1
|
Duarte LF, Young ARJ, Wang Z, Wu HA, Panda T, Kou Y, Kapoor A, Hasson D, Mills NR, Ma’ayan A, Narita M, Bernstein E. Histone H3.3 and its proteolytically processed form drive a cellular senescence programme. Nat Commun 2014; 5:5210. [PMID: 25394905 PMCID: PMC4235654 DOI: 10.1038/ncomms6210] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 09/09/2014] [Indexed: 01/24/2023] Open
Abstract
The process of cellular senescence generates a repressive chromatin environment, however, the role of histone variants and histone proteolytic cleavage in senescence remains unclear. Here, using models of oncogene-induced and replicative senescence, we report novel histone H3 tail cleavage events mediated by the protease Cathepsin L. We find that cleaved forms of H3 are nucleosomal and the histone variant H3.3 is the preferred cleaved form of H3. Ectopic expression of H3.3 and its cleavage product (H3.3cs1), which lacks the first 21 amino acids of the H3 tail, is sufficient to induce senescence. Further, H3.3cs1 chromatin incorporation is mediated by the HUCA histone chaperone complex. Genome-wide transcriptional profiling revealed that H3.3cs1 facilitates transcriptional silencing of cell cycle regulators including RB/E2F target genes, likely via the permanent removal of H3K4me3. Collectively, our study identifies histone H3.3 and its proteolytically processed forms as key regulators of cellular senescence.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
107 |
2
|
Lo S, Ho TD, Liu Y, Jiang M, Hsieh K, Chen K, Yu L, Lee M, Chen C, Huang T, Kojima M, Sakakibara H, Chen L, Yu S. Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:850-864. [PMID: 27998028 PMCID: PMC5466439 DOI: 10.1111/pbi.12681] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/21/2016] [Accepted: 11/25/2016] [Indexed: 05/02/2023]
Abstract
A major challenge of modern agricultural biotechnology is the optimization of plant architecture for enhanced productivity, stress tolerance and water use efficiency (WUE). To optimize plant height and tillering that directly link to grain yield in cereals and are known to be tightly regulated by gibberellins (GAs), we attenuated the endogenous levels of GAs in rice via its degradation. GA 2-oxidase (GA2ox) is a key enzyme that inactivates endogenous GAs and their precursors. We identified three conserved domains in a unique class of C20 GA2ox, GA2ox6, which is known to regulate the architecture and function of rice plants. We mutated nine specific amino acids in these conserved domains and observed a gradient of effects on plant height. Ectopic expression of some of these GA2ox6 mutants moderately lowered GA levels and reprogrammed transcriptional networks, leading to reduced plant height, more productive tillers, expanded root system, higher WUE and photosynthesis rate, and elevated abiotic and biotic stress tolerance in transgenic rice. Combinations of these beneficial traits conferred not only drought and disease tolerance but also increased grain yield by 10-30% in field trials. Our studies hold the promise of manipulating GA levels to substantially improve plant architecture, stress tolerance and grain yield in rice and possibly in other major crops.
Collapse
|
research-article |
8 |
61 |
3
|
Liu J, Chen Z, Wang Z, Zhang Z, Xie X, Wang Z, Chai L, Song L, Cheng X, Feng M, Wang X, Liu Y, Hu Z, Xing J, Su Z, Peng H, Xin M, Yao Y, Guo W, Sun Q, Liu J, Ni Z. Ectopic expression of VRT-A2 underlies the origin of Triticum polonicum and Triticum petropavlovskyi with long outer glumes and grains. MOLECULAR PLANT 2021; 14:1472-1488. [PMID: 34048948 DOI: 10.1016/j.molp.2021.05.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Polish wheat (Triticum polonicum) is a unique tetraploid wheat species characterized by an elongated outer glume. The genetic control of the long-glume trait by a single semi-dominant locus, P1 (from Polish wheat), was established more than 100 years ago, but the underlying causal gene and molecular nature remain elusive. Here, we report the isolation of VRT-A2, encoding an SVP-clade MADS-box transcription factor, as the P1 candidate gene. Genetic evidence suggests that in T. polonicum, a naturally occurring sequence rearrangement in the intron-1 region of VRT-A2 leads to ectopic expression of VRT-A2 in floral organs where the long-glume phenotype appears. Interestingly, we found that the intron-1 region is a key ON/OFF molecular switch for VRT-A2 expression, not only because it recruits transcriptional repressors, but also because it confers intron-mediated transcriptional enhancement. Genotypic analyses using wheat accessions indicated that the P1 locus is likely derived from a single natural mutation in tetraploid wheat, which was subsequently inherited by hexaploid T. petropavlovskyi. Taken together, our findings highlight the promoter-proximal intron variation as a molecular basis for phenotypic differentiation, and thus species formation in Triticum plants.
Collapse
|
|
4 |
40 |
4
|
Adamski NM, Simmonds J, Brinton JF, Backhaus AE, Chen Y, Smedley M, Hayta S, Florio T, Crane P, Scott P, Pieri A, Hall O, Barclay JE, Clayton M, Doonan JH, Nibau C, Uauy C. Ectopic expression of Triticum polonicum VRT-A2 underlies elongated glumes and grains in hexaploid wheat in a dosage-dependent manner. THE PLANT CELL 2021; 33:2296-2319. [PMID: 34009390 PMCID: PMC8364232 DOI: 10.1093/plcell/koab119] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/17/2021] [Indexed: 05/20/2023]
Abstract
Flower development is an important determinant of grain yield in crops. In wheat (Triticum spp.), natural variation for the size of spikelet and floral organs is particularly evident in Triticum turgidum ssp. polonicum (also termed Triticum polonicum), a tetraploid subspecies of wheat with long glumes, lemmas, and grains. Using map-based cloning, we identified VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT2), which encodes a MADS-box transcription factor belonging to the SHORT VEGETATIVE PHASE family, as the gene underlying the T. polonicum long-glume (P1) locus. The causal P1 mutation is a sequence rearrangement in intron-1 that results in ectopic expression of the T. polonicum VRT-A2 allele. Based on allelic variation studies, we propose that the intron-1 mutation in VRT-A2 is the unique T. polonicum subspecies-defining polymorphism, which was later introduced into hexaploid wheat via natural hybridizations. Near-isogenic lines differing for the P1 locus revealed a gradient effect of P1 across spikelets and within florets. Transgenic lines of hexaploid wheat carrying the T. polonicum VRT-A2 allele show that expression levels of VRT-A2 are highly correlated with spike, glume, grain, and floral organ length. These results highlight how changes in expression profiles, through variation in cis-regulation, can affect agronomic traits in a dosage-dependent manner in polyploid crops.
Collapse
|
research-article |
4 |
37 |
5
|
Akiyama T, Wakabayashi S, Soma A, Sato S, Nakatake Y, Oda M, Murakami M, Sakota M, Chikazawa-Nohtomi N, Ko SBH, Ko MSH. Transient ectopic expression of the histone demethylase JMJD3 accelerates the differentiation of human pluripotent stem cells. Development 2016; 143:3674-3685. [PMID: 27802135 PMCID: PMC5087640 DOI: 10.1242/dev.139360] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/25/2016] [Indexed: 12/27/2022]
Abstract
Harnessing epigenetic regulation is crucial for the efficient and proper differentiation of pluripotent stem cells (PSCs) into desired cell types. Histone H3 lysine 27 trimethylation (H3K27me3) functions as a barrier against cell differentiation through the suppression of developmental gene expression in PSCs. Here, we have generated human PSC (hPSC) lines in which genome-wide reduction of H3K27me3 can be induced by ectopic expression of the catalytic domain of the histone demethylase JMJD3 (called JMJD3c). We found that transient, forced demethylation of H3K27me3 alone triggers the upregulation of mesoendodermal genes, even when the culture conditions for the hPSCs are not changed. Furthermore, transient and forced expression of JMJD3c followed by the forced expression of lineage-defining transcription factors enabled the hPSCs to activate tissue-specific genes directly. We have also shown that the introduction of JMJD3c facilitates the differentiation of hPSCs into functional hepatic cells and skeletal muscle cells. These results suggest the utility of the direct manipulation of epigenomes for generating desired cell types from hPSCs for cell transplantation therapy and platforms for drug screenings.
Collapse
|
research-article |
9 |
36 |
6
|
Fu W, Chen D, Pan Q, Li F, Zhao Z, Ge X, Li Z. Production of red-flowered oilseed rape via the ectopic expression of Orychophragmus violaceus OvPAP2. PLANT BIOTECHNOLOGY JOURNAL 2018; 16. [PMID: 28640973 PMCID: PMC5787836 DOI: 10.1111/pbi.12777] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Oilseed rape (Brassica napus L.), which has yellow flowers, is both an important oil crop and a traditional tourism resource in China, whereas the Orychophragmus violaceus, which has purple flowers, likely possesses a candidate gene or genes to alter the flower colour of oilseed rape. A previously established B. napus line has a particular pair of O. violaceus chromosomes (M4) and exhibits slightly red petals. In this study, the transcriptomic analysis of M4, B. napus (H3), and O. violaceus with purple petals (OvP) and with white petals (OvW) revealed that most anthocyanin biosynthesis genes were up-regulated in both M4 and OvP. Read assembly and sequence alignment identified a homolog of AtPAP2 in M4, which produced the O. violaceus transcript (OvPAP2). The overexpression of OvPAP2 via the CaMV35S promoter in Arabidopsis thaliana led to different levels of anthocyanin accumulation in most organs, including the petals. However, the B. napus overexpression plants showed anthocyanin accumulation primarily in the anthers, but not the petals. However, when OvPAP2 was driven by the petal-specific promoter XY355, the transgenic B. napus plants produced red anthers and red petals. The results of metabolomic experiments showed that specific anthocyanins accumulated to high levels in the red petals. This study illustrates the feasibility of producing red-flowered oilseed rape, thereby enhancing its ornamental value, via the ectopic expression of the OvPAP2 gene. Moreover, the practical application of this study for insect pest management in the crop is discussed.
Collapse
|
research-article |
7 |
32 |
7
|
Guo R, Tu M, Wang X, Zhao J, Wan R, Li Z, Wang Y, Wang X. Ectopic expression of a grape aspartic protease gene, AP13, in Arabidopsis thaliana improves resistance to powdery mildew but increases susceptibility to Botrytis cinerea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 248:17-27. [PMID: 27181943 DOI: 10.1016/j.plantsci.2016.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 05/24/2023]
Abstract
The grape aspartic protease gene, AP13 was previously reported to be responsive, in Chinese wild Vitis quinquangularis cv. 'Shang-24', to infection by Erysiphe necator, the causal agent of powdery mildew disease, as well as to treatment with salicylic acid in V. labrusca×V. vinifera cv. 'Kyoho'. In the current study, we evaluated the expression levels of AP13 in 'Shang-24' in response to salicylic acid (SA), methyl jasmonate (MeJA) and ethylene (ET) treatments, as well as to infection by the necrotrophic fungus, Botrytis cinerea, and the transcript levels of VqAP13 decreased after B. cinerea infection and MeJA treatment, but increased following ET and SA treatments. Transgenic Arabidopsis thaliana lines over-expressing VqAP13 under the control of a constitutive promoter showed enhanced resistance to powdery mildew and to the bacterium Pseudomonas syringae pv. tomato DC3000, and accumulated more callose than wild type plants, while the resistance of transgenic A. thaliana lines to B. cinerea inoculation was reduced. In addition, the expression profiles of various disease resistance- related genes in the transgenic A. thaliana lines following infection by different pathogens were compared to the equivalent profiles in the wild type plants. The results suggest that VqAP13 action promotes the SA dependent signal transduction pathway, but suppresses the JA signal transduction pathway.
Collapse
|
|
9 |
31 |
8
|
Stewart S, Le Bleu HK, Yette GA, Henner AL, Robbins AE, Braunstein JA, Stankunas K. longfin causes cis-ectopic expression of the kcnh2a ether-a-go-go K+ channel to autonomously prolong fin outgrowth. Development 2021; 148:dev199384. [PMID: 34061172 PMCID: PMC8217709 DOI: 10.1242/dev.199384] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Organs stop growing to achieve a characteristic size and shape in scale with the body of an animal. Likewise, regenerating organs sense injury extents to instruct appropriate replacement growth. Fish fins exemplify both phenomena through their tremendous diversity of form and remarkably robust regeneration. The classic zebrafish mutant longfint2 develops and regenerates dramatically elongated fins and underlying ray skeleton. We show longfint2 chromosome 2 overexpresses the ether-a-go-go-related voltage-gated potassium channel kcnh2a. Genetic disruption of kcnh2a in cis rescues longfint2, indicating longfint2 is a regulatory kcnh2a allele. We find longfint2 fin overgrowth originates from prolonged outgrowth periods by showing Kcnh2a chemical inhibition during late stage regeneration fully suppresses overgrowth. Cell transplantations demonstrate longfint2-ectopic kcnh2a acts tissue autonomously within the fin intra-ray mesenchymal lineage. Temporal inhibition of the Ca2+-dependent phosphatase calcineurin indicates it likewise entirely acts late in regeneration to attenuate fin outgrowth. Epistasis experiments suggest longfint2-expressed Kcnh2a inhibits calcineurin output to supersede growth cessation signals. We conclude ion signaling within the growth-determining mesenchyme lineage controls fin size by tuning outgrowth periods rather than altering positional information or cell-level growth potency.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
26 |
9
|
Veerappa R, Slocum RD, Siegenthaler A, Wang J, Clark G, Roux SJ. Ectopic expression of a pea apyrase enhances root system architecture and drought survival in Arabidopsis and soybean. PLANT, CELL & ENVIRONMENT 2019; 42:337-353. [PMID: 30132918 DOI: 10.1111/pce.13425] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 08/13/2018] [Indexed: 05/27/2023]
Abstract
Ectoapyrases (ecto-NTPDases) function to decrease levels of extracellular ATP and ADP in animals and plants. Prior studies showed that ectopic expression of a pea ectoapyrase, psNTP9, enhanced growth in Arabidopsis seedlings and that the overexpression of the two Arabidopsis apyrases most closely related to psNTP9 enhanced auxin transport and growth in Arabidopsis. These results predicted that ectopic expression of psNTP9 could promote a more extensive root system architecture (RSA) in Arabidopsis. We confirmed that transgenic Arabidopsis seedlings had longer primary roots, more lateral roots, and more and longer root hairs than wild-type plants. Because RSA influences water uptake, we tested whether the transgenic plants could tolerate osmotic stress and water deprivation better than wild-type plants, and we confirmed these properties. Transcriptomic analyses revealed gene expression changes in the transgenic plants that helped account for their enhanced RSA and improved drought tolerance. The effects of psNTP9 were not restricted to Arabidopsis, because its expression in soybeans improved the RSA, growth, and seed yield of this crop and supported higher survival in response to drought. Our results indicate that in both Arabidopsis and soybeans, the constitutive expression of psNTP9 results in a more extensive RSA and improved survival in drought stress conditions.
Collapse
|
|
6 |
24 |
10
|
Xiao J, Chen Y, Lu Y, Liu Z, Si D, Xu T, Sun L, Wang Z, Yuan C, Sun H, Zhang X, Wen M, Wei L, Zhang W, Wang H, Wang X. A natural variation of an SVP MADS-box transcription factor in Triticum petropavlovskyi leads to its ectopic expression and contributes to elongated glume. MOLECULAR PLANT 2021; 14:1408-1411. [PMID: 34048949 DOI: 10.1016/j.molp.2021.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
|
Letter |
4 |
17 |
11
|
Upadhyay RK, Gupta A, Soni D, Garg R, Pathre UV, Nath P, Sane AP. Ectopic expression of a tomato DREB gene affects several ABA processes and influences plant growth and root architecture in an age-dependent manner. JOURNAL OF PLANT PHYSIOLOGY 2017; 214:97-107. [PMID: 28478319 DOI: 10.1016/j.jplph.2017.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/09/2017] [Accepted: 04/09/2017] [Indexed: 05/11/2023]
Abstract
Regulation of whole plant growth and adaptive responses by abscisic acid is complex, requires multiple regulators and largely unknown in plants other than Arabidopsis. We show that over-expression of the tomato SlDREB3/SlERF.H12 (DEHYDRATION RESPONSE ELEMENT BINDING PROTEIN3/ETHYLENE RESPONSE FACTOR. H12) gene can negatively affect many ABA-governed processes across tissues. Its expression leads to early germination in presence of ABA and in response to mannitol, NaCl and glucose. Its expression delays ABA-mediated leaf senescence and natural senescence leading to an increase in plant life by about 20days. Transgenic SlDREB3 lines show reduced ABA-mediated inhibition of conductance and transpiration and a greater sensitivity to water stress. Reduction in sensitivity to ABA-mediated stomatal closure leads to higher photosynthetic rates in transgenic plants than controls. Consequently, transgenic SlDREB3 plants produce a larger number of capsules and greater number of seeds with the increase in yield ranging from 18 to 35% in different seasons under well-watered conditions. Root growth, but not shoot growth, also undergoes a profound increase of about 50% in transgenic SlDREB3 lines. The increase occurs in an age-dependent manner with the most prominent changes being observed between 1.5 and 2.5 months in several independent experiments in different years. SlDREB3 thus seems to govern several ABA-regulated processes across tissues, partly through control over ABA levels. It may encode a factor that is most likely a component of the central ABA response machinery.
Collapse
|
|
8 |
10 |
12
|
Zang X, Geng X, Liu K, Wang F, Liu Z, Zhang L, Zhao Y, Tian X, Hu Z, Yao Y, Ni Z, Xin M, Sun Q, Peng H. Ectopic expression of TaOEP16-2-5B, a wheat plastid outer envelope protein gene, enhances heat and drought stress tolerance in transgenic Arabidopsis plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 258:1-11. [PMID: 28330552 DOI: 10.1016/j.plantsci.2017.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/15/2016] [Accepted: 01/18/2017] [Indexed: 05/11/2023]
Abstract
Abiotic stresses, such as heat and drought, are major environmental factors restricting crop productivity and quality worldwide. A plastid outer envelope protein gene, TaOEP16-2, was identified from our previous transcriptome analysis [1,2]. In this study, the isolation and functional characterization of the TaOEP16-2 gene was reported. Three homoeologous sequences of TaOEP16-2 were isolated from hexaploid wheat, which were localized on the chromosomes 5A, 5B and 5D, respectively. These three homoeologues exhibited different expression patterns under heat stress conditions, TaOEP16-2-5B was the dominant one, and TaOEP16-2-5B was selected for further analysis. Compared with wild type (WT) plants, transgenic Arabidopsis plants overexpressing the TaOEP16-2-5B gene exhibited enhanced tolerance to heat stress, which was supported by improved survival rate, strengthened cell membrane stability and increased sucrose content. It was also found that TaOEP16-2 was induced by drought stress and involved in drought stress tolerance. TaOEP16-2-5B has the same function in ABA-controlled seed germination as AtOEP16-2. Our results suggest that TaOEP16-2-5B plays an important role in heat and drought stress tolerance, and could be utilized in transgenic breeding of wheat and other crop plants.
Collapse
|
|
8 |
8 |
13
|
Charneca J, Matias AC, Escapa AL, Fernandes C, Alves A, Santos JMA, Nascimento R, Bragança J. Ectopic expression of CITED2 prior to reprogramming, promotes and homogenises the conversion of somatic cells into induced pluripotent stem cells. Exp Cell Res 2017; 358:290-300. [PMID: 28684114 DOI: 10.1016/j.yexcr.2017.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 02/07/2023]
Abstract
Cited2 plays crucial roles in mouse embryonic stem cells self-renewal, the initiation of the somatic reprogramming process into induced pluripotent stem cells (iPSC) and the suppression of cell senescence. Here, we investigated the potential of CITED2 expression in combination with the Oct4, Sox2, Klf4 and c-Myc factors for reprogramming of primary mouse embryonic fibroblasts (MEF) at passage 2 and 4. The ectopic CITED2 expression in primary MEF prior to the onset of the reprogramming process, generated iPSC with less variability in the expression of endogenous pluripotency-related genes. In contrast, part of the MEF reprogrammed without ectopic expression of CITED2 at passage 4 originated partially reprogrammed iPSC or pre-iPSC. However, the overexpression of CITED2 in the pre-iPSC was insufficient to complete the reprogramming process into iPSC. These results indicated that ectopic CITED2 expression at the onset of the reprogramming process in combination with the reprogramming factors promotes a complete and homogeneous conversion of somatic cells into iPSC.
Collapse
|
|
8 |
5 |
14
|
Ma G, Zou Q, Shi X, Tian D, Sheng Q. Ectopic expression of the AaFUL1 gene identified in Anthurium andraeanum affected floral organ development and seed fertility in tobacco. Gene 2019; 696:197-205. [PMID: 30802537 DOI: 10.1016/j.gene.2019.02.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/21/2019] [Accepted: 02/12/2019] [Indexed: 11/18/2022]
Abstract
Anthurium andraeanum is a high-grade potted flower that enjoys global popularity. Its floral organs have been substantially modified, and its ornamental value is based on its petaloid bracts. MADS-box gene products are important transcription factors that control plant development. In particular, the APETALA1 (AP1)/FRUITFULL (FUL) family of MADS-box genes plays a key role in flowering transitions and out-whorl floral organ identity specification. In this report, one FUL-like gene was cloned from Anthurium andraeanum and named AaFUL1 after bioinformatics identification. Subsequent subcellular localization experiments confirmed that the AaFUL1 protein was located in the nucleus, and data obtained from an expression analysis indicated that the relative expression level of AaFUL1 was the highest in bracts and inflorescences, while its expression was relatively low in stems and roots. Next, an AaFUL1 overexpression vector was constructed and ectopically expressed in tobacco. The transformants did not show any early flowering phenotype, but the average internode length of the inflorescence branch was significantly higher than that observed in the control, and its petal color had substantially faded. The morphology of the petal and pistil was clearly changed, the fruit was deformed, and the seed was largely aborted. These data indicate that even though the sequence of AaFUL1 is relatively conserved, its function differs from that of other orthologs, and the FUL subfamily of MADS-box transcription factors may have taken on new functions during the evolution processes. The results of this experiment enrich our knowledge of FUL transcription factors in monocotyledon plants.
Collapse
|
|
6 |
4 |
15
|
Chuong NN, Hoang XLT, Nghia DHT, Nguyen NC, Thao DTT, Tran TB, Ngoc TTM, Thu NBA, Nguyen QT, Thao NP. Ectopic expression of GmHP08 enhances resistance of transgenic Arabidopsis toward drought stress. PLANT CELL REPORTS 2021; 40:819-834. [PMID: 33725150 DOI: 10.1007/s00299-021-02677-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Ectopic expression of Glycine max two-component system member GmHP08 in Arabidopsis enhanced drought tolerance of transgenic plants, possibly via ABA-dependent pathways. Phosphorelay by two-component system (TCS) is a signal transduction mechanism which has been evolutionarily conserved in both prokaryotic and eukaryotic organisms. Previous studies have provided lines of evidence on the involvement of TCS genes in plant perception and responses to environmental stimuli. In this research, drought-associated functions of GmHP08, a TCS member from soybean (Glycine max L.), were investigated via its ectopic expression in Arabidopsis system. Results from the drought survival assay showed that GmHP08-transgenic plants exhibited higher survival rates compared with their wild-type (WT) counterparts, indicating better drought resistance of the former group. Analyses revealed that the transgenic plants outperformed the WT in various regards, i.e. capability of water retention, prevention of hydrogen peroxide accumulation and enhancement of antioxidant enzymatic activities under water-deficit conditions. Additionally, the expression of stress-marker genes, especially antioxidant enzyme-encoding genes, in the transgenic plants were found greater than that of the WT plants. In contrary, the expression of SAG13 gene, one of the senescence-associated genes, and of several abscisic acid (ABA)-related genes was repressed. Data from this study also revealed that the ectopic expression lines at germination and early seedling development stages were hypersensitive to exogenous ABA treatment. Taken together, our results demonstrated that GmHP08 could play an important role in mediating plant response to drought, possibly via an ABA-dependent manner.
Collapse
|
|
4 |
3 |
16
|
Li X, Zheng Y, Xing Q, Ardiansyah R, Zhou H, Ali S, Jing T, Tian J, Song XS, Li Y, Müller-Xing R. Ectopic expression of the transcription factor CUC2 restricts growth by cell cycle inhibition in Arabidopsis leaves. PLANT SIGNALING & BEHAVIOR 2020; 15:1706024. [PMID: 31900029 PMCID: PMC7012148 DOI: 10.1080/15592324.2019.1706024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant leaf margins produce small outgrowths or teeth causing serration in a regular arrangement, which is specified by auxin maxima. In Arabidopsis, the spatiotemporal pattern of auxin dependents on both, the transcription factor CUC2 and the signal peptide EPFL2, a ligand of the growth-promoting receptor kinase ERECTA (ER). Ectopic expression of CUC2 can have contrary effects on leaf growth. Ubiquitous expressed CUC2 suppresses growth in the whole leaf, whereas cuc2-1D mutants have enlarged leaves, through ER-dependent cell proliferation in the teeth. Here we investigated the growth dynamics of cuc2-1D leaves and the growth restricting the function of CUC2 using the ubiquitous inducible CUC2-GR transgene. In time courses, we dissected the serration promoting the function of CUC2 in the leaf margin and ectopic growth inhibition by CUC2 in the leaf plate. We found that CUC2 limits growth rather by cell cycle inhibition than by cell size control. Furthermore, endogenous CUC2 was rapidly induced by CUC2-GR indicating a possible auto-inducible feedback. In contrast, EPFL2 was quickly decreased by transient CUC2 induction but increased in cuc2-3 mutant leaves suggesting that CUC2 can also counteract the EPFL2-ER pathway. Therefore, tooth growth promotion and growth inhibition by CUC2 involve partially the same mechanism but in contrary ways.
Collapse
|
research-article |
5 |
2 |