aims to fill this gap. To this end, four studies were undertaken representing two different drugs (caffeine and testosterone) with each drug penetrating through two different model skins (silicone membrane and pig skin). It was determined that in the silicone membrane studies, both compounds' Kp distributions could be fitted to a normal pattern. In contrast, in the pig skin studies, there were notable differences between each drug. While the testosterone Kp values could be fitted to a normal distribution, this was not possible with the caffeine Kp data, which could be fitted to a log-normal distribution. There is some evidence from the literature as well as physicochemical considerations that these outcomes may reflect general trends that are dependent upon both membrane and penetrant properties.
Collapse
|
|
20 |
41 |
13
|
Mitchel JA, Hoffman-Kim D. Cellular scale anisotropic topography guides Schwann cell motility. PLoS One 2011; 6:e24316. [PMID: 21949703 PMCID: PMC3176770 DOI: 10.1371/journal.pone.0024316] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/09/2011] [Indexed: 12/31/2022] Open
Abstract
Directed migration of Schwann cells (SC) is critical for development and repair of the peripheral nervous system. Understanding aspects of motility specific to SC, along with SC response to engineered biomaterials, may inform strategies to enhance nerve regeneration. Rat SC were cultured on laminin-coated microgrooved poly(dimethyl siloxane) platforms that were flat or presented repeating cellular scale anisotropic topographical cues, 30 or 60 µm in width, and observed with timelapse microscopy. SC motion was directed parallel to the long axis of the topography on both the groove floor and the plateau, with accompanying differences in velocity and directional persistence in comparison to SC motion on flat substrates. In addition, feature dimension affected SC morphology, alignment, and directional persistence. Plateaus and groove floors presented distinct cues which promoted differential motility and variable interaction with the topographical features. SC on the plateau surfaces tended to have persistent interactions with the edge topography, while SC on the groove floors tended to have infrequent contact with the corners and walls. Our observations suggest the capacity of SC to be guided without continuous contact with a topographical cue. SC exhibited a range of distinct motile morphologies, characterized by their symmetry and number of extensions. Across all conditions, SC with a single extension traveled significantly faster than cells with more or no extensions. We conclude that SC motility is complex, where persistent motion requires cellular asymmetry, and that anisotropic topography with cellular scale features can direct SC motility.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
14 |
40 |
14
|
Lehmann RG, Miller JR, Kozerski GE. Degradation of silicone polymer in a field soil under natural conditions. CHEMOSPHERE 2000; 41:743-749. [PMID: 10834377 DOI: 10.1016/s0045-6535(99)00430-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Silicone polymers (PDMS = polydimethylsiloxane) are used in numerous consumer and industrial products. Our previous work showed that they will degrade in soil under laboratory conditions. This paper investigates PDMS degradation in the field. Four soil plots (each 2.44 m x 2.44 m) in Michigan were sprayed in May, 1997, with aqueous emulsion to achieve nominal soil PDMS concentrations of 0 (control), 215 (low), 430 (medium), and 860 (high) microg/g. Over the following summer, soil cores (0-5 and 5-10 cm) were collected every two weeks and analyzed for decrease in-total soil PDMS, and decrease in molecular weight of remaining PDMS. PDMS concentrations decreased 50% in 4.5, 5.3, and 9.6 weeks for the low, medium, and high treatments, respectively. Degradation rates were 0.26 (low), 0.44 (medium), and 0.44 (high) g PDMS/m2 day, indicating that degradation capacity of the soil was exceeded by the High treatment. Dimethylsilanediol (DMSD), the main degradation product, was detected in most samples at <5% of original PDMS. This is consistent with laboratory data showing biodegradation and volatilization of DMSD. Deeper sampling (to 20 cm) found only trace amounts of DMSD, and minor downward movement of the polymer. Respraying and subsequent analysis of one plot with a medium treatment in late August showed slow PDMS degradation during the cool, wet fall, followed by a 40% decrease over winter and extensive degradation during the summer of 1998. The study thus shows that PDMS will degrade under field conditions as predicted from laboratory experiments.
Collapse
|
|
25 |
38 |
15
|
Griessbach EF, Lehmann RG. Degradation of polydimethylsiloxane fluids in the environment--a review. CHEMOSPHERE 1999; 38:1461-1468. [PMID: 10070732 DOI: 10.1016/s0045-6535(98)00548-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Due to their insolubility in water and high adsorption coefficient, liquid polydimethylsiloxanes (PDMS) discharged as effluent will adsorb to particulate matter and, therefore, will become a component of sewage sludge during waste water treatment. The subsequent environmental fate of PDMS will depend on the fate of the sludge. Due to increasing practices of soil amendment with sewage sludge the principal environmental compartment receiving PDMS fluids is the soil. Degradation of PDMS is a common process taking place in many different types of soils. It occurs through a unique combination of environmental degradation processes. Initial hydrolysis of PDMS is catalysed by clay minerals, the principal component of soil. The primary hydrolysis product, dimethylsilanediol (DMSD), is then either biodegraded, or evaporated into the atmosphere, where it is subsequently oxidised in the presence of sunlight. The end products in both cases are expected to be CO2, SiO2 and H2O.
Collapse
|
Review |
26 |
37 |
16
|
Sabourin CL, Carpenter JC, Leib TK, Spivack JL. Biodegradation of dimethylsilanediol in soils. Appl Environ Microbiol 1996; 62:4352-60. [PMID: 8953708 PMCID: PMC168263 DOI: 10.1128/aem.62.12.4352-4360.1996] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The biodegradation potential of [14C]dimethylsilanediol, the monomer unit of polydimethylsiloxane, in soils was investigated. Dimethylsilanediol was found to be biodegraded in all of the tested soils, as monitored by the production of 14CO2. When 2-propanol was added to the soil as a carbon source in addition to [14C]dimethylsilanediol, the production of 14CO2 increased. A method for the selection of primary substrates that support cometabolic degradation of a target compound was developed. By this method, the activity observed in the soils was successfully transferred to liquid culture. A fungus, Fusarium oxysporum Schlechtendahl, and a bacterium, an Arthrobacter species, were isolated from two different soils, and both microorganisms were able to cometabolize [14C]dimethylsilanediol to 14CO2 in liquid culture. In addition, the Arthrobacter sp. that was isolated grew on dimethylsulfone, and we believe that this is the first reported instance of a microorganism using dimethylsulfone as its primary carbon source. Previous evidence has shown that polydimethylsiloxane is hydrolyzed in soil to the monomer, dimethylsilanediol. Now, biodegradation of dimethylsilanediol in soil has been demonstrated.
Collapse
|
research-article |
29 |
30 |
17
|
Kim J, Surapaneni R, Gale BK. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite. LAB ON A CHIP 2009; 9:1290-3. [PMID: 19370251 DOI: 10.1039/b818389a] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Rapid prototyping of microfluidic systems using a combination of double-sided tape and PDMS (polydimethylsiloxane) is introduced. PDMS is typically difficult to bond using adhesive tapes due to its hydrophobic nature and low surface energy. For this reason, PDMS is not compatible with the xurography method, which uses a knife plotter and various adhesive coated polymer tapes. To solve these problems, a PDMS/tape composite was developed and demonstrated in microfluidic applications. The PDMS/tape composite was created by spinning it to make a thin layer of PDMS over double-sided tape. Then the PDMS/tape composite was patterned to create channels using xurography, and bonded to a PDMS slab. After removing the backing paper from the tape, a complete microfluidic system could be created by placing the construct onto nearly any substrate; including glass, plastic or metal-coated glass/silicon substrates. The bond strength was shown to be sufficient for the pressures that occur in typical microfluidic channels used for chemical or biological analysis. This method was demonstrated in three applications: standard microfluidic channels and reactors, a microfluidic system with an integrated membrane, and an electrochemical biosensor. The PDMS/tape composite rapid prototyping technique provides a fast and cost effective fabrication method and can provide easy integration of microfluidic channels with sensors and other components without the need for a cleanroom facility.
Collapse
|
|
16 |
29 |
18
|
Honda S, Toyota T. Photo-triggered solvent-free metamorphosis of polymeric materials. Nat Commun 2017; 8:502. [PMID: 28894097 PMCID: PMC5593861 DOI: 10.1038/s41467-017-00679-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 07/16/2017] [Indexed: 01/06/2023] Open
Abstract
Liquefaction and solidification of materials are the most fundamental changes observed during thermal phase transitions, yet the design of organic and polymeric soft materials showing isothermal reversible liquid-nonliquid conversion remains challenging. Here, we demonstrate that solvent-free repeatable molecular architectural transformation between liquid-star and nonliquid-network polymers that relies on cleavage and reformation of a covalent bond in hexaarylbiimidazole. Liquid four-armed star-shaped poly(n-butyl acrylate) and poly(dimethyl siloxane) with 2,4,5-triphenylimidazole end groups were first synthesized. Subsequent oxidation of the 2,4,5-triphenylimidazoles into 2,4,5-triphenylimidazoryl radicals and their coupling with these liquid star polymers to form hexaarylbiimidazoles afforded the corresponding nonliquid network polymers. The resulting nonliquid network polymers liquefied upon UV irradiation and produced liquid star-shaped polymers with 2,4,5-triphenylimidazoryl radical end groups that reverted to nonliquid network polymers again by recoupling of the generated 2,4,5-triphenylimidazoryl radicals immediately after terminating UV irradiation.The design of organic and polymeric soft materials showing isothermal reversible liquid-nonliquid conversion is challenging. Here, the authors show solvent-free repeatable molecular architectural transformation between liquid-star and non-liquid-network polymers by the cleavage and reformation of covalent bonds in the polymer chain.
Collapse
|
research-article |
8 |
29 |
19
|
Berrocal MJ, Badr IH, Gao D, Bachas LG. Reducing the thrombogenicity of ion-selective electrode membranes through the use of a silicone-modified segmented polyurethane. Anal Chem 2001; 73:5328-33. [PMID: 11721937 DOI: 10.1021/ac010375i] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The susceptibility of segmented polyurethanes (SPUs) to in vivo oxidative cleavage and hydrolysis constitutes a drawback in the use of these materials in the fabrication of implantable devices. The introduction of poly(dimethylsiloxane) (PDMS) groups into the polymer main chain has been previously reported to enhance the stability of SPUs. Herein, we evaluated the use of BioSpan-S, a silicone-modified SPU, in the design of membranes for cation-selective electrodes. The resulting electrodes exhibited good potentiometric response with all of the tested ionophores (valinomycin, sodium ionophore X, and nonactin). The obtained selectivity coefficients meet the selectivity requirements for the determination of sodium and potassium in blood. Moreover, as reflected by SEM studies, membranes prepared with BioSpan-S showed less adhesion of platelets than membranes prepared with conventional poly(vinyl chloride) (PVC). These results lead to the conclusion that BioSpan-S would be an appropriate candidate for the fabrication of implantable ion-selective electrodes.
Collapse
|
|
24 |
26 |
20
|
Masuda T, Takahashi I, Anada T, Arai F, Fukuda T, Takano-Yamamoto T, Suzuki O. Development of a cell culture system loading cyclic mechanical strain to chondrogenic cells. J Biotechnol 2008; 133:231-8. [PMID: 17904677 DOI: 10.1016/j.jbiotec.2007.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 07/20/2007] [Accepted: 08/01/2007] [Indexed: 11/25/2022]
Abstract
Mechanical stimulation is considered to be one of the major epigenetic factors regulating the metabolism, proliferation, survival and differentiation of cells in the skeletal tissues. It is generally accepted that the cytoskeleton can undergo remodeling in response to mechanical stimuli such as tensile strain or fluid flow. Mechanically induced cell deformation is one of the possible mechanotransduction pathways by which chondrocytes sense and respond to changes in their mechanical environment. Mechanical strain has a variety of effects on the structure and function of their cells in the skeletal tissues, such as chondrocytes, osteoblasts and fibroblasts. However, little is known about the effect of the quality and quantity of mechanical strain and the timing of mechanical loading on the differentiation of these cells. The present study was designed to investigate the effect of the deformation of chondrogenic cells, and cyclic compression using a newly developed culture device, by analyzing mechanobiological response to the differentiating chondrocytes. Cyclic compression between 0 and 22% strains, at 23 microHz was loaded on chondrogenic cell line ATDC5 by seeding in a mass mode on PDMS membrane, assuming direct transfer of cyclic deformation from the membrane to the cells at the same frequency. The compressive strain, induced within the membrane, was characterized based on the analysis of the finite element modeling (FEM). The results showed that the tensile strain inhibits the chondrogenic differentiation of ATDC5 cells, whereas the compressive strain enhances the chondrogenic differentiation, suggesting that the differentiation of the chondrogenic cells could be controlled by the amount and the mode of strain. In conclusion, we have developed a unique strain loading culture system to analyze the effect of various types of mechanical stimulation on various cellular activities.
Collapse
|
|
17 |
24 |
21
|
Butler JE, Lü EP, Navarro P, Christiansen B. Comparative studies on the interaction of proteins with a polydimethylsiloxane elastomer. I. Monolayer protein capture capacity (PCC) as a function of protein pl, buffer pH and buffer ionic strength. J Mol Recognit 1997; 10:36-51. [PMID: 9179778 DOI: 10.1002/(sici)1099-1352(199701/02)10:1<36::aid-jmr353>3.0.co;2-g] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polydimethylsiloxane (PEP) is widely used in medical prostheses and therefore is in contact with plasma and secretory proteins. Two pair of globular proteins, lactoferrin (Lf) and transferrin (Trf), and bovine IgG1 and IgG2a, which differ substantially between pair members in their pl, were used to study the interaction of a PEP widely used in breast implants and soluble protein. Studies were done using iodinated proteins over a concentration range that resulted in an apparent protein monolayer. Secondary incubations with dilute protein solutions were needed to form the monolayer on PEP, possibly as a consequence of micro air bubbles trapped on its highly textured surface as shown by atomic force microscopy. Immunoassay quality polystyrene microtiter wells were used as controls. Adsorption studies were routinely performed at pH 4, 7 and 10 and at ionic strengths corresponding to 0.95, 9.5 and 90.0 mS. The protein capture capacity (PCC) of PEP for Lf and Trf was optimal at physiological pH and ionic strength and comparable under these conditions to that of Immulon 2 (Imm 2) microtiter wells. While increasing the ionic strength and pH further increases the PCC of Imm 2 for Lf and Trf, this markedly lowered the PCC of PEP for these proteins suggesting that initial polar interactions may precede subsequent hydrophobic bonding to PEP. This was tested using a hydrophilic variant of PEP, which when tested in a 90.0 mS buffer, showed a > five-fold lower PCC at neutral and alkaline pH. The greatly reduced PCC of the hydrophilic variant might also suggest that hydrophilic variants of silicone would be more biocompatible than those currently used. The PCC of PEP for the IgGs was less than that of Imm 2 but still optimal at physiological conditions. Consistent with the data on Lf/Trf, PCC progressively decreased with increasing ionic strength at alkaline pH. Differences in pl between the protein pairs had only a marginal effect on the PCC of PEP. Monolayer adsorption on both PEP and Imm 2 was slowly reversible and greater in the presence of free ligand (< 2% in 16 h) suggesting that the process follows Mass Law principles. However, even in the presence of non-ionic detergent and free ligand, 85-90% remained bound on either surface. Thus, desorption of proteins in the monolayer should not complicate subsequent immunochemical studies conducted on adsorbed monolayers.
Collapse
|
Comparative Study |
28 |
24 |
22
|
Itoga K, Yamato M, Kobayashi J, Kikuchi A, Okano T. Micropatterned surfaces prepared using a liquid crystal projector-modified photopolymerization device and microfluidics. ACTA ACUST UNITED AC 2004; 69:391-7. [PMID: 15127385 DOI: 10.1002/jbm.a.30010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A commercial liquid crystal device projector was modified for photopolymerization using its on-board intense light source and a precision optical control circuit. This device projects reduced images generated by a typical personal computer onto the stage where photopolymerization on a surface occurs. This all-in-one device does not require expensive photomasks and external light sources. However, light scattering and diffraction through glass substrates resulted in undesired reactions in areas corresponding to masked (black) domains in mask patterns, limiting pattern resolution. To overcome this shortcoming, two-step surface patterning was developed. First, three-dimensional microstructures of crosslinked silicone elastomer were fabricated with this device and adhered onto silanized glass substrate surfaces, forming microchannels in patterns on the glass support. Then, acrylamide monomer solution containing photoreactive initiator was flowed into these micromold channels and reacted in situ. The resultant polyacrylamide layer was highly hydrophilic and repelled protein adsorption. Cell seeding on these patterns in serum-supplemented culture medium produced cells selectively adhered to different patterns: cells attached and spread only on unpolymerized silanized glass surfaces, not on the photopolymerized acrylamide surfaces. This technique should prove useful for inexpensive, rapid prototyping of surface micropatterns from polymer materials.
Collapse
|
|
21 |
22 |
23
|
Hyun J, Chilkoti A. Micropatterning biological molecules on a polymer surface using elastomeric microwells. J Am Chem Soc 2001; 123:6943-4. [PMID: 11448208 DOI: 10.1021/ja015798g] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
24 |
21 |
24
|
Pfleiderer B, Ackerman JL, Garrido L. In vivo 1H chemical shift imaging of silicone implants. Magn Reson Med 1993; 29:656-9. [PMID: 8505902 DOI: 10.1002/mrm.1910290512] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In order to study the aging process (i.e., silicone migration, fat infiltration) of silicone (polydimethylsiloxane, PDMS) based biomaterials in living subjects by NMR imaging, a hybrid 1H selective excitation and saturation chemical shift imaging technique (IR/CHESS-CSSE) has been developed. This sequence allows selective mapping of the distribution of silicone protons in vivo, while suppressing the contributions of fat and water. Our results indicate that a combined inversion recovery and CHESS pulse, followed by a spoiler gradient, must be applied to suppress all contributions of fat protons to the NMR signal. The sensitivity of our experiments allows the detection of a chemically unchanged silicone concentration of 5% in a voxel of 0.9 mm3 at a signal/noise ratio of 2.
Collapse
|
|
32 |
19 |
25
|
Xia XR, Baynes RE, Monteiro-Riviere NA, Riviere JE. A system coefficient approach for quantitative assessment of the solvent effects on membrane absorption from chemical mixtures. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2007; 18:579-93. [PMID: 17654338 DOI: 10.1080/10629360701428540] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A system coefficient approach is proposed for quantitative assessment of the solvent effects on membrane absorption from chemical mixtures. The complicated molecular interactions are dissected into basic molecular interaction forces via Abraham's linear solvation energy relationship (LSER). The molecular interaction strengths of a chemical are represented by a set of solute descriptors, while those of a membrane/chemical mixture system are represented by a set of system coefficients. The system coefficients can be determined by using a set of probe compounds with known solute descriptors. Polydimethylsiloxane (PDMS) membrane-coated fibres and 32 probe compounds were used to demonstrate the proposed approach. When a solvent was added into the chemical mixture, the system coefficients were altered and detected by the system coefficient approach. The system coefficients of the PDMS/water system were (0.09, 0.49, -1.11, -2.36, -3.78, 3.50). When 25% ethanol was added into the PDMS/water system, the system coefficients were altered significantly (0.38, 0.41, -1.18, -2.07, -3.40, 2.81); and the solvent effect was quantitatively described by the changes in the system coefficients (0.29, -0.08, -0.07, 0.29, 0.38, -0.69). The LSER model adequately described the experimental data with a correlation coefficient (r(2)) of 0.995 and F-value of 1056 with p-value less than 0.0001.
Collapse
|
|
18 |
18 |