1
|
Strickland S, Reich E, Sherman MI. Plasminogen activator in early embryogenesis: enzyme production by trophoblast and parietal endoderm. Cell 1976; 9:231-40. [PMID: 975245 DOI: 10.1016/0092-8674(76)90114-8] [Citation(s) in RCA: 388] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have surveyed the early stages in the development and differentiation of cultured mouse embryos for plasminogen activator production. This enzyme is first detectable by the sixth equivalent gestation day. Thereafter, cultured blastocysts produce plasminogen activator with a biphasic time course: in the first phase, enzyme secretion rises to a maximum at about the eighth day and then decreases; a second phase, during which more enzyme accumulates, begins somewhat later and continues to at least the fifteenth day. By fractionating the blastocyst into its constituent cell types, we have identified the trophoblast as the cells responsible for the first phase of enzyme synthesis. The pattern of enzyme production by the trophoblast is closely correlated with the invasive period of these cells in vivo and implies that plasminogen activator is involved in embryo implantation. The second phase of plasminogen activator production is due to parietal endoderm, which initiates enzyme synthesis upon differentiation from the inner cell mass. The properties of the parietal endoderm suggest that plasminogen activator may participate in the migration of these cells and/or in the metabolism of Reichert's membrane which accompanies embryo growth. These results are consistent with the concept, deveolped from work on other cell types, that plasminogen activator may represent a generalized mechanism for tissue remodeling and cell migration.
Collapse
|
|
49 |
388 |
2
|
Monk M, Harper MI. Sequential X chromosome inactivation coupled with cellular differentiation in early mouse embryos. Nature 1979; 281:311-3. [PMID: 551278 DOI: 10.1038/281311a0] [Citation(s) in RCA: 217] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
|
46 |
217 |
3
|
Bone HK, Nelson AS, Goldring CE, Tosh D, Welham MJ. A novel chemically directed route for the generation of definitive endoderm from human embryonic stem cells based on inhibition of GSK-3. J Cell Sci 2011; 124:1992-2000. [PMID: 21610099 PMCID: PMC3104033 DOI: 10.1242/jcs.081679] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2011] [Indexed: 01/17/2023] Open
Abstract
The use of small molecules to 'chemically direct' differentiation represents a powerful approach to promote specification of embryonic stem cells (ESCs) towards particular functional cell types for use in regenerative medicine and pharmaceutical applications. Here, we demonstrate a novel route for chemically directed differentiation of human ESCs (hESCs) into definitive endoderm (DE) exploiting a selective small-molecule inhibitor of glycogen synthase kinase 3 (GSK-3). This GSK-3 inhibitor, termed 1m, when used as the only supplement to a chemically defined feeder-free culture system, effectively promoted differentiation of ESC lines towards primitive streak (PS), mesoderm and DE. This contrasts with the role of GSK-3 in murine ESCs, where GSK-3 inhibition promotes pluripotency. Interestingly, 1m-mediated induction of differentiation involved transient NODAL expression and Nodal signalling. Prolonged treatment of hESCs with 1m resulted in the generation of a population of cells displaying hepatoblast characteristics, that is expressing α-fetoprotein and HNF4α. Furthermore, 1m-induced DE had the capacity to mature and generate hepatocyte-like cells capable of producing albumin. These findings describe, for the first time, the utility of GSK-3 inhibition, in a chemically directed approach, to a method of DE generation that is robust, potentially scalable and applicable to different hESC lines.
Collapse
|
research-article |
14 |
88 |
4
|
Whittaker JR. Segregation during cleavage of a factor determining endodermal alkaline phosphatase development in ascidian embryos. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1977; 202:139-53. [PMID: 411883 DOI: 10.1002/jez.1402020202] [Citation(s) in RCA: 82] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Localized alkaline phosphatase activity (EC 3.1.3.1) develops progressively in endodermal tissues of the presumptive digestive system in Ciona intestinalis embryos. It was first detected histochemically at late gastrulation, and a puromycin sensitivity period coincident with this time suggests that new alkaline phosphatase is synthesized. Embryos in which cell division was blocked with cytochalasin B at early cleavage stages up to the 64-cell stage, eventually differentiated strong alkaline phosphatase activity in certain cells at each cleavage-arrested stage. The maximum cell numbers and their positions were identical to those of the previously known endodermal cell lineage. Actinomycin D did not prevent development of endodermal alkaline phosphatase when administered from fertilization onwards, nor did other inhibitors of RNA synthesis (chromomycin A3, cordycepin, and daunomycin). There is probably a preformed maternal mRNA for endodermal alkaline phosphatase present in the unfertilizec Ciona egg. Either this RNA itself, or some related translation factor, is localized in the egg cytoplasm and segregated during early cleavages into the endodermal cell lineage of the embryo.
Collapse
|
|
48 |
82 |
5
|
Peyriéras N, Strähle U, Rosa F. Conversion of zebrafish blastomeres to an endodermal fate by TGF-beta-related signaling. Curr Biol 1998; 8:783-6. [PMID: 9651684 DOI: 10.1016/s0960-9822(98)70303-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The endoderm contributes cells to the gut, and participates in the induction and patterning of the vertebrate head and heart. The mechanisms controlling the formation of endoderm are poorly understood. Commitment of endoderm cells occurs at the onset of gastrulation and requires cell interactions; studies in vitro have implicated transforming growth factor Beta (TGF-beta)-related molecules in this process. TARAM-A is a zebrafish receptor kinase that is related to the type I subunit of the TGF-beta receptor, and is expressed in presumptive endomesodermal cells at gastrulation. We provide here evidence for its involvement in endoderm formation in vivo. Activation of TARAM-A was found to drive blastomeres towards an endodermal fate. The induced endoderm behaved ad endogenous endoderm during gastrulation: it migrated in contact with the yolk and expressed endoderm-specific markers. Loss-of-function mutations in the zebrafish one-eyed-pinhead (OEP) gene lead to defects in heart formation, defects of the ventral central nervous system (CNS) and cyclopia. Mutant embryos also lack endoderm and anterior mesoderm. Endoderm formation in oep mutant embryos was found to be restored by the activation of the TARAM-A signaling pathway. Cardiac and ocular defects, but not midline CNS structures, were rescued non-autonomously, demonstrating that endoderm may provide signals that can pattern the eye anlage, and which are distinct form those specifying the ventral midline of the CNS.
Collapse
|
|
27 |
76 |
6
|
Kédinger M, Simon-Assmann P, Alexandre E, Haffen K. Importance of a fibroblastic support for in vitro differentiation of intestinal endodermal cells and for their response to glucocorticoids. CELL DIFFERENTIATION 1987; 20:171-82. [PMID: 3552252 DOI: 10.1016/0045-6039(87)90431-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microexplants of 14- or 15-day-old fetal rat intestinal endoderm, separated from mesenchyme by collagenase, were placed on culture dishes coated with different extracellular matrix components or on confluent monolayers of intestinal mesenchymal cells or of fetal skin fibroblasts. Only small variations in the attachment or spreading of the endodermal cells could be observed when they were cultured on the different acellular substrata, and their survival never exceeded one week. When cocultured with intestinal or skin fibroblasts, endodermal cells proliferated and the survival time was prolonged to 2 or 3 weeks. Furthermore, differentiation, as assessed by the polarization of the cells, occurred and was characterized by the maturation of apical brush borders and by the synthesis of microvillar digestive enzymes visualized immunocytochemically with monoclonal antibodies. Glucocorticoids accelerated structural differentiation and stimulated or induced brush border enzymes only in the coculture conditions. These experiments emphasize the role of a fibroblastic support without tissue specificity on the cytodifferentiation of intestinal endodermal cells. They also suggest a mesenchymal dependence on the hormonal response.
Collapse
|
|
38 |
70 |
7
|
Merle PL, Sabourault C, Richier S, Allemand D, Furla P. Catalase characterization and implication in bleaching of a symbiotic sea anemone. Free Radic Biol Med 2007; 42:236-46. [PMID: 17189829 DOI: 10.1016/j.freeradbiomed.2006.10.038] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 09/25/2006] [Accepted: 10/10/2006] [Indexed: 11/16/2022]
Abstract
Symbiotic cnidarians are marine invertebrates harboring photosynthesizing microalgae (named zooxanthellae), which produce great amounts of oxygen and free radicals upon illumination. Studying antioxidative balance is then crucial to understanding how symbiotic cnidarians cope with ROS production. In particular, it is suspected that oxidative stress triggers cnidarian bleaching, i.e., the expulsion of zooxanthellae from the animal host, responsible for symbiotic cnidarian mass mortality worldwide. This study therefore investigates catalase antioxidant enzymes and their role in bleaching of the temperate symbiotic sea anemone Anemonia viridis. Using specific separation of animal tissues (ectoderm and endoderm) from the symbionts (zooxanthellae), spectrophotometric assays and native PAGE revealed both tissue-specific and activity pattern distribution of two catalase electrophoretypes, E1 and E2. E1, expressed in all three tissues, presents high sensitivity to the catalase inhibitor aminotriazole (ATZ) and elevated temperatures. The ectodermal E1 form is responsible for 67% of total catalase activity. The E2 form, expressed only within zooxanthellae and their host endodermal cells, displays low sensitivity to ATZ and relative thermostability. We further cloned an ectodermal catalase, which shares 68% identity with mammalian monofunctional catalases. Last, 6 days of exposure of whole sea anemones to ATZ (0.5 mM) led to effective catalase inhibition and initiated symbiont expulsion. This demonstrates the crucial role of this enzyme in cnidarian bleaching, a phenomenon responsible for worldwide climate-change-induced mass mortalities, with catastrophic consequences for marine biodiversity.
Collapse
|
|
18 |
69 |
8
|
Talbot NC, Rexroad CE, Pursel VG, Powell AM. Alkaline phosphatase staining of pig and sheep epiblast cells in culture. Mol Reprod Dev 1993; 36:139-47. [PMID: 7504922 DOI: 10.1002/mrd.1080360204] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To define better the characteristics of pig and sheep epiblast cells in culture, the cells were tested for the presence of alkaline phosphatase (AP), a biochemical marker characteristic of mouse embryonic stem cells. Pig and sheep epiblast cells were positive for AP staining both at isolation from the blastocyst and after primary in vitro culture. The innermost portion of the attendant endoderm surrounding the epiblast was also positive for AP staining during primary culture. AP staining was lost upon differentiation or senescence of the epiblast cells. Also, all differentiated epiblast-derived cell cultures were negative for AP staining, with the exception of neuron-like cultures. Epiblast-like cells were cultured from day 10 (pig) and day 13 (sheep) embryonic discs, and these cells were also AP positive until they differentiated. Trophectoderm-endoderm-like cells from embryonic discs were AP negative or weakly positive. AP is a convenient marker for undifferentiated pig and sheep epiblast cells in culture when used in conjunction with cell morphology analysis.
Collapse
|
Comparative Study |
32 |
57 |
9
|
Ilić D, Kanazawa S, Furuta Y, Yamamoto T, Aizawa S. Impairment of mobility in endodermal cells by FAK deficiency. Exp Cell Res 1996; 222:298-303. [PMID: 8598217 DOI: 10.1006/excr.1996.0038] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Focal adhesion kinase (FAK) is a novel nonreceptor protein tyrosine kinase that localizes in focal adhesions. It is expressed in a variety of cell types, and we reported earlier that is deficiency causes a decrease of mobility in mesodermal cells with enhanced formation of focal adhesions. With embryoid bodies generated from embryonic stem cells, we also observed a decrease of mobility in FAK-deficient endodermal cells with enhanced focal adhesion formation.
Collapse
|
|
29 |
56 |
10
|
van Boxtel AL, Economou AD, Heliot C, Hill CS. Long-Range Signaling Activation and Local Inhibition Separate the Mesoderm and Endoderm Lineages. Dev Cell 2018; 44:179-191.e5. [PMID: 29275993 PMCID: PMC5791662 DOI: 10.1016/j.devcel.2017.11.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/20/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
Specification of the three germ layers by graded Nodal signaling has long been seen as a paradigm for patterning through a single morphogen gradient. However, by exploiting the unique properties of the zebrafish embryo to capture the dynamics of signaling and cell fate allocation, we now demonstrate that Nodal functions in an incoherent feedforward loop, together with Fgf, to determine the pattern of endoderm and mesoderm specification. We show that Nodal induces long-range Fgf signaling while simultaneously inducing the cell-autonomous Fgf signaling inhibitor Dusp4 within the first two cell tiers from the margin. The consequent attenuation of Fgf signaling in these cells allows specification of endoderm progenitors, while the cells further from the margin, which receive Nodal and/or Fgf signaling, are specified as mesoderm. This elegant model demonstrates the necessity of feedforward and feedback interactions between multiple signaling pathways for providing cells with temporal and positional information.
Collapse
|
research-article |
7 |
38 |
11
|
Linney E, Levinson BB. Teratocarcinoma differentiation: plasminogen activator activity associated with embryoid body formation. Cell 1977; 10:297-304. [PMID: 189937 DOI: 10.1016/0092-8674(77)90223-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Changes in plasminogen activator activity have been examined as a clonal line of mouse embryonal carcinoma cells aggregate and differentiate to form cystic embryoid bodies in vitro. Within the first 10 days of study, the pluripotent embryonal carcinoma cells aggregate; a layer of endodermal cells appears on the outside of the aggregate forming an embryoid body; a basement membrane forms between the outer layer of endodermal cells and the internal cells; a cyst forms within the embryoid body; and the internal cells assume a columnar appearance along the inner portion of the basement membrane. After the formation of the endodermal layer, there is a rise in intracellular plasminogen activator activity. This rise continues for up to 25 days in culture, providing that the three-dimensional integrity of the embryoid bodies is maintained by culturing them on bacterial petri dishes. Selective removal of the outer endodermal layer of cells reduces the plasminogen activatory activity of the resulting embryoid body cores. Intracellular and secreted plasminogen activator activity of simple embryoid bodies composed of only two cell types can be increased by culturing the embryoid bodies in dbcAMP, theophylline, or cholera toxin. These results suggest that the embryoid body endodermal cells are the source of a cAMP-inducible plasminogen activator activity.
Collapse
|
|
48 |
38 |
12
|
Momose T, Schmid V. Animal pole determinants define oral–aboral axis polarity and endodermal cell-fate in hydrozoan jellyfish Podocoryne carnea. Dev Biol 2006; 292:371-80. [PMID: 16487957 DOI: 10.1016/j.ydbio.2006.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2005] [Revised: 01/11/2006] [Accepted: 01/12/2006] [Indexed: 11/29/2022]
Abstract
Cnidarians, in contrast with bilaterians, are generally considered to exhibit radial symmetry around a single body axis (oral-aboral) throughout their life-cycles. We have investigated how the oral-aboral axis is established in the hydrozoan jellyfish Podocoryne carnea. Vital labeling experiments showed that the oral end of the blastula derives from the animal pole region of the egg as has been demonstrated for other cnidarian species. Gastrulation is restricted to the oral pole such that the oral 20% of blastula cells give rise to endoderm. Unexpectedly, bisection experiments at the 8-cell stage showed that animal regions are able to develop into normally polarized larvae, but that vegetal (aboral) blastomeres completely fail to develop endoderm or to elongate. These vegetal-derived larvae also failed to polarize, as indicated by a lack of oral-specific RFamide-positive nerve cells and a disorganized tyrosinated tubulin-positive nerve net. A different result was obtained following bisection of the late blastula stage: aboral halves still lacked the capacity to develop endoderm but retained features of axial polarity including elongation of the larva and directional swimming. These results demonstrate for the first time in a cnidarian the presence of localized determinants responsible for axis determination and endoderm formation at the animal pole of the egg. They also show that axial polarity and endoderm formation are controlled by separable pathways after the blastula stage.
Collapse
|
|
19 |
32 |
13
|
Abstract
Extracellular matrix (ECM) adhesion and proteolysis play important roles in embryonic development. In previous work (Behrendtsen et al. [1992] Development 114:447-456) we showed that gelatinase B activity is rate-limiting for trophoblast-mediated invasion and degradation of ECM in culture. In the present study, we show that metalloproteinases (MMPs) have distinct roles in migration along ECM as opposed to invasion through ECM. We investigated the role of ECM proteolysis in the differentiation and migration of parietal endoderm (PE), the first embryonic migratory cell type, adhering to ECM surfaces. Gelatinase B was the major MMP of PE; mRNA and protein were detected in PE of 7.5- and 8.5-day embryos. Using cultures of inner cell masses (ICMs) isolated from mouse blastocysts, we found that inhibitors of metalloproteinases, specifically, tissue inhibitor of metalloproteinases (TIMP)-1 and a peptide hydroxamic acid stimulated outgrowth and differentiation of PE from ICMs cultured on fibronectin, but inhibitors of plasminogen activators did not. TIMP-1 increased the number of PE cells and mean distance migrated and increased expression of the PE differentiation marker vimentin; the increase in cell number was not at the expense of other cell types. The stimulatory effect of TIMP-1 was most marked on low concentrations of substrate fibronectin, decreasing as concentrations of fibronectin increased. TIMP-1 also stimulated the outgrowth of PE in blastocyst cultures and in ICM/trophectoderm co-cultures; in ICM/trophectoderm co-cultures TIMP-1 stimulated PE differentiation on higher concentrations of fibronectin than was permissive for ICMs cultured alone. These data indicate that metalloproteinase inhibitors preserved the migration-inducing status of the ECM. We conclude that metalloproteinases have distinct roles in invasive activity through ECM barriers and migratory activity along ECM surfaces.
Collapse
|
|
28 |
31 |
14
|
Zhang L, Schwartz JJ, Miller J, Liu J, Fritze LM, Shworak NW, Rosenberg RD. The retinoic acid and cAMP-dependent up-regulation of 3-O-sulfotransferase-1 leads to a dramatic augmentation of anticoagulantly active heparan sulfate biosynthesis in F9 embryonal carcinoma cells. J Biol Chem 1998; 273:27998-8003. [PMID: 9774414 DOI: 10.1074/jbc.273.43.27998] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoic acid (RA) and dibutyryl cAMP plus theophilline (CT) trigger F9 cells to differentiate into parietal endoderm. The differentiation induces a 9-fold increase in total heparan sulfate (HStotal) biosynthesis and a 170-fold increase in anticoagulantly active HS (HSact) biosynthesis. Measurement of 3-O-sulfotransferase-1 mRNA and enzymatic activity demonstrated an increase of over 100-fold whereas determination of N-, 2-O, and 6-O-sulfotransferase enzymatic activities showed elevations of 2-, 3. 5-, and 3.7-fold, respectively. HSact precursor pool measurements reveal that 30% of control F9 HStotal can be converted into HSact while only an additional 10% of RACT F9 HStotal can be transformed into HSact. Disaccharide analysis of metabolic labeled HS indicated that 32% 3-O-sulfate containing disaccharides, i.e. GlcA-anManR3S and GlcA-anManR3S6S, are present in HSact and 68% GlcA-anManR3S and GlcA-anManR3S6S are found in anticoagulantly inactive HS (HSinact). By using adenosine 3'-phosphate 5'-phosphosulfate and purified 3-O-sulfotransferase-1, 30% of 3-O-sulfation occurs in HSact and 70% of 3-O-sulfation occurs in HSinact. The similar ratio of 3-O-sulfate distribution in HSact versus HSinact suggests that HSact production in the F9 system is determined by the abundance of 3-O-sulfotransferase-1 as well as the size of the HSact precursor pool. Extensively 3-O-sulfated HSinact may play an important functional role under in vivo conditions within the murine placenta.
Collapse
|
|
27 |
30 |
15
|
Abstract
Alkaline phosphatase (AP) activity is expressed in the endodermal cell lineage of ascidian embryos beginning at gastrulation. AP expression is resistant to levels of actinomycin D which completely suppress the appearance of other tissue-specific enzyme and morphological markers including acetylcholinesterase (AchE), a larval muscle enzyme whose expression requires embryonic transcription. The resistance of AP expression to actinomycin D has led to the proposal that AP may be expressed independent of embryonic transcription by the translational activation of maternal AP mRNA. To test this hypothesis, AP expression was examined in fragments of unfertilized and fertilized Styela plicata eggs by histochemical methods. As expected, nucleate fragments from fertilized eggs developed into larvae which exhibited AP activity in their endodermal cells and AchE activity in their muscle cells. In contrast, anucleate fragments from fertilized eggs, cultured until controls reached the larval stage, did not develop AP or AchE activity. The lack of AP activity was unrelated to the absence of cleavage or to the ooplasmic composition of the anucleate fragments. Anucleate fragments from unfertilized eggs were also AP negative, unless they were inseminated, after which they often developed to the larval stage as andromerogons and exhibited AP activity in their endodermal cells. The development of endodermal AP in andromerogons suggests that the factors responsible for AP expression are not localized in or attached to the maternal nucleus. In summary, the results suggest that AP expression requires nuclear events and is not determined exclusively by maternal cytoplasmic factors such as preformed mRNA.
Collapse
|
|
38 |
30 |
16
|
Seibel W. An ultrastructural comparison of the uptake and transport of horseradish peroxidase by the rat visceral yolk-sac placenta during mid- and late gestation. THE AMERICAN JOURNAL OF ANATOMY 1974; 140:213-35. [PMID: 4363603 DOI: 10.1002/aja.1001400208] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
Comparative Study |
51 |
29 |
17
|
Stallmach A, Hahn U, Merker HJ, Hahn EG, Riecken EO. Differentiation of rat intestinal epithelial cells is induced by organotypic mesenchymal cells in vitro. Gut 1989; 30:959-70. [PMID: 2759491 PMCID: PMC1434305 DOI: 10.1136/gut.30.7.959] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Stromal-epithelial interaction is a potent driving force in the developing intestinal mucosa which ensures tissue specific cellular differentiation. The mechanisms involved are relevant to tissue renewal in adult organs yet they have not been elucidated because of the lack of appropriate in vitro models. In this study, we have investigated the interaction between intestinal mesenchymal and epithelial cells at the cellular level in vitro. Fetal rat intestinal epithelial cell colonies explanted in vitro on the 15th day of gestation, which failed to mature in plain monocultures, were reassociated in coculture with three different types of mesenchyme:fetal skin, gastric and intestinal mesenchyme. Only fetal epithelial cells cocultured with intestinal (homologous) mesenchyme acquired definite signs of differentiation within three to six days. These primitive epithelial cells were shown by electronmicroscopy to become highly polarized, connected by tight junctions and covered with a regular brush border. Three brush border enzymes were strongly expressed in homologous cocultures and their activity was sensitive to dexamethasone. In contrast, fetal epithelial cells cocultured with skin or stomach derived mesenchyme under identical conditions failed to differentiate in vitro: they remained flat, unpolarised and expressed only low enzyme activity. The unique potential of the small intestinal mesenchyme to promote intestinal epithelial differentiation is discussed.
Collapse
|
research-article |
36 |
24 |
18
|
Otte AP, Kramer IM, Mannesse M, Lambrechts C, Durston AJ. Characterization of protein kinase C in early Xenopus embryogenesis. Development 1990; 110:461-70. [PMID: 2133549 DOI: 10.1242/dev.110.2.461] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recently, we presented evidence that protein kinase C (PKC) is involved in mediating the endogenous signals that induced competent Xenopus ectoderm to differentiate to neural tissue. We report here that PKC is already strongly activated in neural-induced ectoderm from midgastrula embryos and that this activation runs parallel with an increase in the level of inositol phosphates. We further identify several proteins that are phosphorylated, both in natural neural-induced ectoderm and in TPA-treated ectoderm, suggesting that they are phosphorylated through the PKC route. We found no major changes in PKC activity among different pregastrula stages, including the unfertilized egg. However, PKC isolated from animal, ectodermal cells is highly sensitive to Ca2+ and can be activated by low concentrations, (6–25 microM) of arachidonic acid, while PKC isolated from vegetal, endodermal cells is more insensitive to Ca2+ and cannot be activated by arachidonic acid. These results suggest that different PKC isozymes are present in animal and vegetal cells.
Collapse
|
|
35 |
24 |
19
|
Gerhartz B, Kolb HJ, Wittmann J. Proteolytic activity in the yolk sac membrane of quail eggs. Comp Biochem Physiol A Mol Integr Physiol 1999; 123:1-8. [PMID: 10425726 DOI: 10.1016/s1095-6433(99)00031-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extraembryonal degradation of yolk protein is necessary to provide the avian embryo with required free amino acids during early embryogenesis. Screening of proteolytic activity in different compartments of quail eggs revealed an increasing activity in the yolk sac membrane during the first week of embryogenesis. In this tissue, the occurrence of cathepsin B, a lysosomal cysteine proteinase, and cathepsin D, a lysosomal aspartic proteinase, has been described recently (Gerhartz et al., Comp Biochem Physiol, 118B:159-166, 1997). Determination of cathepsin B-like and cathepsin D-like proteolytic activity in the yolk sac membrane indicated a significant correlation between growth of the yolk sac membrane and proteolytic activity, shown by an almost constant specific activity. Both proteinases could be localized in the endodermal cells, which are in direct contact to the yolk. The concentration of proteinases in the endodermal cells appears to be almost unaltered in the investigated early stage of quail development, whereas the amount of endodermal cells increases rapidly, seen by a complicated folding of the yolk sac membrane. In the same cells quail cystatin, a potent inhibitor of quail cathepsin B (Ki 0.6 nM), has been localized at day 8 of embryonic development. Approximately at this stage of development, the quail embryo stops metabolizing yolk. In conclusion, it is strongly indicated that the amount of available free amino acids, produced by proteolytic degradation and supporting embryonic growth, is regulated by the growth of the yolk sac membrane.
Collapse
|
|
26 |
21 |
20
|
Walters KW, Corbin CJ, Anderson GB, Roser JF, Conley AJ. Tissue-specific localization of cytochrome P450 aromatase in the equine embryo by in situ hybridization and immunocytochemistry. Biol Reprod 2000; 62:1141-5. [PMID: 10775160 DOI: 10.1095/biolreprod62.5.1141] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Estrogen production by the preimplantation equine embryo is presumed to be important in maternal-conceptus communication in the mare. The synthesis of C(18) estrogens from C(19) androgens requires cytochrome P450 aromatase (P450(arom)) in the conceptus, but little information is available on the specific tissue location or potential developmental patterns of expression for the horse. The goal of this research was to localize P450(arom) in the equine conceptus by immunocytochemistry and in situ hybridization. Intact blastocyst-stage embryos were collected by nonsurgical flush on Days 12-15 of pregnancy, fixed in 4% paraformaldehyde, and paraffin-embedded. Aromatase protein was localized using rabbit anti-human placental aromatase antiserum with a detection system utilizing peroxidase and 3-amino-9-ethylcarbazole. For in situ hybridization, tissue sections were incubated with sense or antisense [(35)S]UTP-labeled cRNA probes prepared from equine aromatase cDNA. Aromatase protein and transcript were abundant in the extraembryonic trophectoderm but absent from embryonic ectoderm. No P450(arom) expression was detected in abembryonic endoderm or mesoderm. Aromatase expression was demonstrated in the endoderm beneath the disc (hypoblast). This pattern of P450(arom) expression in the equine blastocyst closely resembles that seen transiently in the porcine embryo, suggesting that regulatory mechanisms conferring tissue specificity may be conserved.
Collapse
|
|
25 |
19 |
21
|
Miki A, Kugler P. Comparative enzyme histochemical study on the visceral yolk sac endoderm in the rat in vivo and in vitro. HISTOCHEMISTRY 1984; 81:409-15. [PMID: 6511492 DOI: 10.1007/bf00514337] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Histochemical study of the visceral yolk-sac endoderm of the rat was performed in vitro (whole-embryo culture for 24, 48 and 72 h explanted at 9.5 days of gestation) and in vivo (10.5, 11.5 and 12.5 days of gestation) in order to compare the distribution and activity of various enzymes involved in the digestion and energy metabolism in both systems. It was shown that, both in vitro and in vivo gamma-glytamyltransferase and dipeptidylpeptidase IV are demonstrable in the apical cell membranes (membrane-bound hydrolases), while acid phosphatase, dipeptidylpeptidases I, II and acid beta-galactosidase are concentrated in the supranuclear vacuoles (lysosomal hydrolases), and cytoplasmic lactate dehydrogenase and mitochondrial enzymes (succinate dehydrogenase, NAD-dependent isocitrate dehydrogenase, cytochrom oxidase) are localized in the whole cytoplasm and mainly in the apical cytoplasm, respectively, of the visceral yolk-sac epithelium. In vivo, the activity of all enzymes increased until 12.5 days, but in vitro, this activity increased only until 48 h after the start of culture (corresponding to 11.5 days in vivo). Comparison of the yolk sacs at 10.5 and 11.5 days in vivo with those after 24 and 48 h in vitro showed that the activities of all the investigated enzymes were almost identical. Yolk sacs which were cultured for 72 h showed lower activities of lysosomal and mitochondrial enzymes than those at 12.5 days in vivo. It is concluded that the digestive function and energy metabolism of the visceral yolk-sac epithelium are almost identical in vitro and in vivo at 10.5 and 11.5 days.
Collapse
|
Comparative Study |
41 |
18 |
22
|
Miyaishi O, Kozaki K, Iida K, Isobe K, Hashizume Y, Saga S. Elevated expression of PDI family proteins during differentiation of mouse F9 teratocarcinoma cells. J Cell Biochem 1998; 68:436-45. [PMID: 9493907 DOI: 10.1002/(sici)1097-4644(19980315)68:4<436::aid-jcb4>3.0.co;2-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We investigated the expression of protein disulfide isomerase family proteins (PDI, ERp61, and ERp72) in mouse F9 teratocarcinoma cells during differentiation induced by treatment with retinoic acid and dibutyryl cAMP. Each member of this family was expressed at a constitutive level in undifferentiated F9 cells. During differentiation of F9 cells to parietal or visceral endodermal cells the protein level of all these enzymes increased, although the extent of this increase in both protein and mRNA levels varied among the enzymes. Certain proteins were found to be coimmunoprecipitated with PDI, ERp61, and ERp72 in the presence of a chemical crosslinker. Type IV collagen was significantly coprecipitated with PDI whereas laminin was equally coprecipitated with the three proteins. Furthermore, 210 kDa protein characteristically coprecipitated with ERp72. Thus, the induction of PDI family proteins during the differentiation of F9 cells and their association with different proteins may implicate specific functions of each member of this family despite the common redox activity capable of catalyzing the disulfide bond formation.
Collapse
|
|
27 |
17 |
23
|
Mills E, LaMonica K, Hong T, Pagliaruli T, Mulrooney J, Grabel L. Roles for Rho/ROCK and vinculin in parietal endoderm migration. ACTA ACUST UNITED AC 2006; 12:9-22. [PMID: 16371343 DOI: 10.1080/15419060500305948] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The first cell migration event in the mouse embryo is the movement of parietal endoderm cells from the surface of the inner cell mass facing the blastocoel cavity to line the inner surface of the trophectoderm. F9 embryoid bodies provide an in vitro model for this event. They have an inner core of undifferentiated stem cells surrounded by an outer visceral endoderm layer. When plated on a laminin coated substrate, visceral endoderm transitions to parietal endoderm and migrates onto the dish, away from the attached embryoid body. We now show that this outgrowth contains abundant focal complexes and focal adhesions, as well as lamellipodia and filopodia. Treatment with the ROCK inhibitor Y-27632 promotes a 2-fold increase in outgrowth, and a transition from focal adhesions and associated stress fibers, to focal complexes and a decrease in stress fibers. ROCK inhibition also leads to an increase in lamellipodia. Inhibition of RhoA by transfection of a vector encoding C3 transferase, direct administration of the C3 enzyme, or transfection of a vector encoding p190 Rho GTPase Activating Protein also promotes outgrowth and an apparent transition from focal adhesions to focal complexes. Parietal endoderm outgrowth generated using vinculin-deficient F9 stem cells migrates 2-fold further than wild type cultures, but this outgrowth retains the morphology of wild type parietal endoderm, including focal adhesions and stress fibers. Addition of Y-27632 to vinculin-null outgrowth cultures further stimulates migration an additional 2-fold, supporting the conclusion that Rho/ROCK and vinculin regulate parietal endoderm outgrowth by distinct pathways.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
16 |
24
|
Nishida H, Kumano G. Analysis of the temporal expression of endoderm-specific alkaline phosphatase during development of the ascidian Halocynthia roretzi. Dev Growth Differ 1997; 39:199-205. [PMID: 9108333 DOI: 10.1046/j.1440-169x.1997.t01-1-00008.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
During embryogenesis of ascidians, endoderm cells initiate certain processes associated with differentiation and produce a tissue-specific enzyme, alkaline phosphatase (ALP). ALP has been used as a histochemical marker of endoderm differentiation. In the present study, the temporal profile of ALP expression during embryogenesis was investigated. In Halocynthia roretzi, endoderm-specific ALP is a membrane bound protein and is distinguishable from maternal cytoplasmic ALP by molecular mass. The activity of endodermal ALP first appeared at the early tail-bud stage. Treatment of developing embryos with inhibitors of translation and transcription was started at various stages. The results suggested that the synthesis of endodermal ALP protein started at the early tail-bud stage, and that the transcription of mRNA was initiated in the gastrula. In other ascidians, Ciona and Styela, it has been suggested that a significant amount of maternal ALP mRNA exists in eggs. The present study revealed that there are significant species differences in ALP expression during ascidian embryogenesis.
Collapse
|
|
28 |
16 |
25
|
Greenhouse G, Pesetsky I, Hamburgh M. The effect of teratogenic doses of trypan blue on the yolk sac placenta of the mouse. A histological and histochemical study. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1969; 171:343-57. [PMID: 5348625 DOI: 10.1002/jez.1401710309] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
|
56 |
12 |