1
|
Shaffer DL, Arias Chavez LH, Ben-Sasson M, Romero-Vargas Castrillón S, Yip NY, Elimelech M. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9569-83. [PMID: 23885720 DOI: 10.1021/es401966e] [Citation(s) in RCA: 336] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.
Collapse
|
Comparative Study |
12 |
336 |
2
|
Rezaei M, Warsinger DM, Lienhard V JH, Duke MC, Matsuura T, Samhaber WM. Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention. WATER RESEARCH 2018; 139:329-352. [PMID: 29660622 DOI: 10.1016/j.watres.2018.03.058] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/01/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
Membrane distillation (MD) is a rapidly emerging water treatment technology; however, membrane pore wetting is a primary barrier to widespread industrial use of MD. The primary causes of membrane wetting are exceedance of liquid entry pressure and membrane fouling. Developments in membrane design and the use of pretreatment have provided significant advancement toward wetting prevention in membrane distillation, but further progress is needed. In this study, a broad review is carried out on wetting incidence in membrane distillation processes. Based on this perspective, the study describes the wetting mechanisms, wetting causes, and wetting detection methods, as well as hydrophobicity measurements of MD membranes. This review discusses current understanding and areas for future investigation on the influence of operating conditions, MD configuration, and membrane non-wettability characteristics on wetting phenomena. Additionally, the review highlights mathematical wetting models and several approaches to wetting control, such as membrane fabrication and modification, as well as techniques for membrane restoration in MD. The literature shows that inorganic scaling and organic fouling are the main causes of membrane wetting. The regeneration of wetting MD membranes is found to be challenging and the obtained results are usually not favorable. Several pretreatment processes are found to inhibit membrane wetting by removing the wetting agents from the feed solution. Various advanced membrane designs are considered to bring membrane surface non-wettability to the states of superhydrophobicity and superomniphobicity; however, these methods commonly demand complex fabrication processes or high-specialized equipment. Recharging air in the feed to maintain protective air layers on the membrane surface has proven to be very effective to prevent wetting, but such techniques are immature and in need of significant research on design, optimization, and pilot-scale studies.
Collapse
|
Review |
7 |
267 |
3
|
Xie M, Shon HK, Gray SR, Elimelech M. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction. WATER RESEARCH 2016; 89:210-21. [PMID: 26674549 DOI: 10.1016/j.watres.2015.11.045] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/13/2015] [Accepted: 11/18/2015] [Indexed: 05/26/2023]
Abstract
Wastewater nutrient recovery holds promise for more sustainable water and agricultural industries. We critically review three emerging membrane processes - forward osmosis (FO), membrane distillation (MD) and electrodialysis (ED) - that can advance wastewater nutrient recovery. Challenges associated with wastewater nutrient recovery were identified. The advantages and challenges of applying FO, MD, and ED technologies to wastewater nutrient recovery are discussed, and directions for future research and development are identified. Emphasis is given to exploration of the unique mass transfer properties of these membrane processes in the context of wastewater nutrient recovery. We highlight that hybridising these membrane processes with existing nutrient precipitation process will lead to better management of and more diverse pathways for near complete nutrient recovery in wastewater treatment facilities.
Collapse
|
Review |
9 |
218 |
4
|
Ge Q, Wang P, Wan C, Chung TS. Polyelectrolyte-promoted forward osmosis-membrane distillation (FO-MD) hybrid process for dye wastewater treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:6236-6243. [PMID: 22536834 DOI: 10.1021/es300784h] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Polyelectrolytes have proven their advantages as draw solutes in forward osmosis process in terms of high water flux, minimum reverse flux, and ease of recovery. In this work, the concept of a polyelectrolyte-promoted forward osmosis-membrane distillation (FO-MD) hybrid system was demonstrated and applied to recycle the wastewater containing an acid dye. A poly(acrylic acid) sodium (PAA-Na) salt was used as the draw solute of the FO to dehydrate the wastewater, while the MD was employed to reconcentrate the PAA-Na draw solution. With the integration of these two processes, a continuous wastewater treatment process was established. To optimize the FO-MD hybrid process, the effects of PAA-Na concentration, experimental duration, and temperature were investigated. Almost a complete rejection of PAA-Na solute was observed by both FO and MD membranes. Under the conditions of 0.48 g mL(-1) PAA-Na and 66 °C, the wastewater was most efficiently dehydrated yet with a stabilized PAA-Na concentration around 0.48 g mL(-1). The practicality of PAA-Na-promoted FO-MD hybrid technology demonstrates not only its suitability in wastewater reclamation, but also its potential in other membrane-based separations, such as protein or pharmaceutical product enrichment. This study may provide the insights of exploring novel draw solutes and their applications in FO related processes.
Collapse
|
|
13 |
133 |
5
|
Xie M, Nghiem LD, Price WE, Elimelech M. A forward osmosis-membrane distillation hybrid process for direct sewer mining: system performance and limitations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13486-13493. [PMID: 24236858 DOI: 10.1021/es404056e] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study demonstrates the robustness and treatment capacity of a forward osmosis (FO)-membrane distillation (MD) hybrid system for small-scale decentralized sewer mining. A stable water flux was realized using a laboratory-scale FO-MD hybrid system operating continuously with raw sewage as the feed at water recovery up to 80%. The hybrid system also showed an excellent capacity for the removal of trace organic contaminants (TrOCs), with removal rates ranging from 91 to 98%. The results suggest that TrOC transport through the FO membrane is governed by "solute-membrane" interaction, whereas that through the MD membrane is strongly correlated to TrOC volatility. Concentrations of organic matter and TrOCs in the draw solution increased substantially as the water recovery increased. This accumulation of some contaminants in the draw solution is attributed to the difference in their rejection by the FO and MD systems. We demonstrate that granular activated carbon adsorption or ultraviolet oxidation could be used to prevent contaminant accumulation in the draw solution, resulting in near complete rejection (>99.5%) of TrOCs.
Collapse
|
Evaluation Study |
12 |
121 |
6
|
Wang Z, Hou D, Lin S. Composite Membrane with Underwater-Oleophobic Surface for Anti-Oil-Fouling Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3866-3874. [PMID: 26958985 DOI: 10.1021/acs.est.5b05976] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, we fabricated a composite membrane for membrane distillation (MD) by modifying a commercial hydrophobic polyvinylidene fluoride (PVDF) membrane with a nanocomposite coating comprising silica nanoparticles, chitosan hydrogel and fluoro-polymer. The composite membrane exhibits asymmetric wettability, with the modified surface being in-air hydrophilic and underwater oleophobic, and the unmodified surface remaining hydrophobic. By comparing the performance of the composite membrane and the pristine PVDF membrane in direct contact MD experiments using a saline emulsion with 1000 ppm crude oil (in water), we showed that the fabricated composite membrane was significantly more resistant to oil fouling compared to the pristine hydrophobic PVDF membrane. Force spectroscopy was conducted for the interaction between an oil droplet and the membrane surface using a force tensiometer. The difference between the composite membrane and the pristine PVDF membrane in their interaction with an oil droplet served to explain the difference in the fouling propensities between these two membranes observed in MD experiments. The results from this study suggest that underwater oleophobic coating can effectively mitigate oil fouling in MD operations, and that the fabricated composite membrane with asymmetric wettability can enable MD to desalinate hypersaline wastewater with high concentrations of hydrophobic contaminants.
Collapse
|
|
9 |
117 |
7
|
Gethard K, Sae-Khow O, Mitra S. Water desalination using carbon-nanotube-enhanced membrane distillation. ACS APPLIED MATERIALS & INTERFACES 2011; 3:110-114. [PMID: 21188976 DOI: 10.1021/am100981s] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Carbon nanotube (CNT) enhanced membrane distillation is presented for water desalination. It is demonstrated that the immobilization of the CNTs in the pores of a hydrophobic membrane favorably alters the water-membrane interactions to promote vapor permeability while preventing liquid penetration into the membrane pores. For a salt concentration of 34 000 mg L(-1) and at 80 °C, the nanotube incorporation led to 1.85 and 15 times increase in flux and salt reduction, respectively.
Collapse
|
Letter |
14 |
114 |
8
|
Mericq JP, Laborie S, Cabassud C. Vacuum membrane distillation of seawater reverse osmosis brines. WATER RESEARCH 2010; 44:5260-5273. [PMID: 20659753 DOI: 10.1016/j.watres.2010.06.052] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 06/17/2010] [Accepted: 06/21/2010] [Indexed: 05/29/2023]
Abstract
Seawater desalination by Reverse Osmosis (RO) is an interesting solution for drinking water production. However, because of limitation by the osmotic pressure, a high recovery factor is not attainable. Consequently, large volumes of brines are discharged into the sea and the flow rate produced (permeate) is limited. In this paper, Vacuum Membrane Distillation (VMD) is considered as a complementary process to RO to further concentrate RO brines and increase the global recovery of the process. VMD is an evaporative technology that uses a membrane to support the liquid-vapour interface and enhance the contact area between liquid and vapour in comparison with conventional distillation. This study focuses on VMD for the treatment of RO brines. Simulations were performed to optimise the operating conditions and were completed by bench-scale experiments using actual RO brines and synthetic solutions up to a salt concentration of 300 g L(-1). Operating conditions such as a highly permeable membrane, high feed temperature, low permeate pressure and a turbulent fluid regime allowed high permeate fluxes to be obtained even for a very high salt concentration (300 g L(-1)). For the membrane studied, temperature and concentration polarisation were shown to have little effect on permeate flux. After 6 to 8 h, no organic fouling or biofouling was observed for RO brines. At high salt concentrations, scaling occurred (mainly due to calcium precipitation) but had only a limited impact on the permeate flux (24% decrease for a permeate specific volume of 43L m(-2) for the highest concentration of salt). Calcium carbonate and calcium sulphate precipitated first due to their low solubility and formed mixed crystal deposits on the membrane surface. These phenomena only occurred on the membrane surface and did not totally cover the pores. The crystals were easily removed simply by washing the membrane with water. A global recovery factor of 89% can be obtained by coupling RO and VMD.
Collapse
|
|
15 |
109 |
9
|
Wang P, Teoh MM, Chung TS. Morphological architecture of dual-layer hollow fiber for membrane distillation with higher desalination performance. WATER RESEARCH 2011; 45:5489-5500. [PMID: 21899872 DOI: 10.1016/j.watres.2011.08.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 06/21/2011] [Accepted: 08/07/2011] [Indexed: 05/31/2023]
Abstract
A new strategy to enhance the desalination performance of polyvinylidene fluoride (PVDF) hollow fiber membrane for membrane distillation (MD) via architecture of morphological characteristics is explored in this study. It is proposed that a dual-layer hollow fiber consisting of a fully finger-like macrovoid inner-layer and a sponge-like outer-layer may effectively enhance the permeation flux while maintaining the wetting resistance. Dual-layer fibers with the proposed morphology have been fabricated by the dry-jet wet spinning process via careful choice of dopes composition and coagulation conditions. In addition to high energy efficiency (EE) of 94%, a superior flux of 98.6 L m(-2) h(-1) is obtained during the direct contact membrane distillation (DCMD) desalination experiments. Moreover, the liquid entry pressure (LEP) and long-term DCMD performance test show high wetting resistance and long-term stability. Mathematical modeling has been conducted to investigate the membrane mass transfer properties in terms of temperature profile and apparent diffusivity of the membranes. It is concluded that the enhancement in permeation flux arises from the coupling effect of two mechanisms; namely, a higher driving force and a lower mass transfer resistance, while the later is the major contribution. This work provides an insight on MD fundamentals and strategy to tailor making ideal membranes for DCMD application in desalination industry.
Collapse
|
|
14 |
95 |
10
|
Zarebska A, Nieto DR, Christensen KV, Norddahl B. Ammonia recovery from agricultural wastes by membrane distillation: fouling characterization and mechanism. WATER RESEARCH 2014; 56:1-10. [PMID: 24631940 DOI: 10.1016/j.watres.2014.02.037] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 02/16/2014] [Accepted: 02/17/2014] [Indexed: 06/03/2023]
Abstract
One of the main obstacles impeding implementation of membrane distillation for the recovery and concentration of ammonia from swine manure is wetting caused by fouling. Due to the different types of fouling which can occur in a membrane system, foulants characterization is a complex problem. To elucidate the fouling mechanism, deposit morphology and composition of foulants have been determined using Scanning Electron Microscopy, X-ray Energy Dispersive Spectrometry, Attenuated Total Reflectance Infrared Spectrometry, Ion chromatography and Inductively coupled plasma-optical emission spectroscopy. Based on the analysis of fouled membranes, it is concluded that membrane fouling is dominated by organic fouling in combination with deposits of inorganic elements and microorganisms. After a week of running the membrane process without cleaning, the average fouling layer thickness was estimated to 10-15 μm. The fouling layer further results in a loss of membrane hydrophobicity. This indicates that fouling could be a severe problem for membrane distillation performance.
Collapse
|
|
11 |
70 |
11
|
Lesage-Meessen L, Bou M, Sigoillot JC, Faulds CB, Lomascolo A. Essential oils and distilled straws of lavender and lavandin: a review of current use and potential application in white biotechnology. Appl Microbiol Biotechnol 2015; 99:3375-85. [PMID: 25761625 DOI: 10.1007/s00253-015-6511-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 01/25/2023]
Abstract
The Lavandula genus, which includes lavender (Lavandula angustifolia) and lavandin (L. angustifolia × Lavandula latifolia), is cultivated worldwide for its essential oils, which find applications in perfumes, cosmetics, food processing and, more recently, in aromatherapy products. The chemical composition of lavender and lavandin essential oils, usually produced by steam distillation from the flowering stems, is characterized by the presence of terpenes (e.g. linalool and linalyl acetate) and terpenoids (e.g. 1,8-cineole), which are mainly responsible for their characteristic flavour and their biological and therapeutic properties. Lavender and lavandin distilled straws, the by-products of oil extraction, were traditionally used for soil replenishment or converted to a fuel source. They are mineral- and carbon-rich plant residues and, therefore, a cheap, readily available source of valuable substances of industrial interest, especially aroma and antioxidants (e.g. terpenoids, lactones and phenolic compounds including coumarin, herniarin, α-bisabolol, rosmarinic and chlorogenic acids). Accordingly, recent studies have emphasized the possible uses of lavender and lavandin straws in fermentative or enzymatic processes involving various microorganisms, especially filamentous fungi, for the production of antimicrobials, antioxidants and other bioproducts with pharmaceutical and cosmetic activities, opening up new challenging perspectives in white biotechnology applications.
Collapse
|
Review |
10 |
64 |
12
|
Dejoye Tanzi C, Abert Vian M, Chemat F. New procedure for extraction of algal lipids from wet biomass: a green clean and scalable process. BIORESOURCE TECHNOLOGY 2013; 134:271-275. [PMID: 23500584 DOI: 10.1016/j.biortech.2013.01.168] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/25/2013] [Accepted: 01/30/2013] [Indexed: 06/01/2023]
Abstract
A new procedure, called Simultaneous Distillation and Extraction Process (SDEP), for lipid extraction from wet microalgae (Nannochloropsis oculata and Dunaliella salina) was reported. This method does not require a pre-drying of the biomass and employs alternative solvents such as d-limonene, α-pinene and p-cymene. This procedure has been compared with Soxhlet extraction (Sox) and Bligh & Dyer method (B&D). For N. oculata, results showed that SDEP-cymene provided similar lipid yields to B&D (21.45% and 23.78%), while SDEP-limonene and pinene provided lower yields (18.73% and 18.75% respectively). For D. salina, SDEP-pinene provided the maximum lipid yield (3.29%) compared to the other solvents, which is quite close to B&D result (4.03%). No significant differences in terms of distribution of lipid classes and fatty acid composition have been obtained for different techniques. Evaluation of energy consumption indicates a substantial saving in the extraction cost by SDEP compared to the conventional extraction technique, Soxhlet.
Collapse
|
|
12 |
63 |
13
|
Chenni M, El Abed D, Rakotomanomana N, Fernandez X, Chemat F. Comparative Study of Essential Oils Extracted from Egyptian Basil Leaves (Ocimum basilicum L.) Using Hydro-Distillation and Solvent-Free Microwave Extraction. Molecules 2016; 21:E113. [PMID: 26797599 PMCID: PMC6273689 DOI: 10.3390/molecules21010113] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/10/2016] [Accepted: 01/15/2016] [Indexed: 02/07/2023] Open
Abstract
Solvent-free microwave extraction (SFME) and conventional hydro-distillation (HD) were used for the extraction of essential oils (EOs) from Egyptian sweet basil (Ocimum basilicum L.) leaves. The two resulting EOs were compared with regards to their chemical composition, antioxidant, and antimicrobial activities. The EO analyzed by GC and GC-MS, presented 65 compounds constituting 99.3% and 99.0% of the total oils obtained by SFME and HD, respectively. The main components of both oils were linalool (43.5% SFME; 48.4% HD), followed by methyl chavicol (13.3% SFME; 14.3% HD) and 1,8-cineole (6.8% SFME; 7.3% HD). Their antioxidant activity were studied with the 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging method. The heating conditions effect was evaluated by the determination of the Total Polar Materials (TPM) content. The antimicrobial activity was investigated against five microorganisms: two Gram-positive bacteria, Staphylococcus aureus and Bacillus subtilis, two Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, and one yeast, Candida albicans. Both EOs showed high antimicrobial, but weak antioxidant, activities. The results indicated that the SFME method may be a better alternative for the extraction of EO from O. basilicum since it could be considered as providing a richer source of natural antioxidants, as well as strong antimicrobial agents for food preservation.
Collapse
|
Journal Article |
9 |
60 |
14
|
Deng W, Liu K, Cao S, Sun J, Zhong B, Chun J. Chemical Composition, Antimicrobial, Antioxidant, and Antiproliferative Properties of Grapefruit Essential Oil Prepared by Molecular Distillation. Molecules 2020; 25:molecules25010217. [PMID: 31948058 PMCID: PMC6982870 DOI: 10.3390/molecules25010217] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/24/2019] [Accepted: 01/03/2020] [Indexed: 01/13/2023] Open
Abstract
Grapefruit essential oil has been proven to have wide range of bioactivities. However, bioactivity of its molecular distillate has not been well studied. In this study, a light phase oil was obtained by molecular distillation from cold-pressed grapefruit essential oil and GC-MS was used to identify its chemical composition. The antimicrobial activity of the light phase oil was tested by filter paper diffusion method, and the anticancer activity was determined by the Cell Counting Kit-8 (CCK-8) assay. Twenty-four components were detected with a total relative content of 99.74%, including 97.48% of terpenes and 1.66% of oxygenated terpenes. The light phase oil had the best antimicrobial effect on Bacillus subtilis, followed by Escherichia coli, Staphylococcus aureus and Salmonellaty phimurium. DPPH and ABTS assays demonstrated that the light phase oil had good antioxidant activity. The CCK-8 assay of cell proliferation showed that the light phase oil had a good inhibitory effect on the proliferation of HepG2 liver cancer cells and HCT116 colon cancer cells.
Collapse
|
Journal Article |
5 |
58 |
15
|
Efome JE, Rana D, Matsuura T, Lan CQ. Enhanced performance of PVDF nanocomposite membrane by nanofiber coating: A membrane for sustainable desalination through MD. WATER RESEARCH 2016; 89:39-49. [PMID: 26630042 DOI: 10.1016/j.watres.2015.11.040] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/20/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
Membrane distillation (MD) is a promising separation technique capable of being used in the desalination of marine and brackish water. Poly(vinylidene fluoride) (PVDF) flat sheet nano-composite membranes were surface modified by coating with electro-spun PVDF nano-fibres to increase the surface hydrophobicity. For this purpose, the nano-composite membrane containing 7 wt.% superhydrophobic SiO2 nano-particles, which showed the highest flux in our previous work, was first subjected to pore size augmentation by increasing the concentration of the pore forming agent (Di-ionized water). Then, the prepared flat sheet membranes were subjected to nanofibres coating by electro-spinning. The uncoated and coated composite fabricated membranes were characterized using contact angle, liquid entry pressure of water, and scanning electron microscopy. The membranes were further tested for 6 h desalination by direct contact membrane distillation (DCMD) and vacuum membrane distillation (VMD), with a 3.5 wt.% synthetic NaClaq as the feed. In DCMD the feed liquid and permeate side temperature were maintained at 27.5 °C and 15 °C, respectively. For VMD, the feed liquid temperature was 27 °C and a vacuum of 94.8 kPa was applied on the permeate side. The maximum permeate flux achieved was 3.2 kg/m(2).h for VMD and 6.5 kg/m(2).h for DCMD. The salt rejection obtained was higher than 99.98%. The coated membranes showed a more stable flux than the uncoated membranes indicating that the double layered membranes have great potential in solving the pore wetting problem in MD.
Collapse
|
|
9 |
53 |
16
|
Lin S, Yip NY, Cath TY, Osuji CO, Elimelech M. Hybrid pressure retarded osmosis-membrane distillation system for power generation from low-grade heat: thermodynamic analysis and energy efficiency. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5306-5313. [PMID: 24724732 DOI: 10.1021/es405173b] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present a novel hybrid membrane system that operates as a heat engine capable of utilizing low-grade thermal energy, which is not readily recoverable with existing technologies. The closed-loop system combines membrane distillation (MD), which generates concentrated and pure water streams by thermal separation, and pressure retarded osmosis (PRO), which converts the energy of mixing to electricity by a hydro-turbine. The PRO-MD system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages for heat source temperatures ranging from 40 to 80 °C and working concentrations of 1.0, 2.0, and 4.0 mol/kg NaCl. The factors controlling the energy efficiency of the heat engine were evaluated for both limited and unlimited mass and heat transfer kinetics in the thermal separation stage. In both cases, the relative flow rate between the MD permeate (distillate) and feed streams is identified as an important operation parameter. There is an optimal relative flow rate that maximizes the overall energy efficiency of the PRO-MD system for given working temperatures and concentration. In the case of unlimited mass and heat transfer kinetics, the energy efficiency of the system can be analytically determined based on thermodynamics. Our assessment indicates that the hybrid PRO-MD system can theoretically achieve an energy efficiency of 9.8% (81.6% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 °C, respectively, and a working solution of 1.0 M NaCl. When mass and heat transfer kinetics are limited, conditions that more closely represent actual operations, the practical energy efficiency will be lower than the theoretically achievable efficiency. In such practical operations, utilizing a higher working concentration will yield greater energy efficiency. Overall, our study demonstrates the theoretical viability of the PRO-MD system and identifies the key factors for performance optimization.
Collapse
|
|
11 |
50 |
17
|
Liu Q, Liu C, Zhao L, Ma W, Liu H, Ma J. Integrated forward osmosis-membrane distillation process for human urine treatment. WATER RESEARCH 2016; 91:45-54. [PMID: 26773483 DOI: 10.1016/j.watres.2015.12.045] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
This study demonstrated a forward osmosis-membrane distillation (FO-MD) hybrid system for real human urine treatment. A series of NaCl solutions at different concentrations were adopted for draw solutions in FO process, which were also the feed solutions of MD process. To establish a stable and continuous integrated FO-MD system, individual FO process with different NaCl concentrations and individual direct contact membrane distillation (DCMD) process with different feed temperatures were firstly investigated separately. Four stable equilibrium conditions were obtained from matching the water transfer rates of individual FO and MD processes. It was found that the integrated system is stable and sustainable when the water transfer rate of FO subsystem is equal to that of MD subsystem. The rejections to main contaminants in human urine were also investigated. Although individual FO process had relatively high rejection to Total Organic Carbon (TOC), Total Nitrogen (TN) and Ammonium Nitrogen (NH4(+)-N) in human urine, these contaminants could also accumulate in draw solution after long term performance. The MD process provided an effective rejection to contaminants in draw solution after FO process and the integrated system revealed nearly complete rejection to TOC, TN and NH4(+)-N. This work provided a potential treatment process for human urine in some fields such as water regeneration in space station and water or nutrient recovery from source-separated urine.
Collapse
|
|
9 |
47 |
18
|
Watkins PJ, Rose G, Warner RD, Dunshea FR, Pethick DW. A comparison of solid-phase microextraction (SPME) with simultaneous distillation–extraction (SDE) for the analysis of volatile compounds in heated beef and sheep fats. Meat Sci 2012; 91:99-107. [PMID: 22305391 DOI: 10.1016/j.meatsci.2011.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/08/2011] [Accepted: 12/06/2011] [Indexed: 11/29/2022]
|
|
13 |
41 |
19
|
Fortunato L, Jang Y, Lee JG, Jeong S, Lee S, Leiknes T, Ghaffour N. Fouling development in direct contact membrane distillation: Non-invasive monitoring and destructive analysis. WATER RESEARCH 2018; 132:34-41. [PMID: 29304446 DOI: 10.1016/j.watres.2017.12.059] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Fouling development in direct contact membrane distillation (DCMD) for seawater desalination was evaluated combining in-situ monitoring performed using optical coherence tomography (OCT) together with destructive techniques. The non-invasive monitoring with OCT provided a better understanding of the fouling mechanism by giving an appropriate sampling timing for the membrane autopsy. The on-line monitoring system allowed linking the flux trend with the structure of fouling deposited on the membrane surface. The water vapor flux trend was divided in three phases based on the deposition and formation of different foulants over time. The initial flux decline was due to the deposition of a 50-70 nm porous fouling layer consisting of a mixture of organic compounds and salts. Liquid chromatography with organic carbon detection (LC-OCD) analysis revealed the abundance of biopolymer in the fouling layer formed at the initial phase. In the second phase, formation of carbonate crystals on the membrane surface was observed but did not affect the flux significantly. In the last phase, the water vapor flux dropped to almost zero due to the deposition of a dense thick layer of sulfate crystals on the membrane surface.
Collapse
|
|
7 |
41 |
20
|
Cardoso-Ugarte GA, Juárez-Becerra GP, Sosa-Morales ME, López-Malo A. Microwave-assisted extraction of essential oils from herbs. THE JOURNAL OF MICROWAVE POWER AND ELECTROMAGNETIC ENERGY : A PUBLICATION OF THE INTERNATIONAL MICROWAVE POWER INSTITUTE 2013; 47:63-72. [PMID: 24779135 DOI: 10.1080/08327823.2013.11689846] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microwave-assisted extraction (MAE) has been recognized as a technique with several advantages over other extraction methods, such as reduction of costs, extraction time, energy consumption, and CO2 emissions. In this study, MAE was performed to obtain essential oils from two different herbs (basil and epazote). A factorial design was conducted in order to determine the effect of solvent quantity, power, and heating time on essential oil yields. Chemical composition, physical properties and yield percentage of essential oils from MAE were compared with essential oils obtained by steam distillation (SD). Amount of solvent and heating time significantly affected the yields (p < 0.05). Chemical composition and physical properties of the essential oils from basil and epazote were not affected by the extraction method (MAE or SD), with similar yielding obtained by both methods (p < 0.05).
Collapse
|
|
12 |
39 |
21
|
Wang P, Chung TS. A conceptual demonstration of freeze desalination-membrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy. WATER RESEARCH 2012; 46:4037-4052. [PMID: 22682269 DOI: 10.1016/j.watres.2012.04.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/09/2012] [Accepted: 04/26/2012] [Indexed: 06/01/2023]
Abstract
The severe global water scarcity and record-high fossil oil price have greatly stimulated the research interests on new desalination technologies which can be driven by renewable energy or waste energy. In this study, a hybrid desalination process comprising freeze desalination and membrane distillation (FD-MD) processes was developed and explored in an attempt to utilize the waste cold energy released from re-gasification of liquefied natural gas (LNG). The concept of this technology was demonstrated using indirect-contact freeze desalination (ICFD) and direct-contact membrane distillation (DCMD) configurations. By optimizing the ICFD operation parameters, namely, the usage of nucleate seeds, operation duration and feed concentration, high quality drinkable water with a low salinity ∼0.144 g/L was produced in the ICFD process. At the same time, using the optimized hollow fiber module length and packing density in the DCMD process, ultra pure water with a low salinity of 0.062 g/L was attained at a condition of high energy efficiency (EE). Overall, by combining FD and MD processes and adopting the optimized operation parameters, the hybrid FD-MD system has been successfully demonstrated. A high total water recovery of 71.5% was achieved, and the water quality obtained met the standard for drinkable water. In addition, with results from specific energy calculation, it was proven that the hybrid process is an energy-saving process and utilization of LNG cold energy could greatly reduce the total energy consumption.
Collapse
|
|
13 |
37 |
22
|
Wijekoon KC, Hai FI, Kang J, Price WE, Guo W, Ngo HH, Cath TY, Nghiem LD. A novel membrane distillation-thermophilic bioreactor system: biological stability and trace organic compound removal. BIORESOURCE TECHNOLOGY 2014; 159:334-341. [PMID: 24658107 DOI: 10.1016/j.biortech.2014.02.088] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/20/2014] [Accepted: 02/22/2014] [Indexed: 06/03/2023]
Abstract
The removal of trace organic compounds (TrOCs) by a novel membrane distillation-thermophilic bioreactor (MDBR) system was examined. Salinity build-up and the thermophilic conditions to some extent adversely impacted the performance of the bioreactor, particularly the removal of total nitrogen and recalcitrant TrOCs. While most TrOCs were well removed by the thermophilic bioreactor, compounds containing electron withdrawing functional groups in their molecular structure were recalcitrant to biological treatment and their removal efficiency by the thermophilic bioreactor was low (0-53%). However, the overall performance of the novel MDBR system with respect to the removal of total organic carbon, total nitrogen, and TrOCs was high and was not significantly affected by the conditions of the bioreactor. All TrOCs investigated here were highly removed (>95%) by the MDBR system. Biodegradation, sludge adsorption, and rejection by MD contribute to the removal of TrOCs by MDBR treatment.
Collapse
|
|
11 |
36 |
23
|
Rani A, Singh V, Gupta JRP. Development of soft sensor for neural network based control of distillation column. ISA TRANSACTIONS 2013; 52:438-49. [PMID: 23375672 DOI: 10.1016/j.isatra.2012.12.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 12/06/2012] [Accepted: 12/21/2012] [Indexed: 05/12/2023]
Abstract
The present work is aimed at the design of Levenberg-Marquardt (LM) and adaptive linear network (ADALINE) based soft sensors and their application in inferential control of a multicomponent distillation process. Further the ADALINE sensor is trained online using past measurements, to adapt the changes in the inputs and is termed as dynamic ADALINE (D-ADALINE) sensor. The soft sensors are then used in the control loop to obtain LM based inferential controller (LMIC), ADALINE based inferential controller (ADIC) and D-ADALINE based inferential controller (DADIC) for the process. The performance of dynamic controller is also analyzed for different inputs and sampling intervals. The comparison of results shows the efficient and robust prediction capability of D-ADALINE sensor and hence DADIC proves to be the best controller.
Collapse
|
|
12 |
36 |
24
|
Kezia K, Lee J, Weeks M, Kentish S. Direct contact membrane distillation for the concentration of saline dairy effluent. WATER RESEARCH 2015; 81:167-177. [PMID: 26057264 DOI: 10.1016/j.watres.2015.05.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/08/2015] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
The ability of direct contact membrane distillation to concentrate the waste effluent from salty whey, a by-product from the cheese making industry has been investigated. The effect of trace protein in the feed, cross-flow velocity and feed acidity were the factors examined. Flat Sheet PTFE membranes of nominal pore sizes 0.05, 0.22 and 0.45 μm were utilised. A decline in feed flux in the presence of trace protein in the feed was observed, but liquid penetration through the membrane could still be prevented by utilization of a membrane of smaller pore size, to achieve a final total solids concentration of ±30% w/w with water recovery from 37 to 83 %. The pressure-drop across the channel length was also predicted accounting for the feed spacer. To increase the channel length up to 1 m will require operation using the smallest pore size of 0.05 μm, unless very low cross-flow velocities are used. The fouling of the membrane is primarily governed by precipitation of a calcium phosphate salt. However, operation at low pH does not improve the flux or the final salt concentration significantly.
Collapse
|
|
10 |
34 |
25
|
Li Y, Pang T, Guo Z, Li Y, Wang X, Deng J, Zhong K, Lu X, Xu G. Accelerated solvent extraction for GC-based tobacco fingerprinting and its comparison with simultaneous distillation and extraction. Talanta 2010; 81:650-6. [PMID: 20188977 DOI: 10.1016/j.talanta.2009.12.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 12/23/2009] [Accepted: 12/25/2009] [Indexed: 11/25/2022]
Abstract
An accelerated solvent extraction (ASE) procedure has been developed as a pretreatment method for chemical fingerprinting of volatile and semi-volatile components in cut tobacco. The ASE extraction conditions including temperature, operation pressure and extraction cycles were optimized to maximize extraction yield. The method was validated with repeatability, recovery and linearity. Compared with simultaneous distillation extraction (SDE), ASE provides higher extraction yields, less extraction time, lower solvent consumption and less labor time, and is more suitable for tobacco sample preparation. A typical ASE extract was analyzed by gas chromatography/time-of-flight mass spectrometry (GC-TOFMS). A total of 305 components with signal-to-noise ratio higher than 100 were tentatively identified by NIST05 and Wiley database. Finally, 36 cigarette samples from six cigarette brands were analyzed using the developed chemical fingerprinting method. Partial least squares-discriminant analysis shows good discrimination of different cigarette brands. The results indicate that ASE method can serve as high-throughput sample preparation technique for cigarette chemical fingerprint analysis.
Collapse
|
Comparative Study |
15 |
33 |