1
|
Abstract
The heat-shock protein Hsp90 supports diverse but specific signal transducers and lies at the interface of several developmental pathways. We report here that when Drosophila Hsp90 is mutant or pharmacologically impaired, phenotypic variation affecting nearly any adult structure is produced, with specific variants depending on the genetic background and occurring both in laboratory strains and in wild populations. Multiple, previously silent, genetic determinants produced these variants and, when enriched by selection, they rapidly became independent of the Hsp90 mutation. Therefore, widespread variation affecting morphogenic pathways exists in nature, but is usually silent; Hsp90 buffers this variation, allowing it to accumulate under neutral conditions. When Hsp90 buffering is compromised, for example by temperature, cryptic variants are expressed and selection can lead to the continued expression of these traits, even when Hsp90 function is restored. This provides a plausible mechanism for promoting evolutionary change in otherwise entrenched developmental processes.
Collapse
|
|
27 |
1506 |
2
|
Abstract
We have constructed a series of strains to facilitate the generation and analysis of clones of genetically distinct cells in developing and adult tissues of Drosophila. Each of these strains carries an FRT element, the target for the yeast FLP recombinase, near the base of a major chromosome arm, as well as a gratuitous cell-autonomous marker. Novel markers that carry epitope tags and that are localized to either the cell nucleus or cell membrane have been generated. As a demonstration of how these strains can be used to study a particular gene, we have analyzed the developmental role of the Drosophila EGF receptor homolog. Moreover, we have shown that these strains can be utilized to identify new mutations in mosaic animals in an efficient and unbiased way, thereby providing an unprecedented opportunity to perform systematic genetic screens for mutations affecting many biological processes.
Collapse
|
|
32 |
1499 |
3
|
Rulifson EJ, Kim SK, Nusse R. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 2002; 296:1118-20. [PMID: 12004130 DOI: 10.1126/science.1070058] [Citation(s) in RCA: 825] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In the fruit fly Drosophila, four insulin genes are coexpressed in small clusters of cells [insulin-producing cells (IPCs)] in the brain. Here, we show that ablation of these IPCs causes developmental delay, growth retardation, and elevated carbohydrate levels in larval hemolymph. All of the defects were reversed by ectopic expression of a Drosophila insulin transgene. On the basis of these functional data and the observation that IPCs release insulin into the circulatory system, we conclude that brain IPCs are the main systemic supply of insulin during larval growth. We propose that IPCs and pancreatic islet beta cells are functionally analogous and may have evolved from a common ancestral insulin-producing neuron. Interestingly, the phenotype of flies lacking IPCs includes certain features of diabetes mellitus.
Collapse
|
|
23 |
825 |
4
|
Xu P, Vernooy SY, Guo M, Hay BA. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 2003; 13:790-5. [PMID: 12725740 DOI: 10.1016/s0960-9822(03)00250-1] [Citation(s) in RCA: 724] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs that are between 21 and 25 nucleotides in length and repress gene function through interactions with target mRNAs. The genomes of metazoans encode on the order of several hundred miRNAs, but the processes they regulate have been defined for only two in C. elegans. We searched for new inhibitors of apoptotic cell death by testing existing collections of P element insertion lines for their ability to enhance a small-eye phenotype associated with eye-specific expression of the Drosophila cell death activator Reaper. Here we report the identification of the Drosophila miRNA mir-14 as a cell death suppressor. Loss of mir-14 enhances Reaper-dependent cell death, whereas ectopic expression suppresses cell death induced by multiple stimuli. Animals lacking mir-14 are viable. However, they are stress sensitive and have a reduced lifespan. Mir-14 mutants have elevated levels of the apoptotic effector caspase Drice, suggesting one potential site of action. Mir-14 also regulates fat metabolism. Deletion of mir-14 results in animals with increased levels of triacylglycerol and diacylglycerol, whereas increases in mir-14 copy number have the converse effect. We discuss possible relationships between these phenotypes.
Collapse
|
Comparative Study |
22 |
724 |
5
|
Couto A, Alenius M, Dickson BJ. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr Biol 2006; 15:1535-47. [PMID: 16139208 DOI: 10.1016/j.cub.2005.07.034] [Citation(s) in RCA: 713] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 07/07/2005] [Accepted: 07/08/2005] [Indexed: 11/25/2022]
Abstract
BACKGROUND Olfactory receptor neurons (ORNs) convey chemical information into the brain, producing internal representations of odors detected in the periphery. A comprehensive understanding of the molecular and neural mechanisms of odor detection and processing requires complete maps of odorant receptor (Or) expression and ORN connectivity, preferably at single-cell resolution. RESULTS We have constructed near-complete maps of Or expression and ORN targeting in the Drosophila olfactory system. These maps confirm the general validity of the "one neuron--one receptor" and "one glomerulus--one receptor" principles and reveal several additional features of olfactory organization. ORNs in distinct sensilla types project to distinct regions of the antennal lobe, but neighbor relations are not preserved. ORNs grouped in the same sensilla do not express similar receptors, but similar receptors tend to map to closely appositioned glomeruli in the antennal lobe. This organization may serve to ensure that odor representations are dispersed in the periphery but clustered centrally. Integrated with electrophysiological data, these maps also predict glomerular representations of specific odorants. Representations of aliphatic and aromatic compounds are spatially segregated, with those of aliphatic compounds arranged topographically according to carbon chain length. CONCLUSIONS These Or expression and ORN connectivity maps provide further insight into the molecular, anatomical, and functional organization of the Drosophila olfactory system. Our maps also provide an essential resource for investigating how internal odor representations are generated and how they are further processed and transmitted to higher brain centers.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
713 |
6
|
Wang JW, Wong AM, Flores J, Vosshall LB, Axel R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 2003; 112:271-82. [PMID: 12553914 DOI: 10.1016/s0092-8674(03)00004-7] [Citation(s) in RCA: 616] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An understanding of the logic of odor perception requires a functional analysis of odor-evoked patterns of activity in neural assemblies in the brain. We have developed a sensitive imaging system in the Drosophila brain that couples two-photon microscopy with the specific expression of the calcium-sensitive fluorescent protein, G-CaMP. At natural odor concentration, each odor elicits a distinct and sparse spatial pattern of activity in the antennal lobe that is conserved in different flies. Patterns of glomerular activity are similar upon imaging of sensory and projection neurons, suggesting the faithful transmission of sensory input to higher brain centers. Finally, we demonstrate that the response pattern of a given glomerulus is a function of the specificity of a single odorant receptor. The development of this imaging system affords an opportunity to monitor activity in defined neurons throughout the fly brain with high sensitivity and excellent spatial resolution.
Collapse
|
|
22 |
616 |
7
|
Hallem EA, Ho MG, Carlson JR. The molecular basis of odor coding in the Drosophila antenna. Cell 2004; 117:965-79. [PMID: 15210116 DOI: 10.1016/j.cell.2004.05.012] [Citation(s) in RCA: 614] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 04/16/2004] [Accepted: 04/23/2004] [Indexed: 11/16/2022]
Abstract
We have undertaken a functional analysis of the odorant receptor repertoire in the Drosophila antenna. Each receptor was expressed in a mutant olfactory receptor neuron (ORN) used as a "decoder," and the odor response spectrum conferred by the receptor was determined in vivo by electrophysiological recordings. The spectra of these receptors were then matched to those of defined ORNs to establish a receptor-to-neuron map. In addition to the odor response spectrum, the receptors dictate the signaling mode, i.e., excitation or inhibition, and the response dynamics of the neuron. An individual receptor can mediate both excitatory and inhibitory responses to different odorants in the same cell, suggesting a model of odorant receptor transduction. Receptors vary widely in their breadth of tuning, and odorants vary widely in the number of receptors they activate. Together, these properties provide a molecular basis for odor coding by the receptor repertoire of an olfactory organ.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
614 |
8
|
Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 2002; 108:233-46. [PMID: 11832213 DOI: 10.1016/s0092-8674(01)00638-9] [Citation(s) in RCA: 539] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The ADF (actin-depolymerizing factor)/cofilin family is a stimulus-responsive mediator of actin dynamics. In contrast to the mechanisms of inactivation of ADF/cofilin by kinases such as LIM-kinase 1 (LIMK1), much less is known about its reactivation through dephosphorylation. Here we report Slingshot (SSH), a family of phosphatases that have the property of F actin binding. In Drosophila, loss of ssh function dramatically increased levels of both F actin and phospho-cofilin (P cofilin) and disorganized epidermal cell morphogenesis. In mammalian cells, human SSH homologs (hSSHs) suppressed LIMK1-induced actin reorganization. Furthermore, SSH and the hSSHs dephosphorylated P cofilin in cultured cells and in cell-free assays. Our results strongly suggest that the SSH family plays a pivotal role in actin dynamics by reactivating ADF/cofilin in vivo.
Collapse
|
|
23 |
539 |
9
|
Abstract
Many organs are composed of epithelial tubes that transport vital fluids. Such tubular organs develop in many different ways and generate tubes of widely varying sizes and structures, but always with the apical epithelial surface lining the lumen. We describe recent progress in several diverse cell culture and genetic models of tube morphogenesis, which suggest apical membrane biogenesis, vesicle fusion, and secretion play central roles in tube formation and growth. We propose a unifying mechanism of tube morphogenesis that has been modified to create tube diversity and describe how defects in the tube size-sensing step can lead to polycystic kidney disease.
Collapse
|
Review |
22 |
504 |
10
|
Huey RB, Gilchrist GW, Carlson ML, Berrigan D, Serra L. Rapid evolution of a geographic cline in size in an introduced fly. Science 2000; 287:308-9. [PMID: 10634786 DOI: 10.1126/science.287.5451.308] [Citation(s) in RCA: 465] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The introduction and rapid spread of Drosophila subobscura in the New World two decades ago provide an opportunity to determine the predictability and rate of evolution of a geographic cline. In ancestral Old World populations, wing length increases clinally with latitude. In North American populations, no wing length cline was detected one decade after the introduction. After two decades, however, a cline has evolved and largely converged on the ancestral cline. The rate of morphological evolution on a continental scale is very fast, relative even to rates measured within local populations. Nevertheless, different wing sections dominate the New versus Old World clines. Thus, the evolution of geographic variation in wing length has been predictable, but the means by which the cline is achieved is contingent.
Collapse
|
Comment |
25 |
465 |
11
|
Jefferis GSXE, Potter CJ, Chan AM, Marin EC, Rohlfing T, Maurer CR, Luo L. Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 2007; 128:1187-203. [PMID: 17382886 PMCID: PMC1885945 DOI: 10.1016/j.cell.2007.01.040] [Citation(s) in RCA: 456] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 11/10/2006] [Accepted: 01/17/2007] [Indexed: 11/30/2022]
Abstract
In Drosophila, ∼50 classes of olfactory receptor neurons (ORNs) send axons to 50 corresponding glomeruli in the antennal lobe. Uniglomerular projection neurons (PNs) relay olfactory information to the mushroom body (MB) and lateral horn (LH). Here, we combine single-cell labeling and image registration to create high-resolution, quantitative maps of the MB and LH for 35 input PN channels and several groups of LH neurons. We find (1) PN inputs to the MB are stereotyped as previously shown for the LH; (2) PN partners of ORNs from different sensillar groups are clustered in the LH; (3) fruit odors are represented mostly in the posterior-dorsal LH, whereas candidate pheromone-responsive PNs project to the anterior-ventral LH; (4) dendrites of single LH neurons each overlap with specific subsets of PN axons. Our results suggest that the LH is organized according to biological values of olfactory input.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
456 |
12
|
Abstract
The comparative analysis of homologous characters is a staple of evolutionary developmental biology and often involves extrapolating from experimental data in model organisms to infer developmental events in non-model organisms. In order to determine the general importance of data obtained in model organisms, it is critical to know how often and to what degree similar phenotypes expressed in different taxa are formed by divergent developmental processes. Both comparative studies of distantly related species and genetic analysis of closely related species indicate that many characters known to be homologous between taxa have diverged in their morphogenetic or gene regulatory underpinnings. This process, which we call "developmental system drift" (DSD), is apparently ubiquitous and has significant implications for the flexibility of developmental evolution of both conserved and evolving characters. Current data on the population genetics and molecular mechanisms of DSD illustrate how the details of developmental processes are constantly changing within evolutionary lineages, indicating that developmental systems may possess a great deal of plasticity in their responses to natural selection.
Collapse
|
Review |
24 |
450 |
13
|
Wilson RI, Turner GC, Laurent G. Transformation of olfactory representations in the Drosophila antennal lobe. Science 2003; 303:366-70. [PMID: 14684826 DOI: 10.1126/science.1090782] [Citation(s) in RCA: 413] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Molecular genetics has revealed a precise stereotypy in the projection of primary olfactory sensory neurons onto secondary neurons. A major challenge is to understand how this mapping translates into odor responses in these second-order neurons. We investigated this question in Drosophila using whole-cell recordings in vivo. We observe that monomolecular odors generally elicit responses in large ensembles of antennal lobe neurons. Comparison of odor-evoked activity from afferents and postsynaptic neurons in the same glomerulus revealed that second-order neurons display broader tuning and more complex responses than their primary afferents. This indicates a major transformation of odor representations, implicating lateral interactions within the antennal lobe.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
22 |
413 |
14
|
Macdonald PM, Struhl G. A molecular gradient in early Drosophila embryos and its role in specifying the body pattern. Nature 1986; 324:537-45. [PMID: 2878369 DOI: 10.1038/324537a0] [Citation(s) in RCA: 375] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
After fertilization, the protein products of the Drosophila homeobox gene caudal (cad) accumulate in a concentration gradient spanning the anteroposterior axis of the developing embryo. Mutations in the cad gene that reduce or eliminate the gradient cause abnormal zygotic expression of at least one segmentation gene (fushi tarazu) and alter the global body pattern.
Collapse
|
|
39 |
375 |
15
|
van den Heuvel M, Nusse R, Johnston P, Lawrence PA. Distribution of the wingless gene product in Drosophila embryos: a protein involved in cell-cell communication. Cell 1989; 59:739-49. [PMID: 2582493 DOI: 10.1016/0092-8674(89)90020-2] [Citation(s) in RCA: 361] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
wingless, a segment polarity gene required in every segment for the normal development of the Drosophila embryo, encodes a cysteine-rich protein with a signal peptide. A polyclonal antiserum localizes the wingless protein in approximately the same region of the embryo as the wingless mRNA. The pattern of antigen localization changes rapidly during development. In the extended germband stage, stripes of wingless staining are present in the trunk region just anterior to the parasegment boundary; wingless-expressing cells abut engrailed-expressing cells across that boundary. wingless antigen is seen both inside and outside the cell by electron microscopy: inside the cell, in small membrane-bound vesicles and in multivesicular bodies; outside the cell, close to or on the plasma membrane and associated with material in the intercellular space. The multivesicular bodies containing the wingless protein are occasionally found in engrailed-positive cells, suggesting that the wingless protein behaves as a paracrine signal.
Collapse
|
|
36 |
361 |
16
|
Abstract
The genetic programs that direct formation of the treelike branching structures of two animal organs have begun to be elucidated. In both the developing Drosophila tracheal (respiratory) system and mammalian lung, a fibroblast growth factor (FGF) signaling pathway is reiteratively used to pattern successive rounds of branching. The initial pattern of signaling appears to be established by early, more global embryonic patterning systems. The FGF pathway is then modified at each stage of branching by genetic feedback controls and other signals to give distinct branching outcomes. The reiterative use of a signaling pathway by both insects and mammals suggests a general scheme for patterning branching morphogenesis.
Collapse
|
Review |
26 |
352 |
17
|
Prud'homme B, Gompel N, Rokas A, Kassner VA, Williams TM, Yeh SD, True JR, Carroll SB. Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature 2006; 440:1050-3. [PMID: 16625197 DOI: 10.1038/nature04597] [Citation(s) in RCA: 350] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 01/25/2006] [Indexed: 11/08/2022]
Abstract
The independent evolution of morphological similarities is widespread. For simple traits, such as overall body colour, repeated transitions by means of mutations in the same gene may be common. However, for more complex traits, the possible genetic paths may be more numerous; the molecular mechanisms underlying their independent origins and the extent to which they are constrained to follow certain genetic paths are largely unknown. Here we show that a male wing pigmentation pattern involved in courtship display has been gained and lost multiple times in a Drosophila clade. Each of the cases we have analysed (two gains and two losses) involved regulatory changes at the pleiotropic pigmentation gene yellow. Losses involved the parallel inactivation of the same cis-regulatory element (CRE), with changes at a few nucleotides sufficient to account for the functional divergence of one element between two sibling species. Surprisingly, two independent gains of wing spots resulted from the co-option of distinct ancestral CREs. These results demonstrate how the functional diversification of the modular CREs of pleiotropic genes contributes to evolutionary novelty and the independent evolution of morphological similarities.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
350 |
18
|
Baker RH, DeSalle R. Multiple sources of character information and the phylogeny of Hawaiian drosophilids. Syst Biol 1997; 46:654-73. [PMID: 11975337 DOI: 10.1093/sysbio/46.4.654] [Citation(s) in RCA: 343] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Relationships among representatives of the five major Hawaiian Drosophila species groups were examined using data from eight different gene regions. A simultaneous analysis of these data resulted in a single most-parsimonious tree that (1) places the adiastola picture-winged subgroup as sister taxon to the other picture-winged subgroups, (2) unites the modified-tarsus species group with flies from the Antopocerus species group, and (3) places the white-tip scutellum species group as the most basal taxon. Because of the different gene sources used in this study, numerous process partitions can be erected within this data set. We examined the incongruence among these various partitions and the ramifications of these data for the taxonomic consensus, prior agreement, and simultaneous analysis approaches to phylogenetic reconstruction. Separate analyses and taxonomic consensus appear to be inadequate methods for dealing with the partitions in this study. Although detection of incongruence is possible and helps elucidate particular areas of disagreement among data sets, separation of partitions on the basis of incongruence is problematic for many reasons. First, analyzing all genes separately and then either presenting them all as possible hypotheses or taking their consensus provides virtually no information concerning the relationships among these flies. Second, despite some evidence of incongruence, there are no clear delineations among the various gene partitions that separate only heterogeneous data. Third, to the extent that problematic genes can be identified, these genes have nearly the same information content, within a combined analysis framework, as the remaining nonproblematic genes. Our data suggest that significant incongruence among data partitions may be isolated to specific relationships and the "false" signal creating this incongruence is most likely to be overcome by a simultaneous analysis. We present a new method, partitioned Bremer support, for examining the contribution of a particular data partition to the topological support of the simultaneous analysis tree.
Collapse
|
|
28 |
343 |
19
|
Wang Z, Singhvi A, Kong P, Scott K. Taste Representations in the Drosophila Brain. Cell 2004; 117:981-91. [PMID: 15210117 DOI: 10.1016/j.cell.2004.06.011] [Citation(s) in RCA: 343] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 05/19/2004] [Accepted: 05/25/2004] [Indexed: 11/21/2022]
Abstract
Drosophila taste compounds with gustatory neurons on many parts of the body, suggesting that a fly detects both the location and quality of a food source. For example, activation of taste neurons on the legs causes proboscis extension or retraction, whereas activation of proboscis taste neurons causes food ingestion or rejection. We examined whether the features of taste location and taste quality are mapped in the fly brain using molecular, genetic, and behavioral approaches. We find that projections are segregated by the category of tastes that they recognize: neurons that recognize sugars project to a region different from those recognizing noxious substances. Transgenic axon labeling experiments also demonstrate that gustatory projections are segregated based on their location in the periphery. These studies reveal the gustatory map in the first relay of the fly brain and demonstrate that taste quality and position are represented in anatomical projection patterns.
Collapse
|
|
21 |
343 |
20
|
Tree DRP, Shulman JM, Rousset R, Scott MP, Gubb D, Axelrod JD. Prickle mediates feedback amplification to generate asymmetric planar cell polarity signaling. Cell 2002; 109:371-81. [PMID: 12015986 DOI: 10.1016/s0092-8674(02)00715-8] [Citation(s) in RCA: 342] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Planar cell polarity signaling in Drosophila requires the receptor Frizzled and the cytoplasmic proteins Dishevelled and Prickle. From initial, symmetric subcellular distributions in pupal wing cells, Frizzled and Dishevelled become highly enriched at the distal portion of the cell cortex. We describe a Prickle-dependent intercellular feedback loop that generates asymmetric Frizzled and Dishevelled localization. In the absence of Prickle, Frizzled and Dishevelled remain symmetrically distributed. Prickle localizes to the proximal side of pupal wing cells and binds the Dishevelled DEP domain, inhibiting Dishevelled membrane localization and antagonizing Frizzled accumulation. This activity is linked to Frizzled activity on the adjacent cell surface. Prickle therefore functions in a feedback loop that amplifies differences between Frizzled levels on adjacent cell surfaces.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Animals
- Cell Polarity/genetics
- Cell Polarity/physiology
- Cloning, Molecular
- Cytoplasm/metabolism
- DNA-Binding Proteins/metabolism
- Dishevelled Proteins
- Drosophila/anatomy & histology
- Drosophila/genetics
- Drosophila/metabolism
- Drosophila Proteins
- Epistasis, Genetic
- Feedback, Physiological/physiology
- Frizzled Receptors
- Humans
- Insect Proteins/genetics
- Insect Proteins/metabolism
- LIM Domain Proteins
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mutation
- Osteosarcoma/genetics
- Osteosarcoma/pathology
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Pupa
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled
- Signal Transduction
- Tumor Cells, Cultured
- Wings, Animal/cytology
- Wings, Animal/metabolism
Collapse
|
|
23 |
342 |
21
|
Barker N, Hurlstone A, Musisi H, Miles A, Bienz M, Clevers H. The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. EMBO J 2001; 20:4935-43. [PMID: 11532957 PMCID: PMC125268 DOI: 10.1093/emboj/20.17.4935] [Citation(s) in RCA: 329] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2001] [Revised: 07/10/2001] [Accepted: 07/13/2001] [Indexed: 11/15/2022] Open
Abstract
Wnt-induced formation of nuclear Tcf-beta-catenin complexes promotes transcriptional activation of target genes involved in cell fate decisions. Inappropriate expression of Tcf target genes resulting from mutational activation of this pathway is also implicated in tumorigenesis. The C-terminus of beta-catenin is indispensable for the transactivation function, which probably reflects the presence of binding sites for essential transcriptional coactivators such as p300/CBP. However, the precise mechanism of transactivation remains unclear. Here we demonstrate an interaction between beta-catenin and Brg-1, a component of mammalian SWI/SNF and Rsc chromatin-remodelling complexes. A functional consequence of reintroduction of Brg-1 into Brg-1-deficient cells is enhanced activity of a Tcf-responsive reporter gene. Consistent with this, stable expression of inactive forms of Brg-1 in colon carcinoma cell lines specifically inhibits expression of endogenous Tcf target genes. In addition, we observe genetic interactions between the Brg-1 and beta-catenin homologues in flies. We conclude that beta-catenin recruits Brg-1 to Tcf target gene promoters, facilitating chromatin remodelling as a prerequisite for transcriptional activation.
Collapse
|
research-article |
24 |
329 |
22
|
Hooper JE, Scott MP. The Drosophila patched gene encodes a putative membrane protein required for segmental patterning. Cell 1989; 59:751-65. [PMID: 2582494 DOI: 10.1016/0092-8674(89)90021-4] [Citation(s) in RCA: 321] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The patched (ptc) gene is one of several segment polarity genes required for correct patterning within every segment of Drosophila. The absence of ptc gene function causes a transformation of the fate of cells in the middle part of each segment so that they form pattern elements characteristic of cells positioned around the segment border. Analysis of the mutant phenotype demonstrates that both segment and parasegment borders are included in the duplicated pattern of ptc mutants. We have cloned the ptc gene and deduced that the product is a 1286 amino acid protein with at least seven putative transmembrane alpha helices. ptc RNA is expressed in embryos in broad stripes of segmental periodicity that later split into two stripes per segment primordium. The pattern of expression does not directly predict the transformation seen in ptc mutant embryos, suggesting that ptc participates in cell interactions that establish pattern within the segment.
Collapse
|
Comparative Study |
36 |
321 |
23
|
Abstract
FlyBase (http://flybase.bio.indiana.edu/) provides an integrated view of the fundamental genomic and genetic data on the major genetic model Drosophila melanogaster and related species. FlyBase has primary responsibility for the continual reannotation of the D. melanogaster genome. The ultimate goal of the reannotation effort is to decorate the euchromatic sequence of the genome with as much biological information as is available from the community and from the major genome project centers. A complete revision of the annotations of the now-finished euchromatic genomic sequence has been completed. There are many points of entry to the genome within FlyBase, most notably through maps, gene products and ontologies, structured phenotypic and gene expression data, and anatomy.
Collapse
|
research-article |
22 |
316 |
24
|
Wharton RP, Struhl G. RNA regulatory elements mediate control of Drosophila body pattern by the posterior morphogen nanos. Cell 1991; 67:955-67. [PMID: 1720354 DOI: 10.1016/0092-8674(91)90368-9] [Citation(s) in RCA: 314] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In Drosophila embryos, graded activity of the posterior determinant nanos (nos) generates abdominal segmentation by blocking protein expression from maternal transcripts of the hunchback (hb) gene. When active inappropriately at the anterior pole, nos can also block expression of the anterior determinant bicoid (bcd). We show that both regulatory interactions are mediated by similar sequences in the 3' untranslated region of each transcript. These nos response elements (NREs) are both necessary and sufficient to confer nos-dependent regulation, the degree of regulation determined by the number and quality of the elements and the level of nos in vivo. Based on these and other results, we argue that nos acts as a morphogen, controlling hb expression (and hence abdominal pattern) as a function of its concentration-dependent interaction with the NREs.
Collapse
|
|
34 |
314 |
25
|
Gibson MC, Patel AB, Nagpal R, Perrimon N. The emergence of geometric order in proliferating metazoan epithelia. Nature 2006; 442:1038-41. [PMID: 16900102 DOI: 10.1038/nature05014] [Citation(s) in RCA: 306] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 06/23/2006] [Indexed: 11/09/2022]
Abstract
The predominantly hexagonal cell pattern of simple epithelia was noted in the earliest microscopic analyses of animal tissues, a topology commonly thought to reflect cell sorting into optimally packed honeycomb arrays. Here we use a discrete Markov model validated by time-lapse microscopy and clonal analysis to demonstrate that the distribution of polygonal cell types in epithelia is not a result of cell packing, but rather a direct mathematical consequence of cell proliferation. On the basis of in vivo analysis of mitotic cell junction dynamics in Drosophila imaginal discs, we mathematically predict the convergence of epithelial topology to a fixed equilibrium distribution of cellular polygons. This distribution is empirically confirmed in tissue samples from vertebrate, arthropod and cnidarian organisms, suggesting that a similar proliferation-dependent cell pattern underlies pattern formation and morphogenesis throughout the metazoa.
Collapse
|
|
19 |
306 |