1
|
Busciglio J, Yankner BA. Apoptosis and increased generation of reactive oxygen species in Down's syndrome neurons in vitro. Nature 1995; 378:776-9. [PMID: 8524410 DOI: 10.1038/378776a0] [Citation(s) in RCA: 546] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Down's syndrome (DS) or trisomy 21 is the most common genetic cause of mental retardation. Development of the DS brain is associated with decreased neuronal number and abnormal neuronal differentiation, and adults with DS develop Alzheimer's disease. The cause of the neurodegenerative process in DS is unknown. Here we report that cortical neurons from fetal DS and age-matched normal brain differentiate normally in culture, but DS neurons subsequently degenerate and undergo apoptosis whereas normal neurons remain viable. Degeneration of DS neurons is prevented by treatment with free-radical scavengers or catalase. Furthermore, DS neurons exhibit a three- to fourfold increase in intracellular reactive oxygen species and elevated levels of lipid peroxidation that precede neuronal death. These results suggest that DS neurons have a defect in the metabolism of reactive oxygen species that causes neuronal apoptosis. This defect may contribute to mental retardation early in life and predispose to Alzheimer's disease in adults.
Collapse
|
|
30 |
546 |
2
|
Epstein CJ, Avraham KB, Lovett M, Smith S, Elroy-Stein O, Rotman G, Bry C, Groner Y. Transgenic mice with increased Cu/Zn-superoxide dismutase activity: animal model of dosage effects in Down syndrome. Proc Natl Acad Sci U S A 1987; 84:8044-8. [PMID: 2960971 PMCID: PMC299473 DOI: 10.1073/pnas.84.22.8044] [Citation(s) in RCA: 326] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Down syndrome, the phenotypic expression of human trisomy 21, is presumed to result from a 1.5-fold increase in the expression of the genes on human chromosome 21. As an approach to the development of an animal model for Down syndrome, several strains of transgenic mice that carry the human Cu/Zn-superoxide dismutase gene have been prepared. These animals express the transgene in a manner similar to that of humans, with 0.9- and 0.7-kilobase transcripts in a 1:4 ratio, and synthesize the human enzyme in an active form capable of forming human-mouse enzyme heterodimers. Cu/Zn-superoxide superoxide dismutase activity is increased from 1.6- to 6.0-fold in the brains of four transgenic strains and to an equal or lesser extent in several other tissues. These animals provide a unique system for studying the consequences of increased dosage of the Cu/Zn-superoxide dismutase gene in Down syndrome and the role of this enzyme in a variety of other pathological processes.
Collapse
|
research-article |
38 |
326 |
3
|
Krapfenbauer K, Engidawork E, Cairns N, Fountoulakis M, Lubec G. Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Res 2003; 967:152-60. [PMID: 12650976 DOI: 10.1016/s0006-8993(02)04243-9] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An increasing body of evidence indicates that oxidative stress and damage play a role in the pathogenesis of a number of diseases associated with neurodegeneration, including Down syndrome (DS), Alzheimer's disease (AD) and Pick's disease (PD). Although oxidative stress is a common element in these diseases, specific clinico-pathological phenotypes have been described for each disorder. Development of these phenotypes might be linked, among others, to differences in antioxidant response. The present study is designed to investigate expression of peroxiredoxins (Prxs), the newly characterized family of highly conserved antioxidant enzymes, and other antioxidant enzymes in frontal cortex and cerebellum of DS, AD and PD patients using the technique of proteomics. Levels of Prx I, Mn superoxide dismutase (SOD2) and glutathione-S-transferase omega1 in DS, AD and PD were not significantly different from that of controls in both brain regions investigated. In contrast, Prx II was significantly increased (P<0.05) in frontal cortex of DS, AD and PD, whereas Prx III was decreased in frontal cortex of DS (P<0.01) and PD (P<0.001). Interestingly, Prx VI displayed a significant increase (P<0.05) only in PD frontal cortex. The present data indicate that differential regulation of antioxidant enzymes exist in DS, AD and PD, suggestive of the diversity as well as distinct functional roles of these proteins. Moreover, while up-regulation of Prx II appears to provide evidence for the existence of compensatory response in increased cell loss, up-regulation of Prx VI may be used to discriminate PD from AD as well as DS.
Collapse
|
Comparative Study |
22 |
221 |
4
|
Ogawa Y, Nonaka Y, Goto T, Ohnishi E, Hiramatsu T, Kii I, Yoshida M, Ikura T, Onogi H, Shibuya H, Hosoya T, Ito N, Hagiwara M. Development of a novel selective inhibitor of the Down syndrome-related kinase Dyrk1A. Nat Commun 2010; 1:86. [PMID: 20981014 DOI: 10.1038/ncomms1090] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 09/09/2010] [Indexed: 12/18/2022] Open
Abstract
Dyrk1A (dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A) is a serine/threonine kinase essential for brain development and function, and its excessive activity is considered a pathogenic factor in Down syndrome. The development of potent, selective inhibitors of Dyrk1A would help to elucidate the molecular mechanisms of normal and diseased brains, and may provide a new lead compound for molecular-targeted drug discovery. Here, we report a novel Dyrk1A inhibitor, INDY, a benzothiazole derivative showing a potent ATP-competitive inhibitory effect with IC(50) and K(i) values of 0.24 and 0.18 μM, respectively. X-ray crystallography of the Dyrk1A/INDY complex revealed the binding of INDY in the ATP pocket of the enzyme. INDY effectively reversed the aberrant tau-phosphorylation and rescued the repressed NFAT (nuclear factor of activated T cell) signalling induced by Dyrk1A overexpression. Importantly, proINDY, a prodrug of INDY, effectively recovered Xenopus embryos from head malformation induced by Dyrk1A overexpression, resulting in normally developed embryos and demonstrating the utility of proINDY in vivo.
Collapse
|
|
15 |
215 |
5
|
Guo X, Williams JG, Schug TT, Li X. DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1. J Biol Chem 2010; 285:13223-32. [PMID: 20167603 PMCID: PMC2857074 DOI: 10.1074/jbc.m110.102574] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/18/2010] [Indexed: 12/21/2022] Open
Abstract
DYRK1A (the dual specificity tyrosine phosphorylation-regulated kinase 1A) plays an important role in body growth and brain physiology. Overexpression of this kinase has been associated with the development of Down syndrome in both human and animal models, whereas single copy loss-of-function of DYRK1A leads to increased apoptosis and decreased brain size. Although more than a dozen of DYRK1A targets have been identified, the molecular basis of its involvement in neuronal development remains unclear. Here we show that DYRK1A and another pro-survival member of the DYRK family, DYRK3, promote cell survival through phosphorylation and activation of SIRT1, an NAD(+)-dependent protein deacetylase that is essential in a variety of physiological processes including stress response and energy metabolism. DYRK1A and DYRK3 directly phosphorylate SIRT1 at Thr(522), promoting deacetylation of p53. A SIRT1 phosphorylation mimetic (SIRT1 T522D) displays elevated deacetylase activity, thus inhibiting cell apoptosis. Conversely, a SIRT1 dephosphorylation mimetic (SIRT1 T522V) fails to mediate DYRK-induced deacetylation of p53 and cell survival. We show that knockdown of endogenous DYRK1A and DYRK3 leads to hypophosphorylation of SIRT1, sensitizing cells to DNA damage-induced cell death. We also provide evidence that phosphorylation of Thr(522) activates SIRT1 by promoting product release, thereby increasing its enzymatic turnover. Taken together, our findings provide a novel mechanism by which two anti-apoptotic DYRK members promote cell survival through direct modification of SIRT1. These findings may have important implications in understanding the molecular mechanisms of tumorigenesis, Down syndrome, and aging.
Collapse
|
Research Support, N.I.H., Intramural |
15 |
183 |
6
|
Pogribna M, Melnyk S, Pogribny I, Chango A, Yi P, James SJ. Homocysteine metabolism in children with Down syndrome: in vitro modulation. Am J Hum Genet 2001; 69:88-95. [PMID: 11391481 PMCID: PMC1226051 DOI: 10.1086/321262] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2001] [Accepted: 04/16/2001] [Indexed: 11/03/2022] Open
Abstract
The gene for cystathionine beta-synthase (CBS) is located on chromosome 21 and is overexpressed in children with Down syndrome (DS), or trisomy 21. The dual purpose of the present study was to evaluate the impact of overexpression of the CBS gene on homocysteine metabolism in children with DS and to determine whether the supplementation of trisomy 21 lymphoblasts in vitro with selected nutrients would shift the genetically induced metabolic imbalance. Plasma samples were obtained from 42 children with karyotypically confirmed full trisomy 21 and from 36 normal siblings (mean age 7.4 years). Metabolites involved in homocysteine metabolism were measured and compared to those of normal siblings used as controls. Lymphocyte DNA methylation status was determined as a functional endpoint. The results indicated that plasma levels of homocysteine, methionine, S-adenosylhomocysteine, and S-adenosylmethionine were all significantly decreased in children with DS and that their lymphocyte DNA was hypermethylated relative to that in normal siblings. Plasma levels of cystathionine and cysteine were significantly increased, consistent with an increase in CBS activity. Plasma glutathione levels were significantly reduced in the children with DS and may reflect an increase in oxidative stress due to the overexpression of the superoxide dismutase gene, also located on chromosome 21. The addition of methionine, folinic acid, methyl-B(12), thymidine, or dimethylglycine to the cultured trisomy 21 lymphoblastoid cells improved the metabolic profile in vitro. The increased activity of CBS in children with DS significantly alters homocysteine metabolism such that the folate-dependent resynthesis of methionine is compromised. The decreased availability of homocysteine promotes the well-established "folate trap," creating a functional folate deficiency that may contribute to the metabolic pathology of this complex genetic disorder.
Collapse
|
research-article |
24 |
180 |
7
|
|
Case Reports |
45 |
158 |
8
|
Zuhra K, Augsburger F, Majtan T, Szabo C. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020; 10:E697. [PMID: 32365821 PMCID: PMC7277093 DOI: 10.3390/biom10050697] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cystathionine-β-synthase (CBS), the first (and rate-limiting) enzyme in the transsulfuration pathway, is an important mammalian enzyme in health and disease. Its biochemical functions under physiological conditions include the metabolism of homocysteine (a cytotoxic molecule and cardiovascular risk factor) and the generation of hydrogen sulfide (H2S), a gaseous biological mediator with multiple regulatory roles in the vascular, nervous, and immune system. CBS is up-regulated in several diseases, including Down syndrome and many forms of cancer; in these conditions, the preclinical data indicate that inhibition or inactivation of CBS exerts beneficial effects. This article overviews the current information on the expression, tissue distribution, physiological roles, and biochemistry of CBS, followed by a comprehensive overview of direct and indirect approaches to inhibit the enzyme. Among the small-molecule CBS inhibitors, the review highlights the specificity and selectivity problems related to many of the commonly used "CBS inhibitors" (e.g., aminooxyacetic acid) and provides a comprehensive review of their pharmacological actions under physiological conditions and in various disease models.
Collapse
|
Review |
5 |
146 |
9
|
Dowjat WK, Adayev T, Kuchna I, Nowicki K, Palminiello S, Hwang YW, Wegiel J. Trisomy-driven overexpression of DYRK1A kinase in the brain of subjects with Down syndrome. Neurosci Lett 2007; 413:77-81. [PMID: 17145134 PMCID: PMC1890010 DOI: 10.1016/j.neulet.2006.11.026] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/08/2006] [Accepted: 11/13/2006] [Indexed: 10/23/2022]
Abstract
Down syndrome (DS) is the most common genetic disorder associated with mental retardation (MR). It is believed that many of the phenotypic features of DS stem from enhanced expression of a set of genes located within the triplicated region on chromosome 21. Among those genes is DYRK1A encoding dual-specificity proline-directed serine/treonine kinase, which, as documented by animal studies, can potentially contribute to cognitive deficits in DS. Whether this contribution can be exerted through elevated levels of DYRK1A protein in the brain of DS subjects was the main goal of the present study. The levels of DYRK1A protein were measured by Western blotting in six brain structures that included cerebral and cerebellar cortices and white matter. The study involved large cohorts of DS subjects and age-matched controls representing infants and adults of different age, gender and ethnicity. Trisomic Ts65Dn mice, an animal model of DS, were also included in the study. Both in trisomic mice and in DS subjects, the brain levels of DYRK1A protein were increased approximately 1.5-fold, indicating that this protein is overexpressed in gene dosage-dependent manner. The exception was an infant group, in which there was no enhancement suggesting the existence of a developmentally regulated mechanism. We found DYRK1A to be present in every analyzed structure irrespective of age. This widespread occurrence and constitutive expression of DYRK1A in adult brain suggest an important, but diverse from developmental role played by this kinase in adult central nervous system. It also implies that overexpression of DYRK1A in DS may be potentially relevant to MR status of these individuals during their entire life span.
Collapse
|
Comparative Study |
18 |
144 |
10
|
Zemlan FP, Thienhaus OJ, Bosmann HB. Superoxide dismutase activity in Alzheimer's disease: possible mechanism for paired helical filament formation. Brain Res 1989; 476:160-2. [PMID: 2521568 DOI: 10.1016/0006-8993(89)91550-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Activity of the free radical scavenging enzyme, superoxide dismutase (SOD-1), was determined in fibroblast cell lines derived from familial Alzheimer's patients, trisomy 21 patients and normal controls. In the present study, SOD-1 activity was significantly elevated by 30% in Alzheimer's cell lines when compared to normal euploid cell lines. As SOD-1 activity is known to be elevated about 50% in trisomy 21 patients, these cell lines were included as a control for tissue culture and assay conditions. In the present study, SOD-1 activity was significantly increased by 42 +/- 11% in trisomy 21 patients. The elevation in SOD-1 activity observed in the familial Alzheimer's patients supports the theory that paired helical filaments are synthesized in Alzheimer's disease by free radical hydroxylation of proline residues in paired helical filament precursor protein(s).
Collapse
|
|
36 |
136 |
11
|
Perluigi M, Pupo G, Tramutola A, Cini C, Coccia R, Barone E, Head E, Butterfield DA, Di Domenico F. Neuropathological role of PI3K/Akt/mTOR axis in Down syndrome brain. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1144-53. [PMID: 24735980 DOI: 10.1016/j.bbadis.2014.04.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/19/2014] [Accepted: 04/07/2014] [Indexed: 01/11/2023]
Abstract
Down syndrome (DS) is the most frequent genetic cause of intellectual disability characterized by the presence of three copies of chromosome 21 (Chr21). Individuals with DS have sufficient neuropathology for a diagnosis of Alzheimer's disease (AD) after the age of 40years. The aim of our study is to gain new insights in the molecular mechanisms impaired in DS subjects that eventually lead to the development of dementia. We evaluate the PI3K/Akt/mTOR axis in the frontal cortex from DS cases (under the age of 40years) and DS with AD neuropathology compared with age-matched controls (Young and Old). The PI3K/Akt/mTOR axis may control several key pathways involved in AD that, if aberrantly regulated, affect amyloid beta (Aβ) deposition and tau phosphorylation. Our results show a hyperactivation of PI3K/Akt/mTOR axis in individuals with DS, with and without AD pathology, in comparison with respective controls. The PI3K/Akt/mTOR deregulation results in decreased autophagy, inhibition of IRS1 and GSK3β activity. Moreover, our data suggest that aberrant activation of the PI3K/Akt/mTOR axis acts in parallel to RCAN1 in phosphorylating tau, in DS and DS/AD. In conclusion, this study provides insights into the neuropathological mechanisms that may be engaged during the development of AD in DS. We suggest that deregulation of this signaling cascade is already evident in young DS cases and persist in the presence of AD pathology. The impairment of the PI3K/Akt/mTOR axis in DS population might represent a key-contributing factor to the neurodegenerative process that culminates in Alzheimer-like dementia.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
130 |
12
|
Sun X, He G, Song W. BACE2, as a novel APP theta-secretase, is not responsible for the pathogenesis of Alzheimer's disease in Down syndrome. FASEB J 2006; 20:1369-76. [PMID: 16816112 DOI: 10.1096/fj.05-5632com] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Amyloid beta protein (Abeta), the major component of neuritic plaques in Alzheimer's disease (AD), is derived from APP by sequential cleavages of beta- and gamma-secretases. Beta-site APP cleaving enzyme 1 (BACE1) is the major beta-secretase in vivo. Beta-site APP cleaving enzyme 2 (BACE2) is the homologue of BACE1. The majority of people with Down syndrome (DS), also called Trisomy 21 syndrome, will develop AD neuropathology after middle age. We and others have shown that APP C99, the major beta-secretase product, and Abeta are markedly increased in DS. Since BACE2 is located on chromosome 21, it is speculated that BACE2 may play a role in AD pathogenesis in DS. In this report we found that BACE2 cleaves APP at a novel theta site downstream of the alpha site, abolishing Abeta production. Overexpression of BACE2 by lentivirus markedly reduced Abeta production in primary neurons derived from Swedish mutant APP transgenic mice. Despite an extra copy of the BACE2 gene in DS and the increase of its transcription, BACE2 protein levels are unchanged. Our data clearly demonstrate that BACE2, as a novel theta-secretase to cleave APP within the Abeta domain, is not involved in the AD pathogenesis of DS patients; instead, therapeutic interventions that potentiate BACE2 may prevent AD pathogenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
126 |
13
|
|
Review |
36 |
123 |
14
|
Abbassi R, Johns TG, Kassiou M, Munoz L. DYRK1A in neurodegeneration and cancer: Molecular basis and clinical implications. Pharmacol Ther 2015; 151:87-98. [PMID: 25795597 DOI: 10.1016/j.pharmthera.2015.03.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 01/10/2023]
Abstract
Protein kinases are one of the most studied drug targets in current pharmacological research, as evidenced by the vast number of kinase-targeting agents enrolled in active clinical trials. Dual-specificity Tyrosine phosphorylation-Regulated Kinase 1A (DYRK1A) has been much less studied compared to many other kinases. DYRK1A primary function occurs during early development, where this protein regulates cellular processes related to proliferation and differentiation of neuronal progenitor cells. Although most extensively characterised for its role in brain development, DYRK1A is over-expressed in a variety of diseases including a number of human malignancies, such as haematological and brain cancers. Here we review the accumulating molecular studies that support our understanding of how DYRK1A signalling could underlie these pathological functions. The relevance of DYRK1A in a number of diseases is also substantiated with intensive drug discovery efforts to develop potent and selective inhibitors of DYRK1A. Several classes of DYRK1A inhibitors have recently been disclosed and some molecules are promising leads to develop DYRK1A inhibitors as drugs for DYRK1A-dependent diseases.
Collapse
|
Review |
10 |
122 |
15
|
Swatton JE, Sellers LA, Faull RLM, Holland A, Iritani S, Bahn S. Increased MAP kinase activity in Alzheimer's and Down syndrome but not in schizophrenia human brain. Eur J Neurosci 2004; 19:2711-9. [PMID: 15147305 DOI: 10.1111/j.0953-816x.2004.03365.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abnormal phosphorylation of tau is a feature of Alzheimer's disease (AD), which develops prematurely in Down syndrome (DS) patients. Cognitive impairment is also recognized as a clinical characteristic of schizophrenia, which does not appear to be associated with tau-aggregate formation. Several kinases can phosphorylate tau in cell-free assays. Here we show increased activity of mitogen-activated protein kinases (MAPKs) (including ERK1/2, SAPKs and p38) in post mortem AD and DS brains, which could not be accounted for by expression changes. In contrast, glycogen synthase kinase-3 activity (GSK-3 alpha beta) was reduced significantly. Examination of tau in AD and DS using antibodies selective for MAPK phosphorylation sites showed increased immunoreactivity. In addition, phosphorylation of S(199), reportedly a selective substrate for cyclin-dependent kinase-5 (cdk5) or GSK-3 alpha beta was only observed in AD samples, which showed a concomitant increase in the expression of p25, the enhancing cofactor for cdk5 activity. However, in schizophrenia brain, MAPK-phosphorylated tau was unchanged compared to matched controls, despite similar expression levels to those in AD. The activities of the MAPKs and GSK-3 alpha beta were also unchanged. These data demonstrate that in AD and DS, enhanced MAPK activity, which has an established role in regulating neuronal plasticity and survival, can account for irregular tau phosphorylation, and that the molecular processes involved in these neurodegenerative disorders are distinct from those in schizophrenia. These data also question the significance of GSK-3 alpha beta, as much previous work carried out in vitro has placed this kinase as a favoured candidate for involvement in the pathological phosphorylation of tau.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
119 |
16
|
Soundararajan M, Roos A, Savitsky P, Filippakopoulos P, Kettenbach A, Olsen J, Gerber S, Eswaran J, Knapp S, Elkins J. Structures of Down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition. Structure 2013; 21:986-96. [PMID: 23665168 PMCID: PMC3677093 DOI: 10.1016/j.str.2013.03.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 02/28/2013] [Accepted: 03/19/2013] [Indexed: 01/16/2023]
Abstract
Dual-specificity tyrosine-(Y)-phosphorylation-regulated kinases (DYRKs) play key roles in brain development, regulation of splicing, and apoptosis, and are potential drug targets for neurodegenerative diseases and cancer. We present crystal structures of one representative member of each DYRK subfamily: DYRK1A with an ATP-mimetic inhibitor and consensus peptide, and DYRK2 including NAPA and DH (DYRK homology) box regions. The current activation model suggests that DYRKs are Ser/Thr kinases that only autophosphorylate the second tyrosine of the activation loop YxY motif during protein translation. The structures explain the roles of this tyrosine and of the DH box in DYRK activation and provide a structural model for DYRK substrate recognition. Phosphorylation of a library of naturally occurring peptides identified substrate motifs that lack proline in the P+1 position, suggesting that DYRK1A is not a strictly proline-directed kinase. Our data also show that DYRK1A wild-type and Y321F mutant retain tyrosine autophosphorylation activity.
Collapse
|
research-article |
12 |
118 |
17
|
Ichinohe A, Kanaumi T, Takashima S, Enokido Y, Nagai Y, Kimura H. Cystathionine β-synthase is enriched in the brains of Down’s patients. Biochem Biophys Res Commun 2005; 338:1547-50. [PMID: 16274669 DOI: 10.1016/j.bbrc.2005.10.118] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 10/19/2005] [Indexed: 11/20/2022]
Abstract
Down's syndrome (DS) or trisomy 21 is the most common genetic cause of mental retardation, and adults with DS develop Alzheimer type of disease (AD). Cystathionine beta-synthase (CBS) is encoded on chromosome 21 and deficiency in its activity causes homocystinuria, the most common inborn error of sulfur amino acid metabolism and characterized by mental retardation and vascular disease. Here, we show that the levels of CBS in DS brains are approximately three times greater than those in the normal individuals. CBS is localized to astrocytes and those surrounding senile plaques in the brains of DS patients with AD. The over-expression of CBS may cause the developmental abnormality in cognition in DS children and that may lead to AD in DS adults.
Collapse
|
|
20 |
104 |
18
|
Elroy-Stein O, Groner Y. Impaired neurotransmitter uptake in PC12 cells overexpressing human Cu/Zn-superoxide dismutase--implication for gene dosage effects in Down syndrome. Cell 1988; 52:259-67. [PMID: 2893664 DOI: 10.1016/0092-8674(88)90515-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rat PC12 cells expressing elevated levels of transfected human Cu/Zn-superoxide dismutase (CuZn-SOD) gene were generated. These transformants (designated PC12-hSOD) closely resembled the parental cells in their morphology, growth rate, and response to nerve growth factor, but showed impaired neurotransmitter uptake. The lesion was localized to the chromaffin granule transport mechanism. We found that the pH gradient (delta pH) across the membrane, which is the main driving force for amine transport, was diminished in PC12-hSOD granules. These results show that elevation of CuZnSOD activity interferes with the transport of biogenic amines into chromaffin granules. Since neurotransmitter uptake plays an important role in many processes of the central nervous system, CuZnSOD gene-dosage may contribute to the neurobiological abnormalities of Down's syndrome.
Collapse
|
|
37 |
102 |
19
|
Bosco P, Guéant-Rodriguez RM, Anello G, Barone C, Namour F, Caraci F, Romano A, Romano C, Guéant JL. Methionine synthase (MTR) 2756 (A --> G) polymorphism, double heterozygosity methionine synthase 2756 AG/methionine synthase reductase (MTRR) 66 AG, and elevated homocysteinemia are three risk factors for having a child with Down syndrome. Am J Med Genet A 2003; 121A:219-24. [PMID: 12923861 DOI: 10.1002/ajmg.a.20234] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Contradictory findings have been recently published on the evaluation of genetic polymorphisms of methylenetetrahydrofolate reductase (MTHFR 677 C-->T) and methionine synthase reductase (MTRR 66 A-->G) as risk factors for having a child with Down syndrome (DS); however, the influence of polymorphisms of methionine synthase (MTR 2756 A-->G) and of MTHFR 1298 A-->C has never been evaluated. In this study, the risk of being a DS case or having a DS child (case mother) was studied by multiple logistic regression analysis of the independent and combined genotypes and of plasma homocysteine, folates, and vitamin B12 in 92 DS cases and 140 control subjects as well as in 63 case mothers and 72 age-matched control mothers from Sicily. (The MTHFR 677 T allele frequency was not different in DS cases and case mothers, compared to the respective control groups). After adjustment for age, total homocysteine (t-Hcys) and MTR 2756 AG/GG genotype were significant risk factors for having a DS child, with odds ratio (OR) of 6.7 (95% CI: 1.4-32.0, P = 0.016) and of 3.5 (95% CI: 1.2-10.9, P = 0.028), respectively. By comparison, MTR 2756 AG/GG genotype increased significantly the risk of being a DS case, with an OR of 3.8 (95% CI: 1.4-10.5, P = 0.009). The double heterozygosity MTR 2756 AG/MTRR 66 AG was the single combined genotype that was a significant risk factor for having a DS child, with an OR estimated at 5.0 (95% CI: 1.1-24.1), after adjustment for t-Hcys. In conclusion, our results provide evidences that homocysteine and MTR genetic polymorphism are two potent risk factors for mothers to have a DS child in Sicily.
Collapse
|
Comparative Study |
22 |
100 |
20
|
Kim SH, Vlkolinsky R, Cairns N, Lubec* G. Decreased levels of complex III core protein 1 and complex V beta chain in brains from patients with Alzheimer's disease and Down syndrome. Cell Mol Life Sci 2000; 57:1810-6. [PMID: 11130185 PMCID: PMC11146938 DOI: 10.1007/pl00000661] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ubiquinol:cytochrome c oxidoreductase (complex III) and ATP synthase (complex V) are important enzymes in the mitochondrial electron transport chain. Defects in mitochondrial respiratory enzymes have been reported for several neurodegenerative diseases. In this study, we applied the proteomic approach to investigate protein levels of complex III core protein and complex V beta chain in brain regions of Alzheimer's disease (AD) and Down syndrome (DS) patients. Complex III core protein 1 was significantly reduced in the temporal cortex of AD patients. Complex V beta chain was significantly reduced in the frontal cortex of DS patients. We conclude that decreased mitochondrial respiratory enzymes could contribute to the impairment of energy metabolism observed in DS. These decreases could also cause the generation of reactive oxygen species and neuronal cell death (apoptosis) in DS as well as AD.
Collapse
|
research-article |
25 |
97 |
21
|
Nistor M, Don M, Parekh M, Sarsoza F, Goodus M, Lopez G, Kawas C, Leverenz J, Doran E, Lott I, Hill M, Head E. Alpha- and beta-secretase activity as a function of age and beta-amyloid in Down syndrome and normal brain. Neurobiol Aging 2006; 28:1493-506. [PMID: 16904243 PMCID: PMC3375834 DOI: 10.1016/j.neurobiolaging.2006.06.023] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 05/09/2006] [Accepted: 06/21/2006] [Indexed: 11/22/2022]
Abstract
Aged individuals with Down syndrome (DS) develop Alzheimer's disease (AD) neuropathology by the age of 40 years. The purpose of the current study was to measure age-associated changes in APP processing in 36 individuals with DS (5 months-69 years) and in 26 controls (5 months-100 years). Alpha-secretase significantly decreased with age in DS, particularly in cases over the age of 40 years and was stable in controls. The levels of C-terminal fragments of APP reflecting alpha-secretase processing (CTF-alpha) decreased with age in both groups. In both groups, there was significant increase in beta-secretase activity with age. CTF-beta remained constant with age in controls suggesting compensatory increases in turnover/clearance mechanisms. In DS, young individuals had the lowest CTF-beta levels that may reflect rapid conversion of beta-amyloid (Abeta) to soluble pools or efficient CTF-beta clearance mechanisms. Treatments to slow or prevent AD in the general population targeting secretase activity may be more efficacious in adults with DS if combined with approaches that enhance Abeta degradation and clearance.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
91 |
22
|
Ceballos-Picot I, Nicole A, Briand P, Grimber G, Delacourte A, Defossez A, Javoy-Agid F, Lafon M, Blouin JL, Sinet PM. Neuronal-specific expression of human copper-zinc superoxide dismutase gene in transgenic mice: animal model of gene dosage effects in Down's syndrome. Brain Res 1991; 552:198-214. [PMID: 1717112 DOI: 10.1016/0006-8993(91)90084-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It has been suggested that copper-zinc superoxide dismutase (CuZn SOD) increment, by accelerating hydrogen peroxide formation, might promote oxidative damage within trisomy 21 cells and might be involved in the various neurobiological abnormalities found in Down's syndrome such as premature aging and Alzheimer-type neurological lesions. In order to test this hypothesis, we have developed strains of transgenic mice carrying the human CuZn SOD gene. The human transgene expression resulted in increased CuZn SOD activity predominantly in the brain (1.93 fold). Immunohistochemical and in situ hybridization analysis of brain sections revealed that human CuZn SOD protein and mRNA was preferentially expressed in neurons, particularly in pyramidal cells of Ammon's horn and granule cells of gyrus dentate. The amount of thiobarbituric acid (TBA)-reactive material was significantly higher in transgenic brains compared to controls, strongly suggesting an increased level of peroxidation in vivo. These results support the notion that CuZn SOD gene dosage effect could play a role in the pathogenesis of rapid aging features in the brain of Down's syndrome patients.
Collapse
|
Comparative Study |
34 |
84 |
23
|
Yoo BC, Krapfenbauer K, Cairns N, Belay G, Bajo M, Lubec G. Overexpressed protein disulfide isomerase in brains of patients with sporadic Creutzfeldt-Jakob disease. Neurosci Lett 2002; 334:196-200. [PMID: 12453628 DOI: 10.1016/s0304-3940(02)01071-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Earlier studies have failed to detect covalent modifications in beta-sheet-rich scrapie isoform prion protein (PrP(Sc)) and have concluded that the conversion of alpha-helix-rich cellular form prion protein (PrP(C)) to PrP(Sc) represents purely conformational transition not involving chemical reactions. However, recent studies have shown that the intradisulfide bond of PrP(C) can play an important role for instability and conformational change to PrP(Sc). Interestingly, we found overexpressed protein disufide isomerase (PDI) in brains of sporadic Creutzfeldt-Jakob disease (sCJD, human prion disease) patients using two dimensional electrophoresis and Western blot analysis but not in other neurodegenerative disorders as Down Syndrome and Alzheimer's disease. However, proteinase K digestion and plasminogen binding assay of brain homogenates incubated with PDI suggest that PDI has no effect on either proteinase resistance or conformational change of PrP. Overexpression of PDI protein in sCJD brain may simply reflect a cellular defense response against the altered prion protein.
Collapse
|
Comparative Study |
23 |
75 |
24
|
Chadefaux B, Rethoré MO, Raoul O, Ceballos I, Poissonnier M, Gilgenkranz S, Allard D. Cystathionine beta synthase: gene dosage effect in trisomy 21. Biochem Biophys Res Commun 1985; 128:40-4. [PMID: 3157380 DOI: 10.1016/0006-291x(85)91641-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The enzymatic activity of cystathionine beta synthase has been studied in fibroblasts of nine patients with regular trisomy 21. An excess of CBS activity was found in trisomy 21 with a trisomy 21/normal ratio equal to 1.66. A 1.04 ratio was found in 21q21----21 p ter monosomy; a 1.04 and 0.99 ratio was found in two 21 qter----21q22.3 monosomies; a 1.14 ratio in 21 qter----21q22 monosomy; a 0.89 ratio in a 21q21----21 pter trisomy; an excess of CBS activity was found in a 21q22.1 ----21q21 trisomy with a 1.57 ratio. These results show a gene dosage effect in human fibroblasts trisomic for chromosome 21 and suggest the assignment of human CBS locus between 21q22.1 and 21q21.
Collapse
|
Case Reports |
40 |
70 |
25
|
Ellis JM, Tan HK, Gilbert RE, Muller DPR, Henley W, Moy R, Pumphrey R, Ani C, Davies S, Edwards V, Green H, Salt A, Logan S. Supplementation with antioxidants and folinic acid for children with Down's syndrome: randomised controlled trial. BMJ 2008; 336:594-7. [PMID: 18296460 PMCID: PMC2267988 DOI: 10.1136/bmj.39465.544028.ae] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/03/2008] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To assess whether supplementation with antioxidants, folinic acid, or both improves the psychomotor and language development of children with Down's syndrome. DESIGN Randomised controlled trial with two by two factorial design. SETTING Children living in the Midlands, Greater London, and the south west of England. PARTICIPANTS 156 infants aged under 7 months with trisomy 21. INTERVENTION Daily oral supplementation with antioxidants (selenium 10 mug, zinc 5 mg, vitamin A 0.9 mg, vitamin E 100 mg, and vitamin C 50 mg), folinic acid (0.1 mg), antioxidants and folinic acid combined, or placebo. MAIN OUTCOME MEASURES Griffiths developmental quotient and an adapted MacArthur communicative development inventory 18 months after starting supplementation; biochemical markers in blood and urine at age 12 months. RESULTS Children randomised to antioxidant supplements attained similar developmental outcomes to those without antioxidants (mean Griffiths developmental quotient 57.3 v 56.1; adjusted mean difference 1.2 points, 95% confidence interval -2.2 to 4.6). Comparison of children randomised to folinic acid supplements or no folinic acid also showed no significant differences in Griffiths developmental quotient (mean 57.6 v 55.9; adjusted mean difference 1.7, -1.7 to 5.1). No between group differences were seen in the mean numbers of words said or signed: for antioxidants versus none the ratio of means was 0.85 (95% confidence interval 0.6 to 1.2), and for folinic acid versus none it was 1.24 (0.87 to 1.77). No significant differences were found between any of the groups in the biochemical outcomes measured. Adjustment for potential confounders did not appreciably change the results. CONCLUSIONS This study provides no evidence to support the use of antioxidant or folinic acid supplements in children with Down's syndrome. TRIAL REGISTRATION Clinical trials NCT00378456.
Collapse
|
Multicenter Study |
17 |
70 |