1
|
Mason WS, Seal G, Summers J. Virus of Pekin ducks with structural and biological relatedness to human hepatitis B virus. J Virol 1980; 36:829-36. [PMID: 7463557 PMCID: PMC353710 DOI: 10.1128/jvi.36.3.829-836.1980] [Citation(s) in RCA: 341] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A virus found in the sera of Pekin ducks appears to be a new member of the human hepatitis B-like family of viruses. This virus had a diameter of 40 nm and an appearance in the electron microscope similar to that of human hepatitis B virus. The DNA genome of the virus was circular and partially single stranded, and an endogenous DNA polymerase associated with the virus was capable of converting the genome to a double-stranded circle with a size of ca. 3,000 base pairs. An analysis for viral DNA in the organs of infected birds indicated preferential localization in the liver, implicating this organ as the site of virus replication. In all of these aspects, the virus bears a striking resemblance to human hepatitis B virus and appears to be a new member of this family, which also includes ground squirrel hepatitis virus and woodchuck hepatitis virus.
Collapse
|
research-article |
45 |
341 |
2
|
Hinshaw VS, Webster RG, Turner B. The perpetuation of orthomyxoviruses and paramyxoviruses in Canadian waterfowl. Can J Microbiol 1980; 26:622-9. [PMID: 7397605 DOI: 10.1139/m80-108] [Citation(s) in RCA: 217] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A longitudinal survey of viruses in feral ducks from 1976 to 1978 in the Vermillion area of Alberta, Canada, has shown that influenza A viruses and paramyxoviruses are present year after year in these apparently healthy ducks. Influenza viruses were isolated most frequently each year from mallards, pintails, and blue-winged teals, but were not restricted to these species. During the 3-year survey, 1262 influenza viruses were isolated from 4827 ducks, revealing the high incidence of influenza infection, a finding which contrasts with the very low incidence found in ducks during migration through Tennessee.Many different influenza A viruses were detected in the ducks, including 27 different combinations of hemagglutinin and neuraminidase subtypes. These viruses encompass all but one of the known hemagglutinin and neuraminidase subtypes. The virus subtypes in the ducks varied from year to year; however, 6 of these 27 subtypes were present every year. The predominant subtype changed from Hav7Neq2 in 1976–1977 to Hav6N2 in 1978. Antigenic comparisons of current and previous Hav6 viruses isolated from ducks, turkeys, and a shearwater showed that antigenic drift occurs in avian influenza viruses.Paramyxoviruses occur in the Canadian ducks at a much lower frequency than influenza viruses; in 3 years, 69 paramyxoviruses were isolated and included two types: lentogenic NDV and Duck/Mississippi/75.These longitudinal studies indicate that the feral ducks in the study area of Canada are a perpetual reservoir of diverse influenza A viruses and paramyxoviruses.
Collapse
|
|
45 |
217 |
3
|
Kida H, Yanagawa R, Matsuoka Y. Duck influenza lacking evidence of disease signs and immune response. Infect Immun 1980; 30:547-53. [PMID: 7439994 PMCID: PMC551346 DOI: 10.1128/iai.30.2.547-553.1980] [Citation(s) in RCA: 217] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Influenza viruses A/duck/Hokkaido/5/77 (Hav7N2), A/budgerigar/Hokkaido/1/77 (Hav4Nav1), A/Kumamoto/22/76 (H3N2), A/Aichi/2/68 (H3N2), and A/New Jersey/8/76 (Hsw1N1) were experimentally inoculated into Pekin ducks. Of these, the influenza viruses of duck and budgerigar origin replicated in the intestinal tract of the ducks. The infected ducks shed the virus in the feces to high titers, but did not show clinical signs of disease and scarcely produced detectable serum antibodies. Using immunofluorescent staining, we demonstrated that the target cells of the duck virus in ducks were the simple columnar epithelial cells which form crypts in the large intestines, especially in the colon. After primary infection, the birds resisted reinfection with the duck virus at least for 28 days, but from 46 days onward they were susceptible to reinfection. These infections were quickly restricted by a brisk secondary immune response, reflected in the rapid appearance of high titers of antibody after reinoculation. In contrat to the avian influenza viruses, the remaining three influenza viruses of human origin did not replicate in the intestinal tract but did cause a serum antibody response.
Collapse
|
research-article |
45 |
217 |
4
|
Kawaoka Y, Chambers TM, Sladen WL, Webster RG. Is the gene pool of influenza viruses in shorebirds and gulls different from that in wild ducks? Virology 1988; 163:247-50. [PMID: 3348002 DOI: 10.1016/0042-6822(88)90260-7] [Citation(s) in RCA: 216] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Evidence is presented for a second major gene pool of influenza A viruses in nature. Shorebirds and gulls harbor influenza viruses when sampled in the spring and fall. Approximately half of the viruses isolated have the potential to infect ducks but the remainder do not. The hemagglutinin subtypes that are prevalent in wild ducks were rare or absent in shorebirds and gulls.
Collapse
|
|
37 |
216 |
5
|
Cheng W, Chen H, Su C, Yan S. Abundance and persistence of antibiotic resistance genes in livestock farms: a comprehensive investigation in eastern China. ENVIRONMENT INTERNATIONAL 2013; 61:1-7. [PMID: 24091253 DOI: 10.1016/j.envint.2013.08.023] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/27/2013] [Accepted: 08/31/2013] [Indexed: 05/21/2023]
Abstract
Increases of antibiotic resistance genes in the environment may pose a threat to public health. The purpose of this study was to investigate the abundance and diversity of tetracycline (tet) and sulfonamide (sul) resistance genes in eight livestock farms in Hangzhou, eastern China. Ten tet genes (tetA, tetB, tetC, tetG, tetL, tetM, tetO, tetQ, tetW, and tetX), two sul genes (sulI and sulII), and one genetic element associated with mobile antibiotic resistance genes [class 1 integron (intI1)] were quantified by real-time polymerase chain reaction. No significant difference was found in the abundance of the tet and sul genes in various scales of pig, chicken, and duck farms (P>0.05). The average abundance of ribosomal protection protein genes (tetQ, tetM, tetW, and tetO) in the manure and wastewater samples was higher than most of the efflux pump genes (tetA, tetB, tetC, and tetL) and enzymatic modification gene (tetX) (P<0.05), except for efflux pump gene tetG, which was abundant and showed no difference from tetM. Most ARGs had higher relative abundance in the wastewater lagoon than in manures even after treatment. Although the three ribosomal protection protein genes (tetQ, tetW, and tetO) had higher relative abundance, numbers were reduced during the complete wastewater treatment process in pig farms (P<0.05). The relative abundance of tetG, sulI, and sulII increased after the wastewater treatment and the removal of these three genes exhibited significant positive correlations with the intI1 gene (tetG: R(2)=0.60, P<0.05; sulI: R(2)=0.72, P<0.05; sulII: R(2)=0.62, P<0.05), suggesting that intI1 may be involved in their proliferation. As for tetM and sulII genes, a highly significant difference was found in manure samples between pig farms and duck farms (P<0.001). Phylogenetic analysis showed that tetM was more diverse in duck farms than in pig farms. Additionally, sulII sequence was conserved both in pig and duck farms. This is the first comprehensive study to detail the relative abundance of specific ARGs in animal manures and agricultural wastewater treatment systems, potentially providing knowledge for managing antibiotic resistance emanating from agricultural activities.
Collapse
|
|
12 |
210 |
6
|
|
|
43 |
182 |
7
|
Bean WJ, Kawaoka Y, Wood JM, Pearson JE, Webster RG. Characterization of virulent and avirulent A/chicken/Pennsylvania/83 influenza A viruses: potential role of defective interfering RNAs in nature. J Virol 1985; 54:151-60. [PMID: 3973976 PMCID: PMC254772 DOI: 10.1128/jvi.54.1.151-160.1985] [Citation(s) in RCA: 164] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In April 1983, an influenza virus of low virulence appeared in chickens in Pennsylvania. Subsequently, in October 1983, the virus became virulent and caused high mortality in poultry. The causative agent has been identified as an influenza virus of the H5N2 serotype. The hemagglutinin is antigenically closely related to tern/South Africa/61 (H5N3) and the neuraminidase is similar to that from human H2N2 strains (e.g., A/Japan/305/57) and from some avian influenza virus strains (e.g., A/turkey/Mass/66 [H6N2]). Comparison of the genome RNAs of chicken/Penn with other influenza virus isolates by RNA-RNA hybridization indicated that all of the genes of this virus were closely related to those of various other influenza virus isolates from wild birds. Chickens infected with the virulent strain shed high concentrations of virus in their feces (10(7) 50% egg infective dose per g), and the virus was isolated from the albumin and yolk of eggs layed just before death. Virus was also isolated from house flies in chicken houses. Serological and virological studies showed that humans are not susceptible to infection with the virus, but can serve as short-term mechanical carriers. Analysis of the RNA of the viruses isolated in April and October by gel migration and RNA-RNA hybridization suggested that these strains were very closely related. Oligonucleotide mapping of the individual genes of virulent and avirulent strains showed a limited number of changes in the genome RNAs, but no consistent differences between the virulent and avirulent strains that could be correlated with pathogenicity were found. Polyacrylamide gel analysis of the early (avirulent) isolates demonstrated the presence of low-molecular-weight RNA bands which is indicative of defective-interfering particles. These RNAs were not present in the virulent isolates. Experimental infection of chickens with mixtures of the avirulent and virulent strains demonstrated that the avirulent virus interferes with the pathogenicity of the virulent virus. The results suggest that the original avirulent virus was probably derived from influenza viruses from wild birds and that the virulent strain was derived from the avirulent strain by selective adaptation rather than by recombination or the introduction of a new virus into the population. This adaptation may have involved the loss of defective RNAs, as well as mutations, and thus provides a possible model for a role of defective-interfering particles in nature.
Collapse
|
research-article |
40 |
164 |
8
|
Ehrmann MA, Kurzak P, Bauer J, Vogel RF. Characterization of lactobacilli towards their use as probiotic adjuncts in poultry. J Appl Microbiol 2002; 92:966-75. [PMID: 11972703 DOI: 10.1046/j.1365-2672.2002.01608.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS A total of 112 strains of lactic acid bacteria of duck origin were studied for their use as a probiotic feed supplement. METHODS AND RESULTS In vitro studies included aggregation, co-aggregation, cell surface hydrophobicity and adhesion activities on poultry crop cells and human Hep2-cells. Additionally, growth with bile acids (chicken bile, ox gall and taurocholic acid) and tolerance to acidic pH were tested. Among all the isolates, two strains (Lactobacillus animalis TMW 1.972 and Lactobacillus salivarius TMW 1.992) were selected for a survival test in poultry. Monitoring and differentiation of these strains was achieved by selective detection as rifampicin and erythromycin double-resistant mutants. After a single feed administration, both micro-organisms were shown to persist in the crop and caecum of ducks for a period of 18 and 22 days, respectively. For identification of Lact. animalis and Lact. salivarius, two specific PCRs targeted against 16S rDNA were developed. CONCLUSIONS Within the autochtoneous microflora of ducks, two strains of lactobacilli exhibited strong potential as probiotic adjuncts. The results indicate that the natural gut microflora of poultry serves as an excellent source for optimal strains. SIGNIFICANCE AND IMPACT OF THE STUDY A general strategy for the selection of probiotic strains is presented. The suggested sequence of tests allows identification of the most promising candidates within complex ecosystems or large strain collections with minimal expenditure.
Collapse
|
|
23 |
164 |
9
|
Mason WS, Halpern MS, England JM, Seal G, Egan J, Coates L, Aldrich C, Summers J. Experimental transmission of duck hepatitis B virus. Virology 1983; 131:375-84. [PMID: 6659368 DOI: 10.1016/0042-6822(83)90505-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Susceptibility to experimental infection with duck hepatitis B virus (DHBV) was explored, with the objective of defining procedures that were both rapid and reproducible. For the purpose of these experiments, a small flock of DHBV-free breeders was established as a source of susceptible eggs and ducklings, since ca. 10% of the ducks (all ages) from commercial flocks were DHBV infected. Intravenous inoculation of DHBV into 15-day duck embryos from the DHBV-free flock produced a persistent infection, with a high-titer viremia, in at least 80% of the injected animals. The tissue tropism of DHBV in these experimentally infected animals was similar to that associated with natural, congenital infections from viremic ducks to their progeny. Virus antigen was found not only in hepatocytes and bile duct epithelium of liver, but also in cells associated with exocrine and endocrine pancreas, and in proximal convoluted tubular epithelium of kidney. Infection of embryonic liver was rapid, as evidenced by active synthesis of DHBV-DNA by reverse-transcription of RNA by 24 hr postinjection. During this latter analysis, formation of supercoiled viral DNA appeared to precede the reverse-transcription phase of viral DNA synthesis, suggesting that this species may be important in initiation of infection.
Collapse
|
|
42 |
134 |
10
|
Fang R, Min Jou W, Huylebroeck D, Devos R, Fiers W. Complete structure of A/duck/Ukraine/63 influenza hemagglutinin gene: animal virus as progenitor of human H3 Hong Kong 1968 influenza hemagglutinin. Cell 1981; 25:315-23. [PMID: 6169439 DOI: 10.1016/0092-8674(81)90049-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
Comparative Study |
44 |
127 |
11
|
Abstract
The isolation of influenza A viruses from unconcentrated lake water and from fecal samples on the shore of these lakes is reported for the first time. Influenza A viruses, representative of most of the major antigenic subtypes, co-circulate in ducks on the lakes.
Collapse
|
|
46 |
123 |
12
|
Wang W, Zhai S, Xia Y, Wang H, Ruan D, Zhou T, Zhu Y, Zhang H, Zhang M, Ye H, Ren W, Yang L. Ochratoxin A induces liver inflammation: involvement of intestinal microbiota. MICROBIOME 2019; 7:151. [PMID: 31779704 PMCID: PMC6883682 DOI: 10.1186/s40168-019-0761-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/17/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Ochratoxin A (OTA) is a widespread mycotoxin and induces liver inflammation to human and various species of animals. The intestinal microbiota has critical importance in liver inflammation; however, it remains to know whether intestinal microbiota mediates the liver inflammation induced by OTA. Here, we treated ducklings with oral gavage of OTA (235 μg/kg body weight) for 2 weeks. Then, the microbiota in the cecum and liver were analyzed with 16S rRNA sequencing, and the inflammation in the liver was analyzed. To explore the role of intestinal microbiota in OTA-induced liver inflammation, intestinal microbiota was cleared with antibiotics and fecal microbiota transplantation was conducted. RESULTS Here, we find that OTA treatment in ducks altered the intestinal microbiota composition and structure [e.g., increasing the relative abundance of lipopolysaccharides (LPS)-producing Bacteroides], and induced the accumulation of LPS and inflammation in the liver. Intriguingly, in antibiotic-treated ducks, OTA failed to induce these alterations in the liver. Notably, with the fecal microbiota transplantation (FMT) program, in which ducks were colonized with intestinal microbiota from control or OTA-treated ducks, we elucidated the involvement of intestinal microbiota, especially Bacteroides, in liver inflammation induced by OTA. CONCLUSIONS These results highlight the role of gut microbiota in OTA-induced liver inflammation and open a new window for novel preventative or therapeutic intervention for mycotoxicosis.
Collapse
|
research-article |
6 |
116 |
13
|
Schlicht HJ, Radziwill G, Schaller H. Synthesis and encapsidation of duck hepatitis B virus reverse transcriptase do not require formation of core-polymerase fusion proteins. Cell 1989; 56:85-92. [PMID: 2463093 DOI: 10.1016/0092-8674(89)90986-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The expression strategy of the duck hepatitis B virus (DHBV) P gene, which is assumed to encode the viral reverse transcriptase, was investigated by mutational analysis. This study showed that P gene expression starts in the region where the P gene overlaps the viral core gene. However, in contrast to retroviral reverse transcriptases, which are expressed via gag-pol fusion protein intermediates, the DHBV P gene product was found to be synthesized starting at a P gene ATG codon. The resulting protein can complement polymerase-negative mutants in trans and can reverse transcribe viral pregenomic RNA that does not encode an active polymerase. These findings raise the question of how reverse transcription of cellular RNAs can be avoided in infected cells.
Collapse
|
|
36 |
115 |
14
|
Angelakis E, Raoult D. The increase of Lactobacillus species in the gut flora of newborn broiler chicks and ducks is associated with weight gain. PLoS One 2010; 5:e10463. [PMID: 20454557 PMCID: PMC2864268 DOI: 10.1371/journal.pone.0010463] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 04/06/2010] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND A bacterial role in the obesity pandemic has been suspected based on the ingestion of probiotics that can modify the gut flora. The objective of our study was to determine if increased Lactobacillus sp. in the gut flora of newborn broiler chicks and ducks could result in weight gain increase. METHODOLOGY Female broiler chicks (Gallus gallus domesticus) and ducks (Anas platyrhynchos domestica) were separated into one control and two experimental groups, and inoculated once or twice with 4x10(10)Lactobacillus spp. per animal in PBS, or with PBS alone. Fecal samples were collected before and at 24 hours, 2, 4, 8, 16 and 30 days after the inoculation. DNA was extracted from the stools, and qPCR assays were performed on a MX3000 system for the detection and quantification of Lactobacillus sp., Bacteroidetes and Firmicutes, using a quantification plasmid. Animals were measured and sacrificed 60 days after the beginning of the experiment, and livers were collected and measured. PRINCIPAL FINDINGS Chicks inoculated once and twice with Lactobacillus weighed 10.2% (p = 0.0162) and 13.5% (p = 0.0064) more than the control group animals, respectively. Similarly, ducks inoculated once and twice weighed 7.7% (p = 0.05) and 14% (p = 0.035) more than those in the control group, respectively. Liver mass was also significantly higher in inoculated animals compared to the control group. Inoculation with Lactobacillus sp. increased the DNA copies of Lactobacillus spp. and Firmicutes in the stools. Bacteroidetes remained stable, and only the second Lactobacillus sp. inoculation significantly decreased its population in chicks. The ratio of DNA copies of Firmicutes to those of Bacteroidetes increased to as much as 6,4 in chicks and 8,3 in ducks. CONCLUSIONS Differences in the intestinal microbiota may precede weight increase, as we found that an increase of Lactobacillus sp. in newborn ducks and chicks preceded the development of weight gain.
Collapse
|
research-article |
15 |
110 |
15
|
Kodama K, Ogasawara N, Yoshikawa H, Murakami S. Nucleotide sequence of a cloned woodchuck hepatitis virus genome: evolutional relationship between hepadnaviruses. J Virol 1985; 56:978-86. [PMID: 3855246 PMCID: PMC252672 DOI: 10.1128/jvi.56.3.978-986.1985] [Citation(s) in RCA: 105] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have determined the complete nucleotide sequence of a cloned DNA of woodchuck hepatitis virus (WHV), the most oncogenic virus among hepadnaviruses. The genome, designated WHV2, is 3,320 base pairs long and contains four major open reading frames (ORFs) coded on the same strand of nucleotide sequence as in the human hepatitis B virus (HBV) genome. Comparison of the nucleotide sequence and amino acid sequences deduced from it among the genomes of various hepadnaviruses demonstrates that each protein shows an intrinsic property in conserving its amino acid sequence. A parameter, the ratio of the number of triplets with one-letter change but no amino acid substitution to the total number of triplets in which one-letter change occurred, was introduced to measure the intrinsic properties quantitatively. For each ORF, the parameter gave characteristic values in all combinations. Therefore, the relative evolutional distance between these hepadnaviruses can be measured by the amino acid substitution rate of any ORF. These comparisons suggest that (i) the difference between two WHV clones, WHV1 and WHV2, corresponds to that among clones of a HBV subtype, HBVadr, and (ii) WHV and ground squirrel hepatitis virus can be categorized in a way similar to the subgroups of HBV.
Collapse
|
research-article |
40 |
105 |
16
|
Hinshaw VS, Air GM, Gibbs AJ, Graves L, Prescott B, Karunakaran D. Antigenic and genetic characterization of a novel hemagglutinin subtype of influenza A viruses from gulls. J Virol 1982; 42:865-72. [PMID: 7097861 PMCID: PMC256920 DOI: 10.1128/jvi.42.3.865-872.1982] [Citation(s) in RCA: 105] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Influenza A virus isolates from ring-billed, Franklin, blackback, and herring gulls in the United States possess a hemagglutinin (HA) distinct from the 12 reference HA subtypes. Serological assays (hemagglutination inhibition and double-immunodiffusion) with specific antisera to reference strains and to a representative gull isolate showed that the HA of the gull virus was not antigenically related to that of any known subtype. The gull virus did not replicate in ducks or chickens but did replicate in ferrets. Comparison of the nucleotide sequences (and deduced amino acid sequences) of the 3' 20% of the HA genes of these viruses indicates that the gull viruses represent a genetically distinct group. We propose that this HA, which has been detected only in gull isolates thus far, be called the H13 subtype.
Collapse
|
research-article |
43 |
105 |
17
|
Sharp GB, Kawaoka Y, Wright SM, Turner B, Hinshaw V, Webster RG. Wild ducks are the reservoir for only a limited number of influenza A subtypes. Epidemiol Infect 1993; 110:161-76. [PMID: 8381747 PMCID: PMC2271956 DOI: 10.1017/s0950268800050780] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Analysis of cloacal samples collected from 12,321 wild ducks in Alberta, Canada, from 1976 to 1990 showed influenza A infections to be seasonal, with prevalences increasing as the population became increasingly more dense. Viruses with 3 haemagglutinin (H3, H4, and H6) and 3 neuraminidase subtypes (N2, N6, and N8) were found consistently to infect both adult and juvenile ducks each year, indicating that wild ducks may be a reservoir for these viruses. In contrast, viruses with 7 haemagglutinin (H2, H5, H7, H8, H9, H11, and H12) and 3 neuraminidase subtypes (N1, N3, and N4) were not found for prolonged periods during the study; when they were found, they primarily infected juveniles at moderate levels. Whilst wild ducks appear to perpetuate some influenza A viruses, they apparently do not act as a reservoir for all such viruses.
Collapse
|
research-article |
32 |
100 |
18
|
Gough RE, Collins MS, Borland E, Keymer LF. Astrovirus-like particles associated with hepatitis in ducklings. Vet Rec 1984; 114:279. [PMID: 6424324 DOI: 10.1136/vr.114.11.279-a] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
Letter |
41 |
92 |
19
|
Kawaoka Y, Yamnikova S, Chambers TM, Lvov DK, Webster RG. Molecular characterization of a new hemagglutinin, subtype H14, of influenza A virus. Virology 1990; 179:759-67. [PMID: 2238469 DOI: 10.1016/0042-6822(90)90143-f] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two influenza A viruses whose hemagglutinin (HA) did not react with any of the reference antisera for the 13 recognized HA subtypes were isolated from mallard ducks in the USSR. Antigenic analysis by hemagglutination inhibition and double immunodiffusion tests showed that the HAs of these viruses are similar to each other but distinct from the HAs of other influenza A viruses. Nucleotide sequence analysis showed that these HA genes differ from each other by only 21 nucleotides. However, they differ from all other HA subtypes at the amino acid level by at least 31% in HAI. Thus, we propose that the HAs of these viruses [A/Mallard/Gurjev/263/82 (H14N5) and A/Mallard/Gurjev/244/82 (H14N6) belong to a previously unrecognized subtype, and are designated H14. Unlike any other HAs of influenza viruses, the H14 HAs contained lysine at the cleavage site between HA1 and HA2 instead of arginine. Experimental infection of domestic poultry and ferrets with A/Mallard/Gurjev/263/82 (H14N5) showed that the virus is avirulent for these animals. Based on comparative sequence analysis of different HA genes, it is suggested that differences of 30% or more at the amino acid level in HA1 constitute separate subtypes. Phylogenetic analysis of representatives of each HA subtype showed that H14 is one of the most recently diverged lineages while H8 and H12 branched off early during the evolution of the HA subtypes. These latter two subtypes (H8 and H12) have been isolated very infrequently in recent years, suggesting that these old subtypes may be disappearing from the influenza reservoirs in nature.
Collapse
|
|
35 |
91 |
20
|
Murphy BR, Hinshaw VS, Sly DL, London WT, Hosier NT, Wood FT, Webster RG, Chanock RM. Virulence of avian influenza A viruses for squirrel monkeys. Infect Immun 1982; 37:1119-26. [PMID: 7129631 PMCID: PMC347656 DOI: 10.1128/iai.37.3.1119-1126.1982] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Ten serologically distinct avian influenza A viruses were administered to squirrel monkeys and hamsters to compare their replication and virulence with those of human influenza A virus, A/Udorn/307/72 (H3N2). In squirrel monkeys, the 10 avian influenza A viruses exhibited a spectrum of replication and virulence. The levels of virus replication and clinical response were closely correlated. Two viruses, A/Mallard/NY/6874/78 (H3N2) and A/Pintail/Alb/121/79 (H7N8), resembled the human virus in their level and duration of replication and in their virulence. At the other end of the spectrum, five avian viruses were restricted by 100- to 10,000-fold in replication in the upper and lower respiratory tract and were clearly attenuated compared with the human influenza virus. In hamsters, the 10 viruses exhibited a spectrum of replication in the nasal turbinates, ranging from viruses that replicated as efficiently as the human virus to those that were 8,000- fold restricted. Since several avian viruses were closely related serologically to human influenza viruses, studies were done to confirm the avian nature of these isolates. Each of the avian viruses plaqued efficiently at 42 degrees C, a restrictive temperature for replication of human influenza A viruses. Avian strains that had replicated either very efficiently or very poorly in squirrel monkeys still grew to high titer in the intestinal tracts of ducks, a tropism characteristic of avian, but not mammalian, influenza viruses. These observations indicate that some avian influenza A viruses grow well and cause disease in a primate host, whereas other avian viruses are very restricted in this host. These findings also provide a basis for determining the gene or genes involved in the restriction of replication that is observed with the attenuated avian viruses. Application of such information may allow the preparation of reassortant viruses derived from a virulent human influenza virus and an attenuated avian virus for possible use in a live attenuated vaccine for prevention of influenza in humans.
Collapse
|
research-article |
43 |
90 |
21
|
Luechtefeld NA, Blaser MJ, Reller LB, Wang WL. Isolation of Campylobacter fetus subsp. jejuni from migratory waterfowl. J Clin Microbiol 1980; 12:406-8. [PMID: 7217334 PMCID: PMC273597 DOI: 10.1128/jcm.12.3.406-408.1980] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Since the sources from which humans acquire Campylobacter enteritis are only partially known, we studied the frequency of carriage of Campylobacter fetus subsp. jejuni in migratory waterfowl. Cecal contents of various species of wild ducks were cultured on selective media that contained antibiotics to inhibit normal flora. Thirty-five percent of the 445 ducks cultured harbored C. fetus subsp. jejuni. Migratory waterfowl are yet another reservoir for this enteric pathogen and may be of public health importance for humans in the contamination of water or when used as food.
Collapse
|
research-article |
45 |
89 |
22
|
Halvorson DA, Kelleher CJ, Senne DA. Epizootiology of avian influenza: effect of season on incidence in sentinel ducks and domestic turkeys in Minnesota. Appl Environ Microbiol 1985; 49:914-9. [PMID: 4004223 PMCID: PMC238469 DOI: 10.1128/aem.49.4.914-919.1985] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sentinel ducks and domestic turkey flocks were monitored for influenza infection during a 4-year period. The onset of infection among ducks was similar each year, occurring in late July or early August. Influenza in turkeys was also shown to be seasonal, but the usual onset was 6 to 8 weeks after the detection of influenza in sentinel ducks. Possible explanations for the delayed infection in turkeys are (i) increased waterfowl activity associated with fledging and congregating in late summer and early fall; (ii) vectors transmitting virus from the waterfowl habitat to poultry farms; (iii) cooler environmental temperature, allowing prolonged virus viability; (iv) cooler surface water temperature, allowing prolonged virus viability; (v) groundwater contamination from contaminated surface water; and (vi) virus adaptation in domestic turkeys before infection is detected. We conclude that ducks are not only a natural reservoir of influenza but also have a seasonal infection that appears to be related to seasonal influenza outbreaks in domestic turkeys in Minnesota. However, only some influenza A virus isolates circulating among waterfowl at any given time appear capable of causing detectable infection in turkeys. It is speculated that the seasonal infection in migratory waterfowl may also be related to seasonal influenza infections in other species including humans.
Collapse
|
research-article |
40 |
88 |
23
|
Obiri-Danso K, Jones K. Distribution and seasonality of microbial indicators and thermophilic campylobacters in two freshwater bathing sites on the River Lune in northwest England. J Appl Microbiol 1999; 87:822-32. [PMID: 10664907 DOI: 10.1046/j.1365-2672.1999.00924.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two freshwater bathing sites, the Crook O'Lune and the University Boathouse, on the River Lune in the north-west of England, were monitored over a 2 year period for the faecal indicators, faecal coliforms and faecal streptococci, the pathogens, Salmonella and Campylobacter, and compliance with the EU Directive on Bathing Water Quality. Faecal indicator numbers showed no seasonal variation, with numbers in the bathing season similar to those in the non-bathing season. They were consistently above the EU Guideline and Imperative standards so that if the EU Bathing Water Quality Directive (76/160/EEC) were applied, neither site would comply. Faecal indicator numbers in the sediments were an order of magnitude higher than in the overlying water. Campylobacter numbers showed seasonal variation in the water with higher counts in winter than in the summer, although numbers were low. Higher numbers were found in the sediments but there was no seasonal variation. Analysis of various inputs showed that indicators and campylobacters came from a mixture of sources, namely a sewage treatment works, agricultural run-off, streams and mallards. Microbial numbers in the water at the Crook O'Lune, which is closer to the sources of pollution, were twice those at the Boathouse. In the sediments they were six to eight times higher. Faecal coliforms were all identified as Escherichia coli of which 80% were a single biotype. Faecal streptococci were all enterococci of which 55% were E. avium, 38% E. faecalis and 7% E. durans. Salmonella was not isolated from either the water column or the sediments. Campylobacters were mainly Camp. jejuni, followed by Camp. coli, UPTC and Camp. lari.
Collapse
|
|
26 |
84 |
24
|
Süss J, Schäfer J, Sinnecker H, Webster RG. Influenza virus subtypes in aquatic birds of eastern Germany. Arch Virol 1994; 135:101-14. [PMID: 8198436 DOI: 10.1007/bf01309768] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We report the findings of a 12-year surveillance study (1977-89) of avian influenza A viruses in eastern Germany. Viruses were isolated directly from feral ducks (n = 236) and other wild birds (n = 89); from domestic ducks (n = 735) living on a single farm; and from white Pekin ducks (n = 193) used as sentinels for populations of wild aquatic birds; mainly sea birds. The efficiency of virus isolation was 9.9% overall, with considerable variability noted among species: 8.7% in wild ducks, 0.9% in other feral birds and 38% in Pekin ducks. Use of sentinel ducks in wild pelagic bird colonies improved virus detection rates fivefold, suggesting that this approach is advantageous in ecological studies. Among the 40 different combinations of hemagglutinin (HA) and neuraminidase (NA) subtypes we identified, H6N1 predominated (23.6% for all avian species), followed by H4N6 (11%). Among individual species, the frequency profiles favored H2N3 (20.8%) and H4N6 (20.3%) in feral ducks; H7N7 (22.3%), H4N6 (24.4%) and H2N3 (10.4%) in Pekin ducks used as sentinels; and H6N1 (34.8%) and H6N6 (15.1%) in domestic ducks maintained on a single farm. By relying on sentinel birds for serological assays, it was possible to trace an "influenza season" in feral swan populations, beginning in August and continuing through the winter months. Comparison of subtype distribution of influenza viruses for Europe and North America showed significant differences. This supports the fact of two geographically distinct gene pools of influenza viruses in birds connected with their distinct flyways of each hemisphere. The high frequency of isolation of H2 influenza viruses is of considerable interest to those interested in the recycling of this subtype in humans. Similarly the frequent isolation of H7N7 influenza viruses raises concern about reservoirs of potentially pathogenic influenza virus for domestic poultry. Our results confirm the existence of a vast reservoir of influenza A viruses in European aquatic birds, which possesses sufficient diversity to account for strains that infect lower animals and humans.
Collapse
|
Comparative Study |
31 |
82 |
25
|
Abstract
The amino acid composition of the major duck hepatitis B virus (DHBV) core particle proteins was determined. The results of this analysis indicated that cores are composed of a single major protein that initiates translation from the second available AUG in the DHBV core gene. Proteins isolated from core particles purified from the cytoplasm of DHBV-infected duck hepatocytes exhibited heterogeneity in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, independent of the stage of viral DNA maturation. Incubation of native cores with alkaline phosphatase removed this heterogeneity, indicating that phosphorylation of external amino acids was responsible. Core protein isolated from mature DHBV purified from serum of infected animals did not display heterogeneity, suggesting a possible role for dephosphorylation in virus maturation.
Collapse
|
research-article |
36 |
81 |