1
|
Kaminski MF, Regula J, Kraszewska E, Polkowski M, Wojciechowska U, Didkowska J, Zwierko M, Rupinski M, Nowacki MP, Butruk E. Quality indicators for colonoscopy and the risk of interval cancer. N Engl J Med 2010; 362:1795-803. [PMID: 20463339 DOI: 10.1056/nejmoa0907667] [Citation(s) in RCA: 1451] [Impact Index Per Article: 96.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although rates of detection of adenomatous lesions (tumors or polyps) and cecal intubation are recommended for use as quality indicators for screening colonoscopy, these measurements have not been validated, and their importance remains uncertain. METHODS We used a multivariate Cox proportional-hazards regression model to evaluate the influence of quality indicators for colonoscopy on the risk of interval cancer. Data were collected from 186 endoscopists who were involved in a colonoscopy-based colorectal-cancer screening program involving 45,026 subjects. Interval cancer was defined as colorectal adenocarcinoma that was diagnosed between the time of screening colonoscopy and the scheduled time of surveillance colonoscopy. We derived data on quality indicators for colonoscopy from the screening program's database and data on interval cancers from cancer registries. The primary aim of the study was to assess the association between quality indicators for colonoscopy and the risk of interval cancer. RESULTS A total of 42 interval colorectal cancers were identified during a period of 188,788 person-years. The endoscopist's rate of detection of adenomas was significantly associated with the risk of interval colorectal cancer (P=0.008), whereas the rate of cecal intubation was not significantly associated with this risk (P=0.50). The hazard ratios for adenoma detection rates of less than 11.0%, 11.0 to 14.9%, and 15.0 to 19.9%, as compared with a rate of 20.0% or higher, were 10.94 (95% confidence interval [CI], 1.37 to 87.01), 10.75 (95% CI, 1.36 to 85.06), and 12.50 (95% CI, 1.51 to 103.43), respectively (P=0.02 for all comparisons). CONCLUSIONS The adenoma detection rate is an independent predictor of the risk of interval colorectal cancer after screening colonoscopy.
Collapse
|
|
15 |
1451 |
2
|
Kleeff J, Korc M, Apte M, La Vecchia C, Johnson CD, Biankin AV, Neale RE, Tempero M, Tuveson DA, Hruban RH, Neoptolemos JP. Pancreatic cancer. Nat Rev Dis Primers 2016; 2:16022. [PMID: 27158978 DOI: 10.1038/nrdp.2016.22] [Citation(s) in RCA: 1306] [Impact Index Per Article: 145.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is a major cause of cancer-associated mortality, with a dismal overall prognosis that has remained virtually unchanged for many decades. Currently, prevention or early diagnosis at a curable stage is exceedingly difficult; patients rarely exhibit symptoms and tumours do not display sensitive and specific markers to aid detection. Pancreatic cancers also have few prevalent genetic mutations; the most commonly mutated genes are KRAS, CDKN2A (encoding p16), TP53 and SMAD4 - none of which are currently druggable. Indeed, therapeutic options are limited and progress in drug development is impeded because most pancreatic cancers are complex at the genomic, epigenetic and metabolic levels, with multiple activated pathways and crosstalk evident. Furthermore, the multilayered interplay between neoplastic and stromal cells in the tumour microenvironment challenges medical treatment. Fewer than 20% of patients have surgically resectable disease; however, neoadjuvant therapies might shift tumours towards resectability. Although newer drug combinations and multimodal regimens in this setting, as well as the adjuvant setting, appreciably extend survival, ∼80% of patients will relapse after surgery and ultimately die of their disease. Thus, consideration of quality of life and overall survival is important. In this Primer, we summarize the current understanding of the salient pathophysiological, molecular, translational and clinical aspects of this disease. In addition, we present an outline of potential future directions for pancreatic cancer research and patient management.
Collapse
|
Review |
9 |
1306 |
3
|
Wolf AMD, Fontham ETH, Church TR, Flowers CR, Guerra CE, LaMonte SJ, Etzioni R, McKenna MT, Oeffinger KC, Shih YCT, Walter LC, Andrews KS, Brawley OW, Brooks D, Fedewa SA, Manassaram-Baptiste D, Siegel RL, Wender RC, Smith RA. Colorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer Society. CA Cancer J Clin 2018; 68:250-281. [PMID: 29846947 DOI: 10.3322/caac.21457] [Citation(s) in RCA: 1284] [Impact Index Per Article: 183.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022] Open
Abstract
In the United States, colorectal cancer (CRC) is the fourth most common cancer diagnosed among adults and the second leading cause of death from cancer. For this guideline update, the American Cancer Society (ACS) used an existing systematic evidence review of the CRC screening literature and microsimulation modeling analyses, including a new evaluation of the age to begin screening by race and sex and additional modeling that incorporates changes in US CRC incidence. Screening with any one of multiple options is associated with a significant reduction in CRC incidence through the detection and removal of adenomatous polyps and other precancerous lesions and with a reduction in mortality through incidence reduction and early detection of CRC. Results from modeling analyses identified efficient and model-recommendable strategies that started screening at age 45 years. The ACS Guideline Development Group applied the Grades of Recommendations, Assessment, Development, and Evaluation (GRADE) criteria in developing and rating the recommendations. The ACS recommends that adults aged 45 years and older with an average risk of CRC undergo regular screening with either a high-sensitivity stool-based test or a structural (visual) examination, depending on patient preference and test availability. As a part of the screening process, all positive results on noncolonoscopy screening tests should be followed up with timely colonoscopy. The recommendation to begin screening at age 45 years is a qualified recommendation. The recommendation for regular screening in adults aged 50 years and older is a strong recommendation. The ACS recommends (qualified recommendations) that: 1) average-risk adults in good health with a life expectancy of more than 10 years continue CRC screening through the age of 75 years; 2) clinicians individualize CRC screening decisions for individuals aged 76 through 85 years based on patient preferences, life expectancy, health status, and prior screening history; and 3) clinicians discourage individuals older than 85 years from continuing CRC screening. The options for CRC screening are: fecal immunochemical test annually; high-sensitivity, guaiac-based fecal occult blood test annually; multitarget stool DNA test every 3 years; colonoscopy every 10 years; computed tomography colonography every 5 years; and flexible sigmoidoscopy every 5 years. CA Cancer J Clin 2018;68:250-281. © 2018 American Cancer Society.
Collapse
|
Practice Guideline |
7 |
1284 |
4
|
Ronco G, Dillner J, Elfström KM, Tunesi S, Snijders PJF, Arbyn M, Kitchener H, Segnan N, Gilham C, Giorgi-Rossi P, Berkhof J, Peto J, Meijer CJLM. Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials. Lancet 2014; 383:524-32. [PMID: 24192252 DOI: 10.1016/s0140-6736(13)62218-7] [Citation(s) in RCA: 1190] [Impact Index Per Article: 108.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND In four randomised trials, human papillomavirus (HPV)-based screening for cervical cancer was compared with cytology-based cervical screening, and precursors of cancer were the endpoint in every trial. However, direct estimates are missing of the relative efficacy of HPV-based versus cytology-based screening for prevention of invasive cancer in women who undergo regular screening, of modifiers (eg, age) of this relative efficacy, and of the duration of protection. We did a follow-up study of the four randomised trials to investigate these outcomes. METHODS 176,464 women aged 20-64 years were randomly assigned to HPV-based (experimental arm) or cytology-based (control arm) screening in Sweden (Swedescreen), the Netherlands (POBASCAM), England (ARTISTIC), and Italy (NTCC). We followed up these women for a median of 6·5 years (1,214,415 person-years) and identified 107 invasive cervical carcinomas by linkage with screening, pathology, and cancer registries, by masked review of histological specimens, or from reports. Cumulative and study-adjusted rate ratios (experimental vs control) were calculated for incidence of invasive cervical carcinoma. FINDINGS The rate ratio for invasive cervical carcinoma among all women from recruitment to end of follow-up was 0·60 (95% CI 0·40-0·89), with no heterogeneity between studies (p=0·52). Detection of invasive cervical carcinoma was similar between screening methods during the first 2·5 years of follow-up (0·79, 0·46-1·36) but was significantly lower in the experimental arm thereafter (0·45, 0·25-0·81). In women with a negative screening test at entry, the rate ratio was 0·30 (0·15-0·60). The cumulative incidence of invasive cervical carcinoma in women with negative entry tests was 4·6 per 10(5) (1·1-12·1) and 8·7 per 10(5) (3·3-18·6) at 3·5 and 5·5 years, respectively, in the experimental arm, and 15·4 per 10(5) (7·9-27·0) and 36·0 per 10(5) (23·2-53·5), respectively, in the control arm. Rate ratios did not differ by cancer stage, but were lower for adenocarcinoma (0·31, 0·14-0·69) than for squamous-cell carcinoma (0·78, 0·49-1·25). The rate ratio was lowest in women aged 30-34 years (0·36, 0·14-0·94). INTERPRETATION HPV-based screening provides 60-70% greater protection against invasive cervical carcinomas compared with cytology. Data of large-scale randomised trials support initiation of HPV-based screening from age 30 years and extension of screening intervals to at least 5 years. FUNDING European Union, Belgian Foundation Against Cancer, KCE-Centre d'Expertise, IARC, The Netherlands Organisation for Health Research and Development, the Italian Ministry of Health.
Collapse
|
Comparative Study |
11 |
1190 |
5
|
McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, Back T, Chesus M, Corrado GS, Darzi A, Etemadi M, Garcia-Vicente F, Gilbert FJ, Halling-Brown M, Hassabis D, Jansen S, Karthikesalingam A, Kelly CJ, King D, Ledsam JR, Melnick D, Mostofi H, Peng L, Reicher JJ, Romera-Paredes B, Sidebottom R, Suleyman M, Tse D, Young KC, De Fauw J, Shetty S. International evaluation of an AI system for breast cancer screening. Nature 2020; 577:89-94. [PMID: 31894144 DOI: 10.1038/s41586-019-1799-6] [Citation(s) in RCA: 1165] [Impact Index Per Article: 233.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
Screening mammography aims to identify breast cancer at earlier stages of the disease, when treatment can be more successful1. Despite the existence of screening programmes worldwide, the interpretation of mammograms is affected by high rates of false positives and false negatives2. Here we present an artificial intelligence (AI) system that is capable of surpassing human experts in breast cancer prediction. To assess its performance in the clinical setting, we curated a large representative dataset from the UK and a large enriched dataset from the USA. We show an absolute reduction of 5.7% and 1.2% (USA and UK) in false positives and 9.4% and 2.7% in false negatives. We provide evidence of the ability of the system to generalize from the UK to the USA. In an independent study of six radiologists, the AI system outperformed all of the human readers: the area under the receiver operating characteristic curve (AUC-ROC) for the AI system was greater than the AUC-ROC for the average radiologist by an absolute margin of 11.5%. We ran a simulation in which the AI system participated in the double-reading process that is used in the UK, and found that the AI system maintained non-inferior performance and reduced the workload of the second reader by 88%. This robust assessment of the AI system paves the way for clinical trials to improve the accuracy and efficiency of breast cancer screening.
Collapse
|
Evaluation Study |
5 |
1165 |
6
|
Krist AH, Davidson KW, Mangione CM, Barry MJ, Cabana M, Caughey AB, Davis EM, Donahue KE, Doubeni CA, Kubik M, Landefeld CS, Li L, Ogedegbe G, Owens DK, Pbert L, Silverstein M, Stevermer J, Tseng CW, Wong JB. Screening for Lung Cancer: US Preventive Services Task Force Recommendation Statement. JAMA 2021; 325:962-970. [PMID: 33687470 DOI: 10.1001/jama.2021.1117] [Citation(s) in RCA: 975] [Impact Index Per Article: 243.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IMPORTANCE Lung cancer is the second most common cancer and the leading cause of cancer death in the US. In 2020, an estimated 228 820 persons were diagnosed with lung cancer, and 135 720 persons died of the disease. The most important risk factor for lung cancer is smoking. Increasing age is also a risk factor for lung cancer. Lung cancer has a generally poor prognosis, with an overall 5-year survival rate of 20.5%. However, early-stage lung cancer has a better prognosis and is more amenable to treatment. OBJECTIVE To update its 2013 recommendation, the US Preventive Services Task Force (USPSTF) commissioned a systematic review on the accuracy of screening for lung cancer with low-dose computed tomography (LDCT) and on the benefits and harms of screening for lung cancer and commissioned a collaborative modeling study to provide information about the optimum age at which to begin and end screening, the optimal screening interval, and the relative benefits and harms of different screening strategies compared with modified versions of multivariate risk prediction models. POPULATION This recommendation statement applies to adults aged 50 to 80 years who have a 20 pack-year smoking history and currently smoke or have quit within the past 15 years. EVIDENCE ASSESSMENT The USPSTF concludes with moderate certainty that annual screening for lung cancer with LDCT has a moderate net benefit in persons at high risk of lung cancer based on age, total cumulative exposure to tobacco smoke, and years since quitting smoking. RECOMMENDATION The USPSTF recommends annual screening for lung cancer with LDCT in adults aged 50 to 80 years who have a 20 pack-year smoking history and currently smoke or have quit within the past 15 years. Screening should be discontinued once a person has not smoked for 15 years or develops a health problem that substantially limits life expectancy or the ability or willingness to have curative lung surgery. (B recommendation) This recommendation replaces the 2013 USPSTF statement that recommended annual screening for lung cancer with LDCT in adults aged 55 to 80 years who have a 30 pack-year smoking history and currently smoke or have quit within the past 15 years.
Collapse
|
Practice Guideline |
4 |
975 |
7
|
Grossman DC, Curry SJ, Owens DK, Bibbins-Domingo K, Caughey AB, Davidson KW, Doubeni CA, Ebell M, Epling JW, Kemper AR, Krist AH, Kubik M, Landefeld CS, Mangione CM, Silverstein M, Simon MA, Siu AL, Tseng CW. Screening for Prostate Cancer: US Preventive Services Task Force Recommendation Statement. JAMA 2018; 319:1901-1913. [PMID: 29801017 DOI: 10.1001/jama.2018.3710] [Citation(s) in RCA: 898] [Impact Index Per Article: 128.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IMPORTANCE In the United States, the lifetime risk of being diagnosed with prostate cancer is approximately 13%, and the lifetime risk of dying of prostate cancer is 2.5%. The median age of death from prostate cancer is 80 years. Many men with prostate cancer never experience symptoms and, without screening, would never know they have the disease. African American men and men with a family history of prostate cancer have an increased risk of prostate cancer compared with other men. OBJECTIVE To update the 2012 US Preventive Services Task Force (USPSTF) recommendation on prostate-specific antigen (PSA)-based screening for prostate cancer. EVIDENCE REVIEW The USPSTF reviewed the evidence on the benefits and harms of PSA-based screening for prostate cancer and subsequent treatment of screen-detected prostate cancer. The USPSTF also commissioned a review of existing decision analysis models and the overdiagnosis rate of PSA-based screening. The reviews also examined the benefits and harms of PSA-based screening in patient subpopulations at higher risk of prostate cancer, including older men, African American men, and men with a family history of prostate cancer. FINDINGS Adequate evidence from randomized clinical trials shows that PSA-based screening programs in men aged 55 to 69 years may prevent approximately 1.3 deaths from prostate cancer over approximately 13 years per 1000 men screened. Screening programs may also prevent approximately 3 cases of metastatic prostate cancer per 1000 men screened. Potential harms of screening include frequent false-positive results and psychological harms. Harms of prostate cancer treatment include erectile dysfunction, urinary incontinence, and bowel symptoms. About 1 in 5 men who undergo radical prostatectomy develop long-term urinary incontinence, and 2 in 3 men will experience long-term erectile dysfunction. Adequate evidence shows that the harms of screening in men older than 70 years are at least moderate and greater than in younger men because of increased risk of false-positive results, diagnostic harms from biopsies, and harms from treatment. The USPSTF concludes with moderate certainty that the net benefit of PSA-based screening for prostate cancer in men aged 55 to 69 years is small for some men. How each man weighs specific benefits and harms will determine whether the overall net benefit is small. The USPSTF concludes with moderate certainty that the potential benefits of PSA-based screening for prostate cancer in men 70 years and older do not outweigh the expected harms. CONCLUSIONS AND RECOMMENDATION For men aged 55 to 69 years, the decision to undergo periodic PSA-based screening for prostate cancer should be an individual one and should include discussion of the potential benefits and harms of screening with their clinician. Screening offers a small potential benefit of reducing the chance of death from prostate cancer in some men. However, many men will experience potential harms of screening, including false-positive results that require additional testing and possible prostate biopsy; overdiagnosis and overtreatment; and treatment complications, such as incontinence and erectile dysfunction. In determining whether this service is appropriate in individual cases, patients and clinicians should consider the balance of benefits and harms on the basis of family history, race/ethnicity, comorbid medical conditions, patient values about the benefits and harms of screening and treatment-specific outcomes, and other health needs. Clinicians should not screen men who do not express a preference for screening. (C recommendation) The USPSTF recommends against PSA-based screening for prostate cancer in men 70 years and older. (D recommendation).
Collapse
|
Practice Guideline |
7 |
898 |
8
|
Curry SJ, Krist AH, Owens DK, Barry MJ, Caughey AB, Davidson KW, Doubeni CA, Epling JW, Kemper AR, Kubik M, Landefeld CS, Mangione CM, Phipps MG, Silverstein M, Simon MA, Tseng CW, Wong JB. Screening for Cervical Cancer: US Preventive Services Task Force Recommendation Statement. JAMA 2018; 320:674-686. [PMID: 30140884 DOI: 10.1001/jama.2018.10897] [Citation(s) in RCA: 831] [Impact Index Per Article: 118.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPORTANCE The number of deaths from cervical cancer in the United States has decreased substantially since the implementation of widespread cervical cancer screening and has declined from 2.8 to 2.3 deaths per 100 000 women from 2000 to 2015. OBJECTIVE To update the US Preventive Services Task Force (USPSTF) 2012 recommendation on screening for cervical cancer. EVIDENCE REVIEW The USPSTF reviewed the evidence on screening for cervical cancer, with a focus on clinical trials and cohort studies that evaluated screening with high-risk human papillomavirus (hrHPV) testing alone or hrHPV and cytology together (cotesting) compared with cervical cytology alone. The USPSTF also commissioned a decision analysis model to evaluate the age at which to begin and end screening, the optimal interval for screening, the effectiveness of different screening strategies, and related benefits and harms of different screening strategies. FINDINGS Screening with cervical cytology alone, primary hrHPV testing alone, or cotesting can detect high-grade precancerous cervical lesions and cervical cancer. Screening women aged 21 to 65 years substantially reduces cervical cancer incidence and mortality. The harms of screening for cervical cancer in women aged 30 to 65 years are moderate. The USPSTF concludes with high certainty that the benefits of screening every 3 years with cytology alone in women aged 21 to 29 years substantially outweigh the harms. The USPSTF concludes with high certainty that the benefits of screening every 3 years with cytology alone, every 5 years with hrHPV testing alone, or every 5 years with both tests (cotesting) in women aged 30 to 65 years outweigh the harms. Screening women older than 65 years who have had adequate prior screening and women younger than 21 years does not provide significant benefit. Screening women who have had a hysterectomy with removal of the cervix for indications other than a high-grade precancerous lesion or cervical cancer provides no benefit. The USPSTF concludes with moderate to high certainty that screening women older than 65 years who have had adequate prior screening and are not otherwise at high risk for cervical cancer, screening women younger than 21 years, and screening women who have had a hysterectomy with removal of the cervix for indications other than a high-grade precancerous lesion or cervical cancer does not result in a positive net benefit. CONCLUSIONS AND RECOMMENDATION The USPSTF recommends screening for cervical cancer every 3 years with cervical cytology alone in women aged 21 to 29 years. (A recommendation) The USPSTF recommends screening every 3 years with cervical cytology alone, every 5 years with hrHPV testing alone, or every 5 years with hrHPV testing in combination with cytology (cotesting) in women aged 30 to 65 years. (A recommendation) The USPSTF recommends against screening for cervical cancer in women younger than 21 years. (D recommendation) The USPSTF recommends against screening for cervical cancer in women older than 65 years who have had adequate prior screening and are not otherwise at high risk for cervical cancer. (D recommendation) The USPSTF recommends against screening for cervical cancer in women who have had a hysterectomy with removal of the cervix and do not have a history of a high-grade precancerous lesion or cervical cancer. (D recommendation).
Collapse
|
Practice Guideline |
7 |
831 |
9
|
Saslow D, Solomon D, Lawson HW, Killackey M, Kulasingam SL, Cain J, Garcia FAR, Moriarty AT, Waxman AG, Wilbur DC, Wentzensen N, Downs LS, Spitzer M, Moscicki AB, Franco EL, Stoler MH, Schiffman M, Castle PE, Myers ER. American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical Pathology screening guidelines for the prevention and early detection of cervical cancer. CA Cancer J Clin 2012; 62:147-72. [PMID: 22422631 PMCID: PMC3801360 DOI: 10.3322/caac.21139] [Citation(s) in RCA: 811] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An update to the American Cancer Society (ACS) guideline regarding screening for the early detection of cervical precancerous lesions and cancer is presented. The guidelines are based on a systematic evidence review, contributions from 6 working groups, and a recent symposium cosponsored by the ACS, the American Society for Colposcopy and Cervical Pathology, and the American Society for Clinical Pathology, which was attended by 25 organizations. The new screening recommendations address age-appropriate screening strategies, including the use of cytology and high-risk human papillomavirus (HPV) testing, follow-up (eg, the management of screen positives and screening intervals for screen negatives) of women after screening, the age at which to exit screening, future considerations regarding HPV testing alone as a primary screening approach, and screening strategies for women vaccinated against HPV16 and HPV18 infections.
Collapse
|
Practice Guideline |
13 |
811 |
10
|
Cairns SR, Scholefield JH, Steele RJ, Dunlop MG, Thomas HJW, Evans GD, Eaden JA, Rutter MD, Atkin WP, Saunders BP, Lucassen A, Jenkins P, Fairclough PD, Woodhouse CRJ, British Society of Gastroenterology, Association of Coloproctology for Great Britain and Ireland. Guidelines for colorectal cancer screening and surveillance in moderate and high risk groups (update from 2002). Gut 2010; 59:666-89. [PMID: 20427401 DOI: 10.1136/gut.2009.179804] [Citation(s) in RCA: 807] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The British Society of Gastroenterology (BSG) and the Association of Coloproctology for Great Britain and Ireland (ACPGBI) commissioned this update of the 2002 guidance. The aim, as before, is to provide guidance on the appropriateness, method and frequency of screening for people at moderate and high risk from colorectal cancer. This guidance provides some new recommendations for those with inflammatory bowel disease and for those at moderate risk resulting from a family history of colorectal cancer. In other areas guidance is relatively unchanged, but the recent literature was reviewed and is included where appropriate.
Collapse
|
Practice Guideline |
15 |
807 |
11
|
Vogel A, Cervantes A, Chau I, Daniele B, Llovet JM, Meyer T, Nault JC, Neumann U, Ricke J, Sangro B, Schirmacher P, Verslype C, Zech CJ, Arnold D, Martinelli E. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2018; 29:iv238-iv255. [PMID: 30285213 DOI: 10.1093/annonc/mdy308] [Citation(s) in RCA: 713] [Impact Index Per Article: 101.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
Practice Guideline |
7 |
713 |
12
|
Wolf AMD, Wender RC, Etzioni RB, Thompson IM, D'Amico AV, Volk RJ, Brooks DD, Dash C, Guessous I, Andrews K, DeSantis C, Smith RA. American Cancer Society guideline for the early detection of prostate cancer: update 2010. CA Cancer J Clin 2010; 60:70-98. [PMID: 20200110 DOI: 10.3322/caac.20066] [Citation(s) in RCA: 657] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In 2009, the American Cancer Society (ACS) Prostate Cancer Advisory Committee began the process of a complete update of recommendations for early prostate cancer detection. A series of systematic evidence reviews was conducted focusing on evidence related to the early detection of prostate cancer, test performance, harms of therapy for localized prostate cancer, and shared and informed decision making in prostate cancer screening. The results of the systematic reviews were evaluated by the ACS Prostate Cancer Advisory Committee, and deliberations about the evidence occurred at committee meetings and during conference calls. On the basis of the evidence and a consensus process, the Prostate Cancer Advisory Committee developed the guideline, and a writing committee drafted a guideline document that was circulated to the entire committee for review and revision. The document was then circulated to peer reviewers for feedback, and finally to the ACS Mission Outcomes Committee and the ACS Board of Directors for approval. The ACS recommends that asymptomatic men who have at least a 10-year life expectancy have an opportunity to make an informed decision with their health care provider about screening for prostate cancer after they receive information about the uncertainties, risks, and potential benefits associated with prostate cancer screening. Prostate cancer screening should not occur without an informed decision-making process. Men at average risk should receive this information beginning at age 50 years. Men in higher risk groups should receive this information before age 50 years. Men should either receive this information directly from their health care providers or be referred to reliable and culturally appropriate sources. Patient decision aids are helpful in preparing men to make a decision whether to be tested.
Collapse
|
Practice Guideline |
15 |
657 |
13
|
Fontham ETH, Wolf AMD, Church TR, Etzioni R, Flowers CR, Herzig A, Guerra CE, Oeffinger KC, Shih YCT, Walter LC, Kim JJ, Andrews KS, DeSantis CE, Fedewa SA, Manassaram-Baptiste D, Saslow D, Wender RC, Smith RA. Cervical cancer screening for individuals at average risk: 2020 guideline update from the American Cancer Society. CA Cancer J Clin 2020; 70:321-346. [PMID: 32729638 DOI: 10.3322/caac.21628] [Citation(s) in RCA: 532] [Impact Index Per Article: 106.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/09/2020] [Indexed: 12/22/2022] Open
Abstract
The American Cancer Society (ACS) recommends that individuals with a cervix initiate cervical cancer screening at age 25 years and undergo primary human papillomavirus (HPV) testing every 5 years through age 65 years (preferred); if primary HPV testing is not available, then individuals aged 25 to 65 years should be screened with cotesting (HPV testing in combination with cytology) every 5 years or cytology alone every 3 years (acceptable) (strong recommendation). The ACS recommends that individuals aged >65 years who have no history of cervical intraepithelial neoplasia grade 2 or more severe disease within the past 25 years, and who have documented adequate negative prior screening in the prior 10 years, discontinue all cervical cancer screening (qualified recommendation). These new screening recommendations differ in 4 important respects compared with the 2012 recommendations: 1) The preferred screening strategy is primary HPV testing every 5 years, with cotesting and cytology alone acceptable where access to US Food and Drug Administration-approved primary HPV testing is not yet available; 2) the recommended age to start screening is 25 years rather than 21 years; 3) primary HPV testing, as well as cotesting or cytology alone when primary testing is not available, is recommended starting at age 25 years rather than age 30 years; and 4) the guideline is transitional, ie, options for screening with cotesting or cytology alone are provided but should be phased out once full access to primary HPV testing for cervical cancer screening is available without barriers. Evidence related to other relevant issues was reviewed, and no changes were made to recommendations for screening intervals, age or criteria for screening cessation, screening based on vaccination status, or screening after hysterectomy. Follow-up for individuals who screen positive for HPV and/or cytology should be in accordance with the 2019 American Society for Colposcopy and Cervical Pathology risk-based management consensus guidelines for abnormal cervical cancer screening tests and cancer precursors.
Collapse
|
Practice Guideline |
5 |
532 |
14
|
Smith RA, Andrews KS, Brooks D, Fedewa SA, Manassaram-Baptiste D, Saslow D, Wender RC. Cancer screening in the United States, 2019: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J Clin 2019; 69:184-210. [PMID: 30875085 DOI: 10.3322/caac.21557] [Citation(s) in RCA: 418] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Each year, the American Cancer Society publishes a summary of its guidelines for early cancer detection, data and trends in cancer screening rates, and select issues related to cancer screening. In this issue of the journal, the current American Cancer Society cancer screening guidelines are summarized, and the most current data from the National Health Interview Survey are provided on the utilization of cancer screening for men and women and on the adherence of men and women to multiple recommended screening tests.
Collapse
|
Review |
6 |
418 |
15
|
Issa IA, Noureddine M. Colorectal cancer screening: An updated review of the available options. World J Gastroenterol 2017; 23:5086-5096. [PMID: 28811705 PMCID: PMC5537177 DOI: 10.3748/wjg.v23.i28.5086] [Citation(s) in RCA: 383] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/02/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a significant cause of morbidity and mortality worldwide. However, colon cancer incidence and mortality is declining over the past decade owing to adoption of effective screening programs. Nevertheless, in some parts of the world, CRC incidence and mortality remain on the rise, likely due to factors including "westernized" diet, lifestyle, and lack of health-care infrastructure and resources. Participation and adherence to different national screening programs remain obstacles limiting the achievement of screening goals. Different modalities are available ranging from stool based tests to radiology and endoscopy with varying sensitivity and specificity. However, the availability of these tests is limited to areas with high economic resources. Recently, FDA approved a blood-based test (Epi procolon®) for CRC screening. This blood based test may serve to increase the participation and adherence rates. Hence, leading to increase in colon cancer detection and prevention. This article will discuss various CRC screening tests with a particular focus on the data regarding the new approved blood test. Finally, we will propose an algorithm for a simple cost-effective CRC screening program.
Collapse
|
Review |
8 |
383 |
16
|
Fenton JJ, Weyrich MS, Durbin S, Liu Y, Bang H, Melnikow J. Prostate-Specific Antigen-Based Screening for Prostate Cancer: Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2018; 319:1914-1931. [PMID: 29801018 DOI: 10.1001/jama.2018.3712] [Citation(s) in RCA: 367] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Prostate cancer is the second leading cause of cancer death among US men. OBJECTIVE To systematically review evidence on prostate-specific antigen (PSA)-based prostate cancer screening, treatments for localized prostate cancer, and prebiopsy risk calculators to inform the US Preventive Services Task Force. DATA SOURCES Searches of PubMed, EMBASE, Web of Science, and Cochrane Registries and Databases from July 1, 2011, through July 15, 2017, with a surveillance search on February 1, 2018. STUDY SELECTION English-language reports of randomized clinical trials (RCTs) of screening; cohort studies reporting harms; RCTs and cohort studies of active localized cancer treatments vs conservative approaches (eg, active surveillance, watchful waiting); external validations of prebiopsy risk calculators to identify aggressive cancers. DATA EXTRACTION AND SYNTHESIS One investigator abstracted data; a second checked accuracy. Two investigators independently rated study quality. MAIN OUTCOMES AND MEASURES Prostate cancer and all-cause mortality; false-positive screening results, biopsy complications, overdiagnosis; adverse effects of active treatments. Random-effects meta-analyses were conducted for treatment harms. RESULTS Sixty-three studies in 104 publications were included (N = 1 904 950). Randomization to PSA screening was not associated with reduced risk of prostate cancer mortality in either a US trial with substantial control group contamination (n = 76 683) or a UK trial with low adherence to a single PSA screen (n = 408 825) but was associated with significantly reduced prostate cancer mortality in a European trial (n = 162 243; relative risk [RR], 0.79 [95% CI, 0.69-0.91]; absolute risk reduction, 1.1 deaths per 10 000 person-years [95% CI, 0.5-1.8]). Of 61 604 men screened in the European trial, 17.8% received false-positive results. In 3 cohorts (n = 15 136), complications requiring hospitalization occurred in 0.5% to 1.6% of men undergoing biopsy after abnormal screening findings. Overdiagnosis was estimated to occur in 20.7% to 50.4% of screen-detected cancers. In an RCT of men with screen-detected prostate cancer (n = 1643), neither radical prostatectomy (hazard ratio [HR], 0.63 [95% CI, 0.21-1.93]) nor radiation therapy (HR, 0.51 [95% CI, 0.15-1.69]) were associated with significantly reduced prostate cancer mortality vs active monitoring, although each was associated with significantly lower risk of metastatic disease. Relative to conservative management, radical prostatectomy was associated with increased risk of urinary incontinence (pooled RR, 2.27 [95% CI, 1.82-2.84]; 3 trials; n = 1796) and erectile dysfunction (pooled RR, 1.82 [95% CI, 1.62-2.04]; 2 trials; n = 883). Relative to conservative management (8 cohort studies; n = 3066), radiation therapy was associated with increased risk of erectile dysfunction (pooled RR, 1.31 [95% CI, 1.20-1.42]). CONCLUSIONS AND RELEVANCE PSA screening may reduce prostate cancer mortality risk but is associated with false-positive results, biopsy complications, and overdiagnosis. Compared with conservative approaches, active treatments for screen-detected prostate cancer have unclear effects on long-term survival but are associated with sexual and urinary difficulties.
Collapse
|
Review |
7 |
367 |
17
|
Stoffel EM, Murphy CC. Epidemiology and Mechanisms of the Increasing Incidence of Colon and Rectal Cancers in Young Adults. Gastroenterology 2020; 158:341-353. [PMID: 31394082 PMCID: PMC6957715 DOI: 10.1053/j.gastro.2019.07.055] [Citation(s) in RCA: 361] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
In contrast to the decreasing incidence of colorectal cancer (CRC) in older populations, the incidence has nearly doubled in younger adults since the early 1990s. Approximately 1 in 10 new diagnoses of CRC are now made in individuals 50 years or younger. Patients' risk of CRC has been calculated largely by age and family history, yet 3 of 4 patients with early-onset CRC have no family history of the disease. Rapidly increasing incidence rates in younger people could result from generational differences in diet, environmental exposures, and lifestyle factors. We review epidemiologic trends in CRC, data on genetic and nongenetic risk factors, and new approaches for determining CRC risk. These may identify individuals likely to benefit from early screening and specialized surveillance.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
361 |
18
|
Smith RA, Andrews KS, Brooks D, Fedewa SA, Manassaram-Baptiste D, Saslow D, Brawley OW, Wender RC. Cancer screening in the United States, 2018: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J Clin 2018; 68:297-316. [PMID: 29846940 DOI: 10.3322/caac.21446] [Citation(s) in RCA: 355] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023] Open
Abstract
Each year, the American Cancer Society publishes a summary of its guidelines for early cancer detection, data and trends in cancer screening rates from the National Health Interview Survey, and select issues related to cancer screening. In this 2018 update, we also summarize the new American Cancer Society colorectal cancer screening guideline and include a clarification in the language of the 2013 lung cancer screening guideline. CA Cancer J Clin 2018;68:297-316. © 2018 American Cancer Society.
Collapse
|
Review |
7 |
355 |
19
|
Smith RA, Andrews KS, Brooks D, Fedewa SA, Manassaram-Baptiste D, Saslow D, Brawley OW, Wender RC. Cancer screening in the United States, 2017: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J Clin 2017; 67:100-121. [PMID: 28170086 DOI: 10.3322/caac.21392] [Citation(s) in RCA: 288] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Answer questions and earn CME/CNE Each year, the American Cancer Society publishes a summary of its guidelines for early cancer detection, data and trends in cancer screening rates, and select issues related to cancer screening. In this issue of the journal, the authors summarize current American Cancer Society cancer screening guidelines, describe an update of their guideline for using human papillomavirus vaccination for cancer prevention, describe updates in US Preventive Services Task Force recommendations for breast and colorectal cancer screening, discuss interim findings from the UK Collaborative Trial on Ovarian Cancer Screening, and provide the latest data on utilization of cancer screening from the National Health Interview Survey. CA Cancer J Clin 2017;67:100-121. © 2017 American Cancer Society.
Collapse
|
|
8 |
288 |
20
|
Smith RA, Cokkinides V, Brooks D, Saslow D, Brawley OW. Cancer screening in the United States, 2010: a review of current American Cancer Society guidelines and issues in cancer screening. CA Cancer J Clin 2010; 60:99-119. [PMID: 20228384 DOI: 10.3322/caac.20063] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Each year the American Cancer Society (ACS) publishes a summary of its recommendations for early cancer detection, a report on data and trends in cancer screening rates, and select issues related to cancer screening. In 2010, the ACS updated its guidelines for testing for early prostate cancer detection, and during 2009 there were several newsworthy updates in the cancer screening guidelines from other organizations. In this article, the current ACS guidelines and recent issues are summarized, updates of guidelines for testing for early breast cancer detection by the US Preventive Services Task Force and for prevention and early detection of cervical cancer from the American College of Obstetricians and Gynecologists are addressed, and the most recent data from the National Health Interview Survey pertaining to participation rates in cancer screening are described.
Collapse
|
Review |
15 |
286 |
21
|
Cornford P, van den Bergh RCN, Briers E, Van den Broeck T, Brunckhorst O, Darraugh J, Eberli D, De Meerleer G, De Santis M, Farolfi A, Gandaglia G, Gillessen S, Grivas N, Henry AM, Lardas M, van Leenders GJLH, Liew M, Linares Espinos E, Oldenburg J, van Oort IM, Oprea-Lager DE, Ploussard G, Roberts MJ, Rouvière O, Schoots IG, Schouten N, Smith EJ, Stranne J, Wiegel T, Willemse PPM, Tilki D. EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer-2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol 2024; 86:148-163. [PMID: 38614820 DOI: 10.1016/j.eururo.2024.03.027] [Citation(s) in RCA: 284] [Impact Index Per Article: 284.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND AND OBJECTIVE The European Association of Urology (EAU)-European Association of Nuclear Medicine (EANM)-European Society for Radiotherapy and Oncology (ESTRO)-European Society of Urogenital Radiology (ESUR)-International Society of Urological Pathology (ISUP)-International Society of Geriatric Oncology (SIOG) guidelines provide recommendations for the management of clinically localised prostate cancer (PCa). This paper aims to present a summary of the 2024 version of the EAU-EANM-ESTRO-ESUR-ISUP-SIOG guidelines on the screening, diagnosis, and treatment of clinically localised PCa. METHODS The panel performed a literature review of all new data published in English, covering the time frame between May 2020 and 2023. The guidelines were updated, and a strength rating for each recommendation was added based on a systematic review of the evidence. KEY FINDINGS AND LIMITATIONS A risk-adapted strategy for identifying men who may develop PCa is advised, generally commencing at 50 yr of age and based on individualised life expectancy. The use of multiparametric magnetic resonance imaging in order to avoid unnecessary biopsies is recommended. When a biopsy is considered, a combination of targeted and regional biopsies should be performed. Prostate-specific membrane antigen positron emission tomography imaging is the most sensitive technique for identifying metastatic spread. Active surveillance is the appropriate management for men with low-risk PCa, as well as for selected favourable intermediate-risk patients with International Society of Urological Pathology grade group 2 lesions. Local therapies are addressed, as well as the management of persistent prostate-specific antigen after surgery. A recommendation to consider hypofractionation in intermediate-risk patients is provided. Patients with cN1 PCa should be offered a local treatment combined with long-term intensified hormonal treatment. CONCLUSIONS AND CLINICAL IMPLICATIONS The evidence in the field of diagnosis, staging, and treatment of localised PCa is evolving rapidly. These PCa guidelines reflect the multidisciplinary nature of PCa management. PATIENT SUMMARY This article is the summary of the guidelines for "curable" prostate cancer. Prostate cancer is "found" through a multistep risk-based screening process. The objective is to find as many men as possible with a curable cancer. Prostate cancer is curable if it resides in the prostate; it is then classified into low-, intermediary-, and high-risk localised and locally advanced prostate cancer. These risk classes are the basis of the treatments. Low-risk prostate cancer is treated with "active surveillance", a treatment with excellent prognosis. For low-intermediary-risk active surveillance should also be discussed as an option. In other cases, active treatments, surgery, or radiation treatment should be discussed along with the potential side effects to allow shared decision-making.
Collapse
|
Practice Guideline |
1 |
284 |
22
|
Gupta S, Lieberman D, Anderson JC, Burke CA, Dominitz JA, Kaltenbach T, Robertson DJ, Shaukat A, Syngal S, Rex DK. Recommendations for Follow-Up After Colonoscopy and Polypectomy: A Consensus Update by the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology 2020; 158:1131-1153.e5. [PMID: 32044092 PMCID: PMC7672705 DOI: 10.1053/j.gastro.2019.10.026] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
Practice Guideline |
5 |
276 |
23
|
Loomba R, Lim JK, Patton H, El-Serag HB. AGA Clinical Practice Update on Screening and Surveillance for Hepatocellular Carcinoma in Patients With Nonalcoholic Fatty Liver Disease: Expert Review. Gastroenterology 2020; 158:1822-1830. [PMID: 32006545 PMCID: PMC8012107 DOI: 10.1053/j.gastro.2019.12.053] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a leading etiology for chronic liver disease with an immense public health impact and affects >25% of the US and global population. Up to 1 in 4 NAFLD patients may have nonalcoholic steatohepatitis (NASH). NASH is associated with significant morbidity and mortality due to complications of liver cirrhosis, hepatic decompensation, and hepatocellular carcinoma (HCC). Recent data confirm that HCC represents the fifth most common cancer and is the second leading cause of cancer-related death worldwide, and NAFLD has been identified as a rapidly emerging risk factor for this malignancy. NAFLD-associated liver complications are projected to become the leading indication for liver transplantation in the next decade. Despite evidence that NAFLD-associated HCC may arise in the absence of cirrhosis, is often diagnosed at advanced stages, and is associated with lower receipt of curative therapy and with poorer survival, current society guidelines provide limited guidance/recommendations addressing HCC surveillance in patients with NAFLD outside the context of established cirrhosis. Limited data are presently available to guide clinicians with respect to which patients with NAFLD should undergo HCC surveillance, optimal screening tools, frequency of monitoring, and the influence of coexisting host- and disease-related risk factors. Herein we present an evidence-based review addressing HCC risk in patients with NAFLD and provide Best Practice Advice statements to address key issues in clinical management.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
253 |
24
|
Smith RA, Manassaram-Baptiste D, Brooks D, Doroshenk M, Fedewa S, Saslow D, Brawley OW, Wender R. Cancer screening in the United States, 2015: a review of current American cancer society guidelines and current issues in cancer screening. CA Cancer J Clin 2015; 65:30-54. [PMID: 25581023 DOI: 10.3322/caac.21261] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Each year, the American Cancer Society (ACS) publishes a summary of its guidelines for early cancer detection along with a report on data and trends in cancer screening rates and select issues related to cancer screening. In this issue of the journal, we summarize current ACS cancer screening guidelines. The latest data on utilization of cancer screening from the National Health Interview Survey (NHIS) also is described, as are several issues related to screening coverage under the Affordable Care Act, including the expansion of the Medicaid program.
Collapse
|
Review |
10 |
253 |
25
|
Saslow D, Solomon D, Lawson HW, Killackey M, Kulasingam SL, Cain JM, Garcia FAR, Moriarty AT, Waxman AG, Wilbur DC, Wentzensen N, Downs LS, Spitzer M, Moscicki AB, Franco EL, Stoler MH, Schiffman M, Castle PE, Myers ER, Chelmow D, Herzig A, Kim JJ, Kinney W, Herschel WL, Waldman J. American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical Pathology screening guidelines for the prevention and early detection of cervical cancer. J Low Genit Tract Dis 2012; 16:175-204. [PMID: 22418039 PMCID: PMC3915715 DOI: 10.1097/lgt.0b013e31824ca9d5] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An update to the American Cancer Society (ACS) guideline regarding screening for the early detection of cervical precancerous lesions and cancer is presented. The guidelines are based on a systematic evidence review, contributions from six working groups, and a recent symposium co-sponsored by the ACS, American Society for Colposcopy and Cervical Pathology (ASCCP), and American Society for Clinical Pathology (ASCP), which was attended by 25 organizations. The new screening recommendations address age-appropriate screening strategies, including the use of cytology and high-risk human papillomavirus (HPV) testing, follow-up (e.g., management of screen positives and screening interval for screen negatives) of women after screening, age at which to exit screening, future considerations regarding HPV testing alone as a primary screening approach, and screening strategies for women vaccinated against HPV16/18 infections.
Collapse
|
Review |
13 |
237 |